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Suppression of the Kondo resistivity minimum in topological insulators
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Magnetically doped topological insulators are studied intensively in the search for exotic phenomena such
as the quantum anomalous Hall effect. The interplay of electronic and impurity degrees of freedom leads to
the Kondo effect, which is an increase in the resistivity at temperatures T < TK (the Kondo temperature). We
study this effect in chiral surface state transport at T � TK in the metallic regime, starting from the quantum
Liouville equation and including Kondo scattering to all orders, as well as phonon and nonmagnetic impurity
scattering. Unlike spin-orbit coupled metals and semiconductors, TK is suppressed by spin-momentum locking,
which prevents the formation of a Kondo screening cloud. We expect a resistivity ρxx ∝ T 4 primarily due to
phonons.
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I. INTRODUCTION

Considerable attention has been devoted lately to topo-
logical insulators (TIs), which have an insulating bulk and
conducting edge [two-dimensional (2D)] or surface (3D)
states protected by time-reversal symmetry.1,2 Strong spin-
orbit coupling in TIs leads to a dispersion in the form of a
Dirac cone, suppressed backscattering, and coupled charge and
spin transport.3,4 Within this field, TIs doped with magnetic
impurities have been the focus of an intense effort, culminating
in the observation of the quantum anomalous Hall effect.5,6

Magnetically doped systems frequently exhibit an increase
in the the resistivity below a certain Kondo temperature
TK . The Kondo effect stems from the interplay between
electron and impurity spins resulting in spin-flip scattering,
which leads to screening of the impurity spin below TK .7–9

In systems with spin-orbit coupling, this effect is of con-
siderable interest, given the associated spin nonconserva-
tion and nontrivial spin dynamics. Studies have focused on
spin-orbit coupled semiconductors,10–14 including quantum
dots,15 noncentrosymmetric metals,16 and superconductors.17

In particular, Refs. 12 and 16 showed that spin-orbit coupling
can enhance the Kondo temperature.

In this context, TIs are especially interesting, since the
spin-orbit interaction is the dominant energy scale. TI Kondo
physics is conceptually unique due to the interplay of im-
purity degrees of freedom with the spin-momentum locking
of the conduction electrons, offering an example of the
competition between strong spin-orbit coupling and strong
interactions (these systems are distinct from topological
Kondo insulators18). Research on the Kondo effect in 2D
TIs19,20 and 3D TIs21–28 is taking off. Studies to date have
focused largely on low temperatures and doping near the
Dirac point, with Ref. 23 mapping the problem onto the
Anderson pseudogap model. Spin-orbit coupling gives a strong
anisotropy in the correlation of the impurity and conduction
electron spin densities,24 and a universal energy dependence
of the low-energy quasiparticle interference near the Dirac
point.28 Interestingly, the Kondo resonance in the bulk of TI
can be screened by the exchange interaction.25,26

Fundamental questions remain, especially in regard to
the role of spin-momentum locking in the Kondo effect
in 3D TI transport. Because of spin-momentum locking,
momentum scattering in TIs is always accompanied by spin
rotations, meaning that one cannot simply translate results
known for dilute alloys.29–32 However, despite similarities with
graphene,22 the TI Hamiltonian describes the true spin in a
one-valley system.27 This makes large-N renormalization a
difficult proposition in TIs, given that N = 1. Moreover, the
topological protection offered by suppressed backscattering
is not meaningful out of equilibrium,33 since transport is
irreversible. At the same time, the observation of chiral
surface states in transport has been problematic,4 and recent
experiments have only isolated their contribution by using
gates.34–36 Given the current low sample qualities, it is essential
to characterize the surface states fully and identify transport
signatures, including TK , and the location of the resistance
minimum, which in general occurs at a temperature different
from TK , requiring the full resistivity for its evaluation,
including the phonon contribution.

In light of this, we present here a transport theory
of nonequilibrium magnetic 3D TIs that treats impurity,
phonon,37 and Kondo scattering on the same footing. Since
gating can eliminate bulk transport,34–36 we focus on the sur-
face states alone. We derive a many-body kinetic equation from
the quantum Liouville equation and sum the scattering terms
to all orders in the Kondo interaction, retaining the leading
divergent terms, the equivalent of the parquet diagrams. We
derive the resistivity as a function of T , showing that TK is
strongly suppressed, and the temperature dependence of the
resistivity is primarily due to phonon scattering. Physically,
this is because spin-momentum locking makes it difficult for
the impurity spin to polarize the conduction electrons.

