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Dissipative phase transition in a pair of coupled noisy two-level systems
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We study the renormalization group (RG) equations of a pair of spin-boson systems coupled in the z direction
with each other. Each spin is coupled to a different bath of harmonic oscillators. We introduce a systematic
adiabatic RG, which generalizes the first-order adiabatic renormalization previously used for the single spin-boson
model, and we obtain the flow equations for the tunneling constant, the dissipation strength, and the interspin
coupling up to third order in the tunneling. If one of the two spins is treated as a constant magnetization, the other
spin is described by a biased spin-boson Hamiltonian. In this case the RG equations we find coincide with the
ones obtained via a mapping to a long-range Ising chain. If the whole Ohmic two-spin system is considered the
Kosterlitz-Thouless phase transition is replaced by a second-order phase transition. In the case of a sub-Ohmic
bath our approach predicts that the two-spin system is always localized.
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I. INTRODUCTION

The influence of dissipation on quantum systems can
be profound. Fundamental principles in quantum mechanics
such as Heisenberg’s uncertainty relation, as well as basic
phenomena such as quantum tunneling, often exhibit a
surprising interplay with the effects of external thermal or
quantum noise.1–7 One of the most important models for
quantum dissipation is the so called “spin-boson model” which
describes a single spin coupled to a bosonic quantum bath.8

Its applications are numerous. Originally devised to model
a particle in a double-well potential,9 the spin-boson model
widely occurs in the field of quantum optics and quantum
computation where it is used to describe a noisy two-level
system or qubit (see, e.g., Refs. 10–12). In its standard form,
the spin-boson Hamiltonian for a noisy spin �s = 1

2 (σx,σ y,σ z)
with bias ε and tunneling rate h reads

HSB = ε

2
σ z + h

2
σx +

∑
i

λi(a
†
i + ai)σ

z +
∑

i

ωia
†
i ai, (1)

where a
†
i ,ai are the ladder operators of the quantum bath,

which is entirely characterized by its spectral density

S(ω) =
∑

i

δ(ωi − ω)λ2
i = αωs

2
�(ω − ωc), (2)

where α is the dissipation strength and ωc a high-frequency
cutoff that we choose to impose in a hard way. The so-
called Ohmic case corresponds to s = 1 while a spectral
density with s < 1 (s > 1) is called sub-Ohmic (super-Ohmic,
respectively). Despite its simple form, the model defined in
(1) is not exactly solvable, although tremendous progress has
been recently made for the single bath-mode case.13 If coupled
to an Ohmic bath, S(ω) = αω for ω small, it is well-known
that at zero temperature the system (1) has a quantum phase
transition at αc = 1 (to lowest order in h/ωc)8 which separates
a localized regime (with zero tunneling probability) from the
delocalized one (where tunneling occurs). There is now a
consensus that the super-Ohmic bath does not induce any
phase transition (at zero temperature) while the sub-Ohmic

spin-boson model has a second-order transition between a
localized and a delocalized phase separated by an s- and
h/ωc-dependent critical αc(s,h/ωc).8,14

Systems consisting of more than one noisy two-level system
have attracted much interest in recent years. At a macroscopic
level, the ferromagnetic dissipative quantum Ising chain in
which Ns spin-boson units are placed on a one-dimensional
lattice and coupled via a ferromagnetic nearest-neighbor
interaction has been numerically studied in Refs. 15 and 16.
The same system with an additional strong disorder has also
been investigated in the past.16–19 These studies concluded
that the dissipative quantum spin chain does not lie in the 2d

classical Ising universality class. The same one-dimensional
system with exchanges drawn from a probability distribution
has been analyzed, also numerically, in Ref. 16. However,
systems with a finite number of coupled noisy units are
also interesting not only because they can be interpreted
as a nontrivial part of the dissipative Ising chain but, more
importantly, because in their minimal expression they are
the simplest logical element. Indeed, two qubits can form,
for instance, a quantum exclusive OR gate. The interest in
understanding the dynamics of such two coupled noisy spins
is therefore huge and a large number of papers were devoted
to the analysis of different aspects of them. Just to mention
a few, decoherence and entanglement of two coupled qubits
have been studied in Refs. 12, 20, and 21. Two qubits coupled
to the same bosonic environment have been considered in
Refs. 22–24. The dynamics of two-spin systems in imperfect
crystals have been investigated, e.g., in Ref. 25.

The critical behavior of the Ohmic spin-boson model
can be tackled by a variety of methods. The noninteracting
blip approximation (NIBA) captures well the behavior of
the unbiased Ohmic dissipative two-level system (at least
for moderate α and not too large times) but it fails in the
presence of a finite bias or a sub-Ohmic spectral density.8

Hence, it is probably not suited for the study of coupled
spin-boson systems when the interspin coupling behaves de
facto as a finite bias. In the renormalization group (RG)
approach the idea is that the renormalization of the tunneling
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characterizes the phase. More precisely, if h renormalizes to
zero one concludes that the spin is localized while if h remains
finite it is delocalized. The spin-boson Hamiltonian (1) can be
mapped onto a long-range classical Ising chain with external
field whose RG equations are known to lowest order.8,26 By
carrying over these results to the spin-boson model, one finds
the Kosterlitz-Thouless equations27 for α and h:

∂


(
αωs−1

c

) = (1 − s)αωs−1
c − αωs−1

c (h/ωc)2, (3)

∂
(h/ωc) = [
1 − αωs−1

c

]
(h/ωc). (4)

In Ref. 28 an additional equation for the bias is reported which
takes the form (we use our notations and corrected a typo)

∂
(ε/ωc) = [
1 − 1

2

(
αωs−1

c

)
(h/ωc)2

]
(ε/ωc). (5)

Our aim is to go beyond the single spin-boson model and to
study the properties of two coupled units. To state the problem
more precisely, let us assume that the two spins are coupled
through a z-interaction constant J , such that their Hamiltonian
reads

H = J

4
σ z

1 σ z
2 + h

2

2∑
n=1

σx
n +

2∑
n=1

Nn∑
in=1

λin

(
a
†
in

+ ain

)
σ z

n + HB

(6)

with

HB =
2∑

n=1

Nn∑
in=1

ωina
†
in
ain (7)

and Nn the total number of oscillators coupled to the nth spin.
As the baths are independent, the creation and annihilation
operators with different n commute with each other. Note that
in the case where the two spins are coupled to a common
bath, correlations between the spins are directly induced via
the bath.22 The following analysis is heavily changed when
correlations between the different baths exist and the results
in this article thus apply only to the case where each spin is
coupled to its own environment.

Now, if we treat one spin—say the second one—in a mean-
field like way, the first spin feels the magnetization m = 〈σ z

2 〉/2
of the second spin via Jmσz

1 /2. Thus, within the mean-field
approximation, this leads to a single-spin model with a finite
bias ε = Jm. The full (non-mean-field) double spin-boson
system could in principle be also mapped onto a classical
model and studied from this point of view; however, we are
not aware of any such analysis in the literature.

In this paper we show how a RG scheme can be constructed
for the full noisy two-qubit system without using any mapping
to a classical system. Our approach is inspired by the adiabatic
renormalization scheme which aims at successively integrating
out the high-energy bath modes. The first-order adiabatic
renormalization has already been applied to the unbiased
single spin-boson Hamiltonian with success8 and the result
is Eq. (4) [the second-order equation (3) was not derived
in this way but with the mapping to a classical 2d system].
However, a systematic higher order analysis for the coupled
two-spin system has not been performed yet. The objective
of this paper is to close this gap and to demonstrate the
power of the systematic adiabatic RG scheme. In particular,

we will find the critical behavior of the two-spin system
and discuss its implications for the dissipative quantum Ising
chain.

This paper is organized as follows. In the first section
we present the adiabatic renormalization scheme and we
determine the RG equations for ε, h, and α for a single noisy
spin up to third order in h̃ ≡ h/ωc. In the second section we
consider two coupled spin-boson systems and we determine
the RG equation for the interspin coupling J . By performing
a small- and a large-J analysis we derive the critical behavior
of the full coupled system. We show that the nature of both the
Ohmic and the sub-Ohmic phase transition is different from
the standard phase transition of the unbiased single-spin boson
system.

II. THE ADIABATIC RENORMALIZATION SCHEME

The adiabatic renormalization scheme is, to our knowledge,
the first method that has been successfully applied to the
dissipative two-state system.8,28,29 The idea is to exploit the
separation of energy scales which occurs when the bath cutoff
ωc is much larger than both h and J . In this case some bath
modes are so highly energetic that they adapt instantly to the
spin’s state.

To be more specific we consider a Hamiltonian

H = HS

[{
σ z

n

}] + h

2

∑
n

σ x
n +

∑
n,in

λin

(
a
†
in

+ ain

)
σ z

n + HB.

(8)

HS[{σ z
n }] is a generic interaction term between the z compo-

nents of the spins and has an energy scale of the order of J

that, by assumption, satisfies J � ωc. We take λin ∼ 1/
√

Nn

thus ensuring a homogeneous scaling of the bath strength. All
baths are characterized by the same spectral density that we
take to be given by Eq. (2).

We now shift the high-energy bath modes (more precisely,
those with ωce

−d
 < ω < ωc and d
 a small parameter)
to their equilibrium position conditioned on the spin state
σ z

n = ±1. It is straightforward to calculate the required unitary
transformation:8

U = exp

⎡
⎣ ∑

n,jn,>

λjn

ωjn

(
a
†
jn

− ajn

)
σ z

n

⎤
⎦ , (9)

where the subscript > indicates that the sum runs over
all high-frequency bath modes only. It is known that the
NIBA8 corresponds to a Born-Oppenheimer-like approxima-
tion which is applied after the transformation (9) with the
sum now running over all bath modes.30 However, it is
also known that the corresponding zero-order wave function
substantially differs from the true one for low frequencies.
This has been pointed out in Ref. 31 to be the main reason
why NIBA fails for a sub-Ohmic bath. By transforming
only the high-frequency bath modes according to (9) we
avoid this problem. The transformed Hamiltonian can then be
written as

H′ = UHU † = H>
B + V, (10)
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with

H>
B =

∑
n

∑
in,>

ωina
†
in
ain , (11)

V = h

2

∑
n

(
evnσ+

n + e−vnσ−
n

) +
∑

n

∑
in,<

ωina
†
in
ain

+
∑

n

∑
in,<

λin

(
a
†
in

+ ain

)
σ z

n + HS

[{
σ z

n

}]
, (12)

where the subscript < constrains the sum to run only over bath
modes with “small” frequencies ω < ωce

−d
. We introduced
the anti-Hermitian operator

vn =
∑
in,>

2λin

ωin

(
a
†
in

− ain

)
, (13)

that is nothing else than a sum of rescaled oscillator momen-
tum operators (and which consequently shift the oscillators’
positions). Up to this point our treatment is still exact. From
now on we call H the transformed Hamiltonian in (10).