The outline of this paper is as follows. In Sec. II, we will
introduce the Hamiltonian of the system, including the band,
impurity, and driving electric field contributions. Section III
focuses on the transport theory of magnetically doped TIs,
deriving the kinetic equation directly from the quantum
Liouville equation. The full resistivity and Kondo temperature
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are also derived in this section. The results are discussed in
Sec. IV. Finally, Sec. V summarizes our findings.

II. HAMILTONIAN

We focus on temperatures T � TK and assume εF τ/h̄ � 1,
where εF is the Fermi energy and τ the momentum relaxation
time, and εF lies in the bulk gap but in the surface con-
duction band. Single electron states |ks〉 below are indexed
by wave vector k and spin s. The total Hamiltonian is
H = H0 + U , where H0 = HTI + HE and the total effective
scattering potential U = Uimp + Um + Uep. The surface-state
band Hamiltonian is HTI = −∑

kss ′ Akσ ss ′ · θ̂ c
†
kscks ′ , where

σ is the electron spin operator, θ̂ is the tangential unit vector
corresponding to k, and A is a constant. The interaction with
the driving electric field is HE = ∑

kk′ss ′ H
E
kk′c

†
ksck′s ′ , with

HE
kk′ given below.
The potential due to nonmagnetic charged impurities

and static defects is Uimp = ∑
I kk′s V C

kk′c
†
kscks , where V C

kk′ =
V̄ C

kk′
∑

J e−i(k−k′)·RJ . Here V̄ C
kk′ is the Coulomb potential of a

single impurity and RJ denotes the impurity locations. The
impurities are assumed to be uncorrelated and the average
of V C

kk′V
C
k′k over impurity configurations is (ni |V̄ C

kk′ |2δss ′ )/V ,
where ni is the impurity density and V is the crystal volume.
Scattering is assumed to be elastic.

The Kondo interaction Um = ∑
I k,k′,s,s ′ W

ss ′
I kk′ c

†
ksck′s ′ ,

where Wss ′
I kk′ = W̄ ss ′

I kk′e
−i(k−k′)·RI , describes scattering off mag-

netic impurities with density nm, assumed to be local in space,
and I runs over magnetic impurities. For a single impurity,
W̄ ss ′

I kk′ = (J/V )σ ss ′ · SI or

W̄ ss ′
I kk′ = J

V

[
σzS

I
z + 1

2
(SI

+σ− + SI
−σ+)

]ss ′

, (1)

where SI are impurity spin operators, and σ± = σx ± iσy .
The electron-phonon interaction is

Uep =
∑
k,q,s

Dqc
†
k+q,sck,s(bq + b

†
−q), (2)

with bq (b†q) phonon annihilation (creation) operators, the

deformation potential Dq = −iC
√

h̄q

2ρvph
, C ≈ 30 eV,37 ρ is

the mass density, and vph is the phonon velocity.

A. Eigenstates of the TI Hamiltonian

The eigenstates |kn〉 of HTI are denoted by |k,±〉, where ±
represent the electron and hole bands, respectively,

|k,+〉 = 1√
2

[e−iθ/2|k,↑〉 − ieiθ/2|k,↓〉],
(3)

|k,−〉 = 1√
2

[e−iθ/2|k,↑〉 + ieiθ/2|k,↓〉].

Matrix elements in the eigenstate basis are denoted by a tilde.
The x-velocity operator in the eigenstate basis is

ṽx = 1

h̄

∂H

∂kx

= A cos θ

h̄
σk|| + A sin θ

h̄
σk⊥. (4)

A screened Coulomb potential V̄ C in the Pauli basis |ks〉 is
V̄ C

kk′ = Ze2

2ε0εr

1
|k−k′|+kTF

1, where kTF is the Thomas-Fermi wave

vector4 and 1 is the identity matrix in spin space. In the basis
of TI eigenstates,

Ṽ C
kk′ = S

†
kV̄

C
kk′Sk′ = Ze2

2ε0εr

1

|k − k′| + kTF

×
(

cos γ

2 −i sin γ

2−i sin γ

2 cos γ

2

)
, (5)

where γ = θ ′ − θ and the transfer matrix

Sk =
( 〈k,↑|k,+〉 〈k,↑|k,−〉

〈k,↓|k,+〉 〈k,↓|k,−〉
)