As the exact ground state of the Hamiltonian (10) is
unknown for finite h we need to use other means to determine
the behavior of the system. By using degenerate perturbation
theory we will find the approximate ground state which, in
return, will yield information on the quantum critical point. In
the following we will describe this adiabatic renormalization
scheme in detail.

First, we note that the eigenstates of H′ have the entangled
form |�s,�n>,�n<〉, with the z-spin states sn = ±, the fast oscil-
lators with occupation numbers �n>, and the slow oscillators
with occupation numbers �n<. The lowest energy state is the
one with �n> = 0.

Second, at each step we force only a fraction of oscillators—
namely the high-energy ones—to be in their ground state.
The reason for this is that only for these fast oscillators an
approximate ground state can be found. Indeed, the whole
bath admits arbitrarily small energy scales which forbid the
use of perturbation theory. However, by concentrating on the
fast bath modes, the relevant energies have a lower cutoff
e−d
ωc. It will turn out that the energy scales in V are even
much smaller. Thus, we can treat V as a small perturbation
and construct a systematic perturbation theory for the ground
states of the fast bath modes.

Let us reduce the complexity of the problem before
returning to the full two-spin case, by noting that the “free part”
of the HamiltonianH>

B can be written as a sumH>
B = ∑

n H>
B,n

with [H>
B,n,H>

B,n′ ] = 0; thus, each single-spin Hamiltonian
can be diagonalized separately. This is of course not true
for the perturbation V . Still, we will use, for a moment, a
mean-field-like approach where V is assumed to factorize.
With this assumption the summand in V depending on the nth
spin reads

Vn = h

2
(evnσ+

n + e−vnσ−
n ) + H<

B

+
∑
in,<

λin

(
a
†
in

+ ain

)
σ z

n + Jcm

2
σ z

n , (14)

where c is the connectivity of the underlying spin model.
Upon singling out each spin we treated the surrounding
magnetization m as a constant quantum number; i.e., we

set σ z
n′/2 = m (n′ 
= n) fixed for Vn. Since in the following

subsection we only deal with single-spin Hamiltonians we
henceforth omit the index n. Note that the resulting single-spin
Hamiltonian is equivalent to (1) with ε = Jcm abundantly
studied in the literature.

III. RENORMALIZATION OF THE SINGLE
SPIN-BOSON SYSTEM

The perturbation associated to the single-spin Hamiltonian
becomes

V = h

2
(evσ+ + e−vσ−) + H<

B +
∑
i,<

λi(a
†
i + ai)σ

z + ε

2
σ z.

(15)

To put the renormalization scheme which we have qualitatively
described in the previous paragraph on more quantitative
grounds we write the full single-spin Hamiltonian restricted to
the �n> = 0 Hilbert space as

H = H>
B + V =

∑
�n<,s=±

Es,�n<,0|s,�n<,0〉〈s,�n<,0|. (16)

The eigenstates |s,�n<,0〉 and the energies Es,�n<,0 of the full
Hamiltonian have to be determined perturbatively. If we denote
by |s〉|�n<〉|�n>〉 the (factorizing) eigenstates of H>

B , it is clear
that |s,�n<,0〉 are different from |s〉|�n<〉|0〉.

As one might have guessed, the Hamiltonian on the
truncated Hilbert space (16) can be recast in the original form

H = ε′

2
σ z + h′

2
σx +

∑
i,<

λ′
i(a

†
i + ai)σ

z + H<
B , (17)

with effective couplings h′, ε′, and λ′
i . Hence, by constraining

the fast modes to their ground state the original Hamiltonian
can be described by an effective Hamiltonian of the same form
and with renormalized coupling constants.

The usual recursive procedure is now followed. The unitary
transformation U is applied to the bath modes with e−d
ω′

c <

ω < ω′
c, where ω′

c = e−d
ωc. By repeating the above analysis
one thus arrives at effective coupling constants recursively
defined by the precedent RG step. To put it in other words, one
constructs flow equations for all coupling constants. As regards
the couplings to the bath, it turns out to be more convenient to
work with α introduced in (2) instead of the λis.

The flow of ωc can be immediately written down since,
from the very construction of the adiabatic renormalization
scheme, we have

∂
ωc = −ωc. (18)

The perturbation theory breaks down as soon as h/ωc ∼ 1.
Hence, there are in general two possibilities: Either the
renormalization flow has to be stopped at some point and
the resulting theory is a spin-boson model with renormalized
finite coupling constants or the renormalization flow can be
pursued until infinity (since h might decrease, too, during
renormalization) in which case the tunneling vanishes and the
spin is in the localized regime.

In the following it will be useful to directly work with the
nth-order perturbation operator V (n) defined on the subspace
D spanned by the unperturbed eigenstates |s〉|�n<〉|0〉. V (n) can
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be written in terms of the matrix elements Vk,k′ = 〈k|V|k′〉,
with |k〉,|k′〉 ∈ D; in the appendices we give its explicit
expression up to fourth order.

By using Eq. (16) the nth-order approximation of the full
energies Es,�n<,0 and states |s,�n<,0〉 are then the eigenvalues
(eigenstates) of V (n). The nth-order approximation of the
Hamiltonian restricted to the �n> = 0 Hilbert space (16) can
therefore be written in the form

H(n) = V (n), (19)

by noting that the unperturbed energy is E�n>=0 = 0 (note that
we denote the unperturbed energies by a standard E). The
effective Hamiltonian is thus completely determined by the
perturbation operator which we shall calculate in the following
subsections.

A. First-order adiabatic renormalization

We use degenerate static perturbation theory (see
Appendix A for details) to calculate V (n). The degenerate
subspace D is spanned by the states |+〉|�n<〉|0〉 and |−〉|�n<〉|0〉
which have zero unperturbed energy (with respect to the oper-
ator H>

B ). The perturbation subsequently splits the degenerate
energy into different energy levels as usual.

The first-order perturbation operator, V (1), has matrix
elements V

(1)
k,k′ = Vk,k′ with |k〉,|k′〉 ∈ D. We call diagonal

elements all matrix elements which conserve �n<. At this order
all off-diagonal elements are obviously zero and we can work
at fixed �n<. Since the fast bath modes act solely on the e±v

terms in V only h is modified at this order in perturbation
theory. More precisely, in the fixed �n< subspace we have

V (1) =
(

E�n<
+ ε/2 h′/2

h′/2 E�n<
− ε/2

)
, (20)

with E�n<
= ∑

i,< ωin<,i and

h′ ≡ h〈0|e±v|0〉 = exp

⎡
⎣−

∑
j,>

2λ2
j

ω2
j

⎤
⎦ = he−αωs−1

c d
. (21)

In the last step we used the well-known identity e−2r[a†
j −aj ] =

e−2r2
e−2ra

†
j e2raj (for r ∈ R) and the definition of α [see (2)]:∑

j,> 2λ2
j /ω

2
j = α

∫ ωc

e−d
ωc
dω ωs−2 = αωs−1

c d
.
Until here the adiabatic renormalization scheme is only a

more formal presentation than the “adiabatic renormalization”
previously used for an Ohmic bath in Refs. 8 and 29 to
calculate the renormalized tunneling amplitude h′. At each
renormalization step h is diminished by the Franck-Condon
factor e−αωs−1

c d
 and the total decrease after 
/d
 such steps
is h(
) = e−αωs−1

c 
h. The flow has to be interrupted as soon as
ωc(
) = e−
ωc becomes of the order of h(
). This condition
can be reformulated in a more concise way: The variable

h̃ =
√

2h

ωc

(22)

has to remain small during renormalization (the numerical
factor in the definition of h̃ is introduced for later convenience)
and, by using the previous equations, it scales as

∂
h̃ = (1 − α̃)h̃, (23)

where

α̃ = αωs−1
c . (24)

In the Ohmic case, this equation reduces to (4) and predicts
the localization transition since for α > 1 the procedure can
be infinitely repeated and h̃ therefore scales to zero. For α < 1
the flow has to be stopped as soon as h̃ ∼ 1. However, the
adiabatic renormalization scheme can be carried out beyond
the first-order calculation. In the following subsections we
shall determine the perturbation operator up to third order to
find the RG equations for J , ε, h̃, and α̃.

B. Higher order result: Renormalization of h̃ and ε

In this subsection we use the perturbative results detailed
in Appendix A. We first focus on the elements diagonal in �n<.
By using Eq. (A12) we have for the third-order perturbation
operator in the ± basis (at fixed �n<)

V (3)

=
(

E�n<
+ ε

2 + V (2)
+,+ + V (3)

+,+
h′
2 + V (3)

+,−
h′
2 + V (3)

−,+ E�n<
− ε

2 + V (2)
−,− + V (3)

−,−

)
,

(25)

with

V (2)
s,s ′ =

∑
k1 /∈D

〈s|〈�n<|〈0|V|k1〉〈k1|V|s ′〉|�n<〉|0〉
−Ek1

(26)

and

V (3)
s,s ′ =

∑
k1 /∈ D

k2 /∈ D

〈s|〈�n<|〈0|V|k1〉〈k1|V|k2〉〈k2|V|s ′〉|�n<〉|0〉
Ek1Ek2

−
∑

k1 /∈ D

k2 ∈ D

〈s|〈�n<|〈0|V|k1〉〈k1|V|k2〉〈k2|V|s ′〉|�n<〉|0〉
E2

k1

,

(27)

where Ek1 is the (unperturbed) energy of the (unperturbed)
state |k1〉.

Let us now determine the action of each summand in V
given in Eq. (15) when inserted into Eqs. (26) and (27). First
of all, the

∑
i,< λi(a

†
i + ai)σ z term does not contribute. Indeed,

for fixed �n< such a term would have to occur twice to give a
nonzero contribution. But in this case, the matrix elements in
(26) and (27) would give identically zero since D is invariant
under

∑
i,< λi(a

†
i + ai)σ z and the sum runs over k1 
= D. The

same is true for the
∑

i,< ωia
†
i ai term when consideringV (2). D

is invariant under its action and it therefore cannot contribute
in (26).

We realize that H<
B could yield a finite contribution if

inserted for V into the second factor of the first summand
and into the third factor of the second summand of V (3). For
the first summand this requires k1 = k2 and for the second
summand k2 = |s ′〉|�n<〉|0〉. Obviously, these two summands
then cancel exactly.