= 1√
2

(
e−iθ/2 e−iθ/2

−ieiθ/2 ieiθ/2

)
. (6)

The Kondo interaction with a single magnetic impurity has the
following matrix elements in eigenstate space:

W̃++
kk′ = J

2

(
− 2i sin

γ

2
Sz + ie−iφ/2S+ − ieiφ/2S−

)
,

W̃+−
kk′ = J

2

(
2 cos

γ

2
Sz + ie−iφ/2S+ + ieiφ/2S−

)
,

(7)

W̃−+
kk′ = J

2

(
2 cos

γ

2
Sz − ie−iφ/2S+ − ieiφ/2S−

)
,

W̃−−
kk′ = J

2

(
− 2i sin

γ

2
Sz − ie−iφ/2S+ + ieiφ/2S−

)
,

where φ = θ + θ ′. Notice the presence of backscatter-
ing terms. We remark in addition that 〈W̃αβW̃βγ W̃γα〉 =
〈W̃βγ W̃γαW̃αβ〉, 〈W̃αβW̃βγ W̃γα〉 = −〈W̃αβW̃γαW̃βγ 〉.

III. KINETIC EQUATION

The system is described by the many-body density operator
F . The single-particle density matrix fαβ = Tr (Fc

†
βcα), where

|α〉 ≡ |kαsα〉 and Tr is the full operator trace. F obeys the
quantum Liouville equation,

dF (t)

dt
+ i

h̄
[H,F (t)] = 0. (8)

Assuming random impurity locations and spins RI and m, we
introduce the impurity average of F through

〈F (t)〉 = n
I=1

∫
dRI

V

1

2S + 1

×
S∑

m=−S

〈m|F (R1, . . . ,Rn; m; t)|m〉. (9)

We write F = 〈F 〉 + G, where 〈F 〉 is averaged over impurities
and G = F − 〈F 〉 is the remainder. We integrate over G, since
our interest is in impurity-averaged expectation values, hence
〈F 〉. Then Eq. (8) is broken up into

d〈F (t)〉
dt

+ i

h̄
[H0,〈F (t)〉] = − i

h̄
〈[U,G(t)]〉,

(10)
dG(t)

dt
+ i

h̄
[H0,G(t)] + i

h̄
[U,〈F (t)〉] = i

h̄
〈[U,G(t)]〉.
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The scattering term is J (F ) = (i/h̄)〈[U,G(t)]〉. We solve

G(t) = − i

h̄

∫ ∞

0
dt ′e−iH t ′/h̄[U,〈F (t − t ′)〉]eiHt ′/h̄, (11)

and introduce resolvents R±(E) = (E − H ± iη)−1 in Fourier
space, with η infinitesimal. The resolvents satisfy

e∓iH t/h̄e−ηt = ± i

2π

∫ ∞

−∞
dE R±(E)e∓iEt/h̄, (12)

R±(E) = 1

±ih̄

∫ ∞

0
dt e∓iH t/h̄e±iEt/h̄e−ηt . (13)

We also introduce the T operators, given by T ±(E) = U +
UR±(E)U . Finally, we obtain

J = −
∫ ∞

−∞

dE

2πh̄
〈A(E,t)〉 + H.c., (14)

where H.c. stands for Hermitian conjugate, the function

A(E,t) = T +(E)[R+
0 (E)〈F (t)〉− 〈F (t)〉R−

0 (E)]T −(E)R−
0 (E)

+R+
0 (E)〈F (t)〉T +(E)[R+

0 (E) − R−
0 (E)]T −(E),

(15)

and the bare resolvent R±
0 (E) = (E − HTI ± iη)−1.

We use Wick’s theorem to obtain a one-particle equation
for f . We switch to the eigenstate representation |γ 〉 ≡ |kn〉,
where n is used exclusively for the band index. We focus
on the intraband part of f , diagonal in n, since interband
matrix elements are next-to-leading order in h̄/εF τ � 1.33

The equation for f is found by tracing (10) with c†γ cγ , hence
J (fγ ) = Tr [J (F )c†γ cγ ].

The electric field, assumed constant and uniform, enters
through HE

kk′ = eE · rkk′ . To linear order in the electric field,
fkn = f0kn + fEkn, where f0kn is the equilibrium Fermi-Dirac
distribution function for band n.