All relevant diagonal (with respect to �n<) contributions
thus stem from the terms proportional to ε and h in V .
Note that V always induces a spin flip if we consider only
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the term proportional to h. Since the εσ z/2 term leaves D

invariant (and hence cannot be inserted into V (2)), V (2) can
only contribute matrix elements with no spin flip. Moreover,
this matrix element is not proportional to any other operator,

since it turns out that V (2)
+,+ = V (2)

−,−. Therefore it contributes
only an irrelevant constant energy.

The more interesting contribution comes from V (3). The
elements of V (3) with one spin flip read [see (27)]

V (3)
+,− = h3

8

∑
k1,k2 
=D

〈+|〈�n<|〈0|evσ+|k1〉〈k1|e−vσ−|k2〉〈k2|evσ+|−〉|�n<〉|0〉
Ek1Ek2

− h3

8

∑
k1 
=D

〈+|〈�n<|〈0|evσ+|k1〉〈k1|e−vσ−|0〉〈0|evσ+|−〉|�n<〉|0〉
E2

k1

= h3

8

∑
j

〈0|ev|j 〉〈j |e−v|j 〉〈j |ev|0〉
ω2

j

− h3

8

∑
j

〈0|ev|j 〉〈j |e−v|0〉〈0|ev|0〉
ω2

j

+ · · · , (28)

where |j 〉 is the oscillator state with all oscillators except the
j th one in the ground state, and the j th oscillator in its first
excited state. Note that the terms in (28) are more and more
suppressed by the factor λj/ωj ∼ λj/ωc and we will neglect
all the terms not explicitly listed in (28). After a straightforward
calculation one has

〈0|e±v|j 〉 = ∓e−α̃d
 2λj

ωj

+ · · · ,

〈j |e±v|0〉 = ±e−α̃d
 2λj

ωj

+ · · · .

Therefore we find by using ωj  ωj ′  ωc

V (3)
+,− = −h′3 ∑

j

λ2
j

ω4
j

+ O
(
ω−4

c

)
. (29)

In conjunction with
∑

j,>

2λ2
j

ω4
j

= αωs−3
c d
 this leads to

V (3)
+,− = − h′3

2ω2
c

αωs−1
c d
 + O(d
3). (30)

From the form of (25) we directly deduce the field h′ which
now scales as

h′ = h exp

[
−α̃d
 − h̃2

2
α̃d
 + O

(
ω−3

c ,d
3
)]

. (31)

The final flow equation reads

∂
h̃ =
(

1 − α̃ − h̃2α̃

2

)
h̃ + O(h̃4), (32)

and this equation extends (23) to the next leading order in h̃.
We now analyze the flow of the bias ε. By inserting εσ z/2

into V (3) once in each summand we find the elements with no
spin flip:

V (3)
+,+ = h2ε

8

∑
k1,k2 /∈D

〈+|〈�n<|〈0|evσ+|k1〉〈k1|σ z|k2〉〈k2|e−vσ−|+〉|�n<〉|0〉
Ek1Ek2

− h2ε

8

∑
k1 /∈ D

k2 ∈ D

〈+|〈�n<|〈0|evσ+|k1〉〈k1|e−vσ−|k2〉〈k2|σ z|+〉|�n<〉|0〉
E2

k1

. (33)

It is easy to show that V (3)
−,− = −V (3)

+,+. The explicit expression
for V (3)

+,+ is given by

V (3)
+,+ = −h2ε

8

∑
j

〈0|ev|j 〉〈j |j 〉〈j |e−v|0〉
ω2

j

− h2ε

8

∑
j

〈0|ev|j 〉〈j |e−v|0〉〈0|0〉
ω2

j

= −h′2ε
2ω2

c

α̃d
. (34)

Consequently, the bias ε is renormalized according to

∂
ε = − h̃2α̃

2
ε. (35)

The above equation has been derived the first time in
Ref. 28 by using the mapping to the classical long-range Ising
chain. The variation of ε is of second order in h̃ and therefore
small. Hence, the ratio ε/ωc does not remain small during
the adiabatic renormalization. In order to obtain a complete
picture of the transition governed by (32), (37), and (35) it is
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therefore necessary to study the regime ε � h, as well. This
will be done in Sec. III D.

C. Renormalization of α

We now turn to the “off-diagonal” elements of V (3) which
induce a change in the quantum numbers �n<, i.e., matrix
elements proportional to

∑
i,< λi(a

†
i + ai)σ z. Again, this term

leaves the subspace D invariant, and it cannot occur inV (2). But
we can insert it forV into the second factor of the first summand
and for V into the third factor of the second summand of V (3).
This time the two summands do not cancel. Indeed, the σ z

creates the necessary minus sign to yield a finite contribution as
we have already seen when we discussed the renormalization
of ε. By repeating the analysis that led us to (35) we find a
similar RG equation:

∂
λi = − h̃2α̃

2
λi. (36)

Since the overall amplitude of the λi scale as λ2
i ∼ α we can

write the equivalent equation

∂
α̃ = (1 − s)α̃ − h̃2α̃2, (37)

where the first term of the right-hand side in the above equation
comes from the purely dimensional scaling of the ωs−1

c

prefactor of α̃ [see (18)]. These RG equations are equivalent
in the limit h̃ → 0 to the ones derived by Kosterlitz26 in the
vicinity of the fixed point {α̃ = 1,h̃ = √

1 − s}. Note that
the condition of validity h̃ � 1 limits the use of the RG
equations to 1 − s � 114 for s � 1. We have thus derived
the full RG equations of the biased spin-boson model within
a systematic adiabatic renormalization scheme, without using
the cumbersome mapping to a long-range Ising chain and its
subsequent renormalization.