A. Born approximation

We assume no correlations between different scattering
mechanisms, so 〈UimpUm〉 = 0, and similarly for all cross
terms. The scattering term in the Born approximation is
obtained after replacing the T matrix in A(E,t) with U ,
which is A(E,t) + H.c. = UR+

0 [F,U ]R−
0 + H.c. The reduced

scattering term is

J (2)
γ = − i

h̄

∑
αβ

UαβUητ

εα − εβ + iη
〈[c†ηcτ ,c

†
γ cγ c†αcβ]〉 + H.c.

= 2π

h̄
δ(ετ − εγ )〈UγτUτγ 〉(fγ − fτ ). (16)

In the last step of deriving the above equation, we used Wick’s
theorem to approximate the statistical average of a series of op-

erators as the sum of their pairings c†αcβ = δαβfα , for example

tr〈F 〉c†αcβc†ηcτ = c†αcβc†ηcτ + c†αcβc†ηcτ . We also used the
property 〈UαβUβα〉 = 〈UβαUαβ〉; the averages of any two
operators Â and B̂ commute, which is manifest according
to the definition of the averaging process (9). Analogous
approximations are used in higher orders in U .

Based on Eq. (16), the nonmagnetic impurity scattering
term in the Born approximation is

Jimp(fk+) = nikF

2Ah̄

∫
dγ

2π

∣∣V̄ C
kk′

∣∣2
(fk+ − fk′+)(1 + cos γ ).

(17)

The magnetic impurity scattering term in the Born approxima-
tion [note W̃++

kk′ has the angular structure of Eq. (7)] is

J (2)
m (fk+) = nmkF

Ah̄

∫
dγ

2π
〈W̃++

kk′ W̃++
k′k 〉(fk+ − fk′+). (18)

For the electron-phonon interaction in the Born approximation,

Jep(fk+) = − 2π

h̄

∑
q

|Dq |2δ(h̄ωq + εk−q,+ − εk+)[Nqfk−q,+(1 − fk+) − (1 + Nq)fk+(1 − fk−q,+)]

− 2π

h̄

∑
q

|Dq |2δ(h̄ωq + εk+ − εk+q,+)[(1 + Nq)fk+q,+(1 − fk,+) − Nqfk+(1 − fk+q,+)], (19)

where b
†
qbq ′ = NqδQq ′ , and Nq is the phonon distribution. We

assume the phonons are in equilibrium, Nq = 1/(eh̄ωq/kBT −1),
which at low T decays exponentially as a function of energy.
Therefore, we only consider low-energy phonons h̄ωq � εF ,
for which 1/

√
1 − q2/(2kF )2 ≈ 1 and εk ≈ εk±q ≈ εF , since

transport takes place on the Fermi surface.
Below we will assume fEk+ ∝ (eE · k̂/h̄)(∂f0k+/∂k). The

nonmagnetic impurity scattering term reduces to

Jimp(fEk+) = nikF fEk+
4Ah̄

∫
dγ

2π

∣∣V̄ C
kk′

∣∣2
(1 + cos γ ). (20)

The magnetic impurity scattering term is

J (2)
m (fEk+) = 7nmJ 2kF

12Ah̄
S(S + 1) fEk+. (21)

For acoustic phonons with ωq ∝ q and the maximum q → ∞,
the phonon scattering term is

Jep(fEk+) =
(

2π5C2

15Ak2
F ρv5

ph

)(
kBT

h̄

)4

fEk+. (22)

B. Third and higher orders in U

In the third-order scattering term in the Kondo interaction,

J (3)
m (fk+) = 8π

h̄

∑
k1 k2

〈W̃++
kk1

W̃++
k1 k2

W̃++
k2 k 〉fk1+(fk2+ − fk+)

× δ(εk+ − εk2+)

εk+ − εk1+
, (23)
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we substitute fk+ = f0k+ + fEk+, since the scattering term
involves both the equilibrium density matrix and its correction
linear in the electric field. We make use of integrals of the type∫ ∞

0

k1dk1

k − k1
f0k1+ =

∫ ∞

0
dk1

∂f0k1+
∂k1

(
k1 + k ln

∣∣∣∣k1 − k

k

∣∣∣∣
)

,

(24)

which also occur in higher orders in U . Substituting
fEk+ ∝ (eE · k̂/h̄)(∂f0k+/∂k) and performing the impu-
rity spin averages, we obtain ( 1