D. The large-ε regime

When ε(
)/h(
) becomes large under its flow equation it
is necessary to modify the adiabatic RG we have used so far
to account for the fact that ε(
) might be of the same order as
ωc(
) after some RG steps. The perturbation associated to the
single-spin case reads now

V = h

2
(evσ+ + e−vσ−) + H<

B +
∑
i,<

λi(a
†
i + ai)σ

z, (38)

since we have to include the bias term into the unperturbed
part of the Hamiltonian,

H0 = H>
B + ε

2
σ z, (39)

which groups all high-energy terms together. The resulting
perturbation series will be performed with respect to the small
ratios h/ωc and h/ε. We first analyze the renormalization of
α in the large ε case. Note that, in contrast to the previous
calculation, the s = ± states now lie on different degenerate
subspaces. For ε > 0 the lowest energy state is |−〉|�n<〉|0〉.
The analysis of the previous subsection can now be repeated

to yield

λ′
i − λi = −h′2λi

4

∑
j

〈0|ev|j 〉〈j |j 〉〈j |e−v|0〉
(ε + ωj )2

− h′2λi

4ε2

− h′2λi

4

∑
j

〈0|ev|j 〉〈j |e−v|0〉〈0|0〉
(ε + ωj )2

− h′2λi

4ε2

= −h′2λi

2ε2
− h2λi

(ε + ωj )2
α̃d
, (40)

where λ′
i is the effective bath coupling up to second order in h

which is essentially equal to λi minus an offset term h2λi/2ε2

which stems from the energy asymmetry of the two spin states
(due to ε > 0). Indeed, let us rotate the spin in (1) around the
y axis with an angle θ given by tan 2θ = h/ε. We then find the
transformed Hamiltonian

H′
SB = 1

2

√
h2 + ε2 σ z + σ z

∑
i

λ′
i(a

†
i + ai)

− h

ε
σ x

∑
i

λ′
i(a

†
i + ai) + HB, (41)

where we defined λ′
i ≡ ελi/

√
h2 + ε2  λi[1 − h2/2ε2]. The

perturbation series in (40) thus gives back the correct
effective λ′

i .
The terms proportional to d
 come from the high-energy

bath modes and they lead to the renormalization of α̃, the flow
equation of which is found to be

∂
α̃ = (1 − s) α̃ + h̃2

ε̃2
α̃2 − h̃2

(1 + ε̃)2
α̃2, (42)

with ε̃ ≡ ε/ωc. Note that we used h′ = (1 − α̃d
)h by making
the underlying assumption that h is not renormalized. This will
be discussed in the following paragraph.

The derivation of the effective tunneling is more subtle since
it involves a matrix element between two distinct adiabatic
subspaces (note that the s = ± states have different energies).
In the present single-spin case the adiabatic renormalization
scheme cannot find the renormalization of both ε and h: For
fixed �n< the degenerate subspace D− associated to |−〉|�n<〉|0〉
is one-dimensional, thus delivering only one renormalization
equation instead of two needed to determine the RG equations
of ε and h. By using the transformed Hamiltonian (41) we
have

∂


1

2

√
ε2 + h2 = h2

ε

α̃

ε̃(ε̃ + 1)
. (43)

For large ε̃ the renormalization flow is cut off and the ground-
state energy remains constant. The mapping of the biased spin-
boson model to a classical long-range interacting Ising chain
informs us that no phase transition occurs (the bias translates
into a magnetic field via the mapping). Such a conclusion
is totally compatible with (43). In the following section we
show that the adiabatic renormalization scheme allows—in
the two-spin case—finding the explicit RG equations for both
h and J in contrast to the present single-spin case.

125139-6



DISSIPATIVE PHASE TRANSITION IN A PAIR OF . . . PHYSICAL REVIEW B 88, 125139 (2013)

IV. TWO COUPLED SPINS: RENORMALIZATION
FOR SMALL INTERSPIN COUPLING

We now come back to the two-spin Hamiltonian (6). In
contrast to the analysis presented in the previous section, the
Hilbert space of the degenerate states D for fixed �n< has now
four dimensions spanned by the four eigenstates of the σ z

1 σ z
2

operator |+1〉|+2〉, |+1〉|−2〉, |−1〉|+2〉, and |−1〉|−2〉.
In order to write down the perturbation operator we remark

that V (3) changes |+1〉|+2〉 into |+1〉|−2〉 or |−1〉|+2〉 into
|+1〉|+2〉, etc., if only the term proportional to h is inserted.
It leaves the spin state invariant if Jσ z

1 σ z
2 /4 is inserted once.

Hence, V (3) has matrix elements with one spin flip and zero
spin flip. The case of V (2) is a bit more complicated, since
it could have matrix elements with a priori no spin flip and
ones with two spin flips. It is easy to show that the matrix

elements with two spin flips have to vanish since the two baths
are uncorrelated. Accordingly, we denote the matrix elements
of V (3) with one spin flip (which are all equal) by V (3)

1 and the
matrix elements with no spin flip by V (2)

0 and V (3)
0 , respectively.