τm
)(3), as we will show

below.
The fourth-order scattering term has the general

form

J (4)
m (fk+) = 4π

h̄

∑
k1 k2 k3

〈2W̃++
k1 k W̃++

k2 k1
W̃++

k3 k2
W̃++

kk3
− 2W̃++

k1 k W̃++
k2 k1

W̃++
kk3

W̃++
k3 k2

+ W̃++
kk1

W̃++
k1 k2

W̃++
k2 k3

W̃++
k3 k − W̃++

k2 k1
W̃++

k1 k W̃++
k3 k2

W̃++
kk3

〉

× fk1+
εk − εk1

fk3+
εk − εk3

(fk − fk2 )δ(εk2+ − εk+). (25)

Making the same substitutions as for the third-order term and
performing the impurity spin averages, we obtain ( 1

τm
)(4), as

we will show below.
The expansion is straightforwardly continued to fifth order

and above. The Born approximation is sufficient for treating
Uimp and Uep. To capture the relevant many-body Kondo
physics, the Kondo scattering term must be evaluated in all
orders in Um. Whereas the number of terms increases with each
order, the leading divergent terms, which are logarithmic in
temperature, can be easily identified, and their contribution to
the resistivity will be seen to form a straightforward geometric
progression. We focus on these terms in this work, which is
equivalent to summing the parquet diagrams.

The kinetic equation is

(Jep + Jimp + Jm)(fkn) = eE
h̄

· ∂f0kn

∂k
. (26)

We focus on the electron band n = +. The kinetic equa-
tion is readily solved by making the ansatz fEk+ ∝ (eE ·
k̂/h̄)(∂f0k+/∂k).33 Then the full scattering term can be reduced
to J (fγ ) = fγ /τ , where 1

τ
= 1

τep
+ 1

τimp
+ 1

τm
. For electron-

phonon scattering in the Born approximation, we find

1

τep

= π5C2

15ρAk2
F v5

ph

(
kBT

h̄

)4

. (27)

For scalar impurity scattering, from Eq. (16) [γ = θ ′ − θ ],

1

τimp
= nikF

4h̄A

∫
dγ

2π

∣∣V̄ C
kk′

∣∣2
sin2 γ. (28)

For magnetic impurities, in the Born approximation,
(

1

τm

)(2)

= 7nmS(S + 1)J 2kF

24Ah̄
. (29)

To order J 3 [Eq. (23)], we find the Kondo scattering term
(

1

τm

)(3)

= 7nmS(S + 1)J 3k2
F

24A2h̄π
ln

∣∣∣∣ εkF

kBT

∣∣∣∣. (30)

We have retained the leading divergent terms, logarithmic in
temperature, responsible for the Kondo physics, omitting a
temperature-independent term in J 3. The exact result is found

by summing all terms in the perturbation theory. The fourth-
order term yields

(
1

τm

)(4)

= 7nmS(S + 1)J 4k3
F

32π2A3h̄
ln2

∣∣∣∣ εF

kBT

∣∣∣∣. (31)

We sum all leading terms in 1/τm exactly, obtaining

1

τm

= 7πnmS(S + 1)J 2ρF

12h̄

1(
1 + JρF ln

∣∣ kBT
εF

∣∣)2 , (32)

where ρF = kF

2πA
is the density of states at the Fermi energy.

This diverges at the Kondo temperature,

TK = εF

kB

exp

(
− 1

JρF

)
. (33)

This result is valid for arbitrary impurity spin. For the case of
dilute alloys, the formalism outlined above reproduces results
found previously29–32 by summing the transition matrix or
equivalent alternative methods. One simplification available
in dilute alloys is the assumption of a short-range impurity
potential, which enables one to sum the transition matrix
exactly and use the optical theorem to deduce the transition rate
immediately. This is an accurate approximation in transport
because in metals for a short-range potential the transport
lifetime is identical to the Bloch lifetime. In TIs, due to the
presence of terms prohibiting backscattering, the transport
lifetime is always different from the Bloch lifetime, and
approximating the transport lifetime using the optical theorem
is not accurate.

The similarity in the expression for TK for TIs and metals
has been pointed out previously, and attributed to a peculiarity
of the Rashba Hamiltonian of TI surface states, which allows
the problem to be mapped to the pseudogap Anderson model.23

We expect the mathematical similarity of the two problems
to extend beyond the Rashba model, since time-reversal
breaking by the magnetic impurities enables backscattering
and eliminates topological protection in the many-body Kondo
scattering terms.
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The solution of the kinetic equation is fk+ = eE·k̂τ
2h̄

∂f0

∂k
.