No finite matrix element corresponding to two spin flips arises
in the perturbation operator up to third order. It can be shown
that, since D is invariant under a double spin flip, no matrix
element with two spin flips can be generated under the RG flow
to any order. We have explicitly verified that the fourth-order
contributions to a double-spin-flip matrix element cancel. For
details we refer the reader to the appendices.

Let us now discuss the RG equations of J , α̃, and h̃ for
the two-spin case. We use the third-order perturbation oper-
ator in the four-dimensional diagonal (�n< fixed) degenerate
subspace D:

V (3) =

⎛
⎜⎜⎜⎜⎝

J/4 + V (2)
0 − V (3)

0 h′/2 + V (3)
1 h′/2 + V (3)

1 0

h′/2 + V (3)
1 −J/4 + V (2)

0 + V (3)
0 0 h′/2 + V (3)

1

h′/2 + V (3)
1 0 −J/4 + V (2)

0 + V (3)
0 h′/2 + V (3)

1

0 h′/2 + V (3)
1 h′/2 + V (3)

1 J/4 + V (2)
0 − V (3)

0

⎞
⎟⎟⎟⎟⎠ , (44)

where we omitted to explicitly write down E�n<
to clear up

the notations. Let us first discuss the interspin coupling J . The
effective coupling in the z direction is renormalized in a similar
way as the bias in the single-spin case: Since the term V (2)

0 has
no alternating sign it does not contribute to the Jσ z

1 σ z
2 /4 part

of the Hamiltonian but rather to an irrelevant total energy shift.
It is straightforward to show that

V (3)
0 = 2V (2)

++, (45)

where the factor 2 comes from the fact that the e±v terms can
be inserted for each of the two baths. The RG equation for J

is hence given by

∂
J = − α̃(
√

2h̃)2

2
J. (46)

The magnetic field h̃ and the bath strength verify the equations

∂


√
2h̃ =

(
1 − α̃ − α̃(

√
2h̃)2

2

) √
2h̃, (47)

∂α̃ = (1 − s)α̃ − α̃2(
√

2h̃)2. (48)

By absorbing the factor
√

2 again in a redefinition of h̃ one
arrives at the same equations as for the single-spin case, with
the only difference that J plays the role of ε.

A. Analysis for large J

Very much as for the single-spin case the perturbation series
breaks down as soon as J (
)/h(
) becomes large. Hence, we
have to generalize the analysis presented in Sec. III D for
two spins in order to gain an insight into the RG flow when
J (
)/h(
) � 1.

1. The case α̃ = 0

We first discuss the case where the bath is decoupled from
the system. The lowest energy subspace D− is spanned by the
two eigenvectors |+−〉 and |−+〉 where we used the short-
hand notation | − +〉 ≡ |−1〉|�n1,<〉|01〉|+2〉|�n2,<〉|02〉 with an
analog definition for | + −〉. We assumed here—without loss
of generality—that J > 0. A finite h leads to an energy
splitting within D− in contrast to the single-spin case.
Indeed, if we start from the two-spin Hamiltonian (6) without
dissipation, the four energy levels of the Hamiltonian are easily
found to be E1 = −J/4, E2 = J/4, E3 = −√

J 2 + 16h2/4,
and E4 = √

J 2 + 16h2/4. The high-energy bath modes modify
the two energies E1 and E3 which we will analyze separately
to obtain two RG equations for the two couplings J and h. In
contrast to the single-spin case it is thus possible to obtain RG
equations via the adiabatic RG scheme for all parameters by
restricting the system to D−.

Note that in contrast to the analysis in Sec. IV a double-
spin-flip matrix element occurs at second order in h/J since

V (2)
2 = h2

4

∑
k1 /∈D−

〈− + |V|k1〉〈k1|V| + −〉
−J/2

= −h2

J
= V (2)

0 . (49)

This result is expected since the symmetry argument presented
in the previous section fails: D− is not invariant under two spin
flips. The last equation of the right-hand side of (49) shows
that at second order the two-spin-flip element is equal to the
zero-spin-flip element. Let us write the two-spin Hamiltonian
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without dissipation restricted to D− as

H− = E1|ψ1〉〈ψ1| + E3|ψ3〉〈ψ3|. (50)

The second-order perturbation matrix associated with D−
reads

V
(2)
− =

(−h2/J −h2/J

−h2/J −h2/J

)
, (51)

where we used (49). It is then straightforward to find the
perturbative energies and eigenstates

E1  −J

4
and |ψ1〉  (−1,1), (52)

E3  −J

4
− 2h2

J
and |ψ3〉  (1,1), (53)

which are obviously equal up to second order to the exact
states and energies introduced above.

2. The dissipative case

When the bath is coupled to our system we have to modify
the result (49). Indeed, the sum over the intermediate states
|k1〉 now also runs over the excited states of the high-energy
bath modes and

V
(2)
− =

⎛
⎝− h′2

J
− h2α̃d


ωc+J/2 − h′2
J

− h′2
J

− h′2
J

− h2α̃d

ωc+J/2

⎞
⎠ . (54)

It follows that in the fixed �n< subspace the two eigenvalues
read

E1  −J

4
− h2α̃d


ωc + J/2
, (55)

E3  −J

4
− h2α̃d


ωc + J/2
− 2h′2

J
, (56)

from which we infer the RG equations

∂
J̃ = J̃ + h̃2α̃

1 + J̃ /2
, ∂
h̃ = (1 − α̃)h̃, (57)

with J̃ = J/ωc. Before discussing these equations let us
analyze the renormalization of α̃ by employing the same
method as in Sec. III D. The only difference is that the two
terms e±v1,2σ±

1,2 can now be inserted for V into V (3). To be

more precise, the renormalization of the σ z
1 λi(a

†
i + ai) term is

given by

V (3)
+−,+−,λi

= −h2

4

∑
j1

〈0|ev1 |j1〉〈j1| − λi |j1〉〈j1|e−v1 |0〉(
J/2 + ωj1

)2

− h2

4

∑
j2

〈0|e−v2 |j2〉〈j2|λi |j2〉〈j2|ev2 |0〉(
J/2 + ωj2

)2

− h2

4

∑
j1

〈0|ev1 |j1〉〈j1|e−v1 |0〉〈0|λi |0〉(
J/2 + ωj1

)2

− h2

4

∑
j2

〈0|ev2 |j2〉〈j2|e−v2 |0〉〈0|λi |0〉(
J/2 + ωj2

)2

− h′2

2(J/2)2
= −2h′2λi

J 2
− 4h2λi

(J + 2ωc)2
α̃d
,

(58)

where we did not explicitly write down the occupation numbers
of the slow-bath modes. Note that the two first lines cancel.
Here, h′ is according to (57) the effective magnetic field after
one RG step and therefore

∂α̃ = (1 − s) α̃ − h̃2α̃2

(1 + 2J̃ )2
, (59)

where—again—h̃ = 2h/ωc.
Equation (59) is very different from its counterpart (37)

of the unbiased spin-boson system. Indeed, the J̃ in the
denominator becomes large when ωc decreases such that in
this limiting case the effective RG flow reads ∂
α̃  (1 − s)α̃.
Let us first discuss the Ohmic case for which s = 1. The
Kosterlitz–Thouless phase transition is then clearly destroyed
and replaced by a second-order phase transition for h̃. After
the RG flow of α̃ in the small-J regime [see (47)] which is
Kosterlitz-Thouless like, the flow is cut off at large J according
to (59). The bath strength has then attained some effective
value α∗ which remains essentially constant as soon as J̃ is
large. Depending on whether α∗ > 1 or α∗ < 1 the spins are
localized or delocalized.

For a super-Ohmic spectral density the spins are always
delocalized since α̃ → 0 in this case, very much as in the
single-spin system. However, for a sub-Ohmic bath (59)
predicts an ever growing α̃ so that h̃ renormalizes always
to zero. This is in sharp contrast to the Kosterlitz flow of
the sub-Ohmic single spin-boson system which predicts a
second-order phase transition.14

V. CONCLUSION

We have shown that the higher order adiabatic renor-
malization scheme is able to reproduce the renormalization
group (RG) equations for a single spin-boson system. For
an unbiased system, our RG equations (32) and (37) are
equivalent to the ones derived by Kosterlitz for the long-range
Ising chain8,26 in the limit h/ωc � 1. When our method is
applied to the biased spin-boson system, the adiabatic RG
fails to predict an RG equation for each parameter since the
relevant subspace, in which the adiabatic RG operates, is too
small for such a purpose, in contrast to the more interesting
noisy two-spin system for which the RG flow of each parameter
can be found. At α = 1/2 the so-called coherent-incoherent
crossover takes place. The adiabatic RG fails to capture this
transition since h̃ grows strongly for α = 1/2 leading to a
breakdown of perturbation theory. To properly analyze the
coherent-incoherent transition one probably needs to first
transform the spin-boson Hamiltonian (1) into the so-called
“resonance level model” (see Ref. 8 for details) which is
a free theory for α = 1/2 (the so-called Toulouse point). A
subsequent adiabatic RG around α = 1/2 might then lead to
sensible results. We did not carry out such an analysis in the
present work, though.

We pursued our analysis by calculating the RG equations
of α̃ ≡ αωs−1

c , h̃ ≡ 2h/ωc, and J up to third order in h̃ for
the system consisting of two noisy spins coupled via an
interaction J in the z direction. We assumed the initial J (0)
to be of order of h(0). As long as J (
)/h(
) ∼ 1 the adiabatic
RG group yields the mean-field RG equations for each spin:
By setting, e.g., for the first spin ε = Jσ z

2 /2 = constant we
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reproduce the RG equations of the single-spin system. For
small interspin coupling J (
) the RG equations are given
in (46) and (47). Since the bath cutoff ωc decreases during
the RG flow, J (
)/ωc(
) does not remain small. In the
following large-J/ωc analysis we showed that the RG equation
of h̃ remains unchanged whereas the one for α̃ is heavily
modified: For an Ohmic bath this leads to the destruction
of the Kosterlitz-Thouless transition usually observed in
an Ohmic spin-boson system. Instead, the system shows a
second-order phase transition around the critical effective bath
coupling α∗ = 1. It is not possible within our formalism to
exactly determine the dependence of α∗ on the initial α since
the exact crossover equations between the small-J and the
large-J regimes are not known. Hence, it is also difficult to
determine the critical exponents. However, in the limiting case
h(0)/ωc(0) → 0 the flow of α(
) can be neglected. We can
then argue that αc = 1 in the two-spin system.

In the case of a sub-Ohmic bath, the adiabatic RG