From this, the full resistivity is

ρxx(T ) = 8πh̄2

Ae2kF

[
1

τimp
+ 7πnmS(S + 1)

12h̄

ρF J 2

[
1 + JρF ln

∣∣ kBT
εF

∣∣]2

+ π5C2

15ρAk2
F v5

ph

(
kBT

h̄

)4]
. (34)

We discuss the range of Kondo temperatures achievable
in TIs. It is reasonable to assume J ≈ 100 meV nm2, based
on figures reported in Ref. 5, where the coupling constant is
given as Jeff ≈ 2 eV. This value is normalized per Bi2Se3 unit,
yielding J = JeffxVcell, where x is the doping level (typically
around 5%) and Vcell is the unit-cell volume. These values are
also comparable to those in ferromagnetic semiconductors.38

Using A = 4.1 eV Å (Ref. 4) and assuming kF ≈ 108 m−1,
which corresponds to a doping density of 1011 cm−2, a
typical number in quasi-2D systems, yields εF ≈ 500 K.
The exponent, however, makes TK negligible. The resistivity
minimum, which also depends on the details of phonon
scattering, is found by setting ∂

∂T
ρxx(T ) = 0, which yields

0.9 K (it is 1.1 K at the rather high density of 1013 cm−2).
The location of the resistivity minimum is ∼ n

1/4
m (as for a

2D metal), as opposed to ∼ n
1/5
m for a 3D metal. Considering

that these parameters are optimistic, we conclude that under
realistic experimental conditions, the temperature dependence
of the resistivity stems primarily from phonons.

IV. DISCUSSION

The Kondo temperature quantifies the tendency toward
Kondo singlet formation between local moments and the
Fermi sea. The small TK reflects the difficulty for a local
moment to polarize the surface states and create a Kondo
screening cloud, which stems from the strong coupling of
the conduction electron spin to the momentum. The two
energy scales appearing in TK are AkF and Jk2

F , the spin-orbit
and exchange energies, respectively. The Kondo effect in TIs
reflects the competition between these two mechanisms: the in-
plane spin-orbit effective field prevents the impurity spin from
polarizing the conduction electrons. Hence, in TIs spin-orbit
coupling competes against the Kondo interaction, in the same
way that it competes against electron-electron interactions in
suppressing Stoner instabilities.4 Although spin-flip scattering
is allowed, it is extremely unlikely. In general, spin-momentum

locking does not guarantee the suppression of backscattering.
For this reason, we expect our findings to persist when warping
terms, important in Bi2Te3,1 are added to HTI. This can
be handled using the present formalism, which is general
and can be applied to spin-orbit Hamiltonians of the form
HSO = (h̄/2) σ · �k.

The Kondo temperature could be increased by increasing
the density, though the bulk conduction band provides a
stringent limit, given the small bulk gaps in current TIs of
the order of 0.3 eV. In the opposite limit, as the Dirac point
is approached, TK decreases exponentially since ρF vanishes,
yet transport near the Dirac point is diffusive and dominated
by puddles.33,39 Our findings cannot be extrapolated to that
regime.

The suppression of TK is contrasted with semiconductors
and metals with strong spin-orbit coupling,12,16 which differ
from TIs in several ways: TIs have a single Fermi surface, spin-
orbit coupling is strong, there is no spin precession (indeed
no spin-Hall effect), and there is no interband scattering.
The simplest models of spin-orbit coupled semiconductors
and metals consist of two bands, spin-orbit coupling is weak
compared to the kinetic energy, the spin precesses in an
effective field set by the spin-orbit interaction, interband
scattering at the Fermi energy is just as important as intraband
scattering, and the density of states in two dimensions is a
constant. The much weaker spin orbit in these conductors
does not impede the formation of a Kondo screening cloud,
and may under certain circumstances favor it.12,16

V. SUMMARY

In summary, we have studied the Kondo effect in TIs in
the metallic regime, showing that the Kondo temperature is
strongly suppressed by spin-momentum locking. The temper-
ature dependence of the resistivity is due to phonon scattering.
A natural extension of this work would be TI thin films, in
which tunneling is possible between different TI surfaces.
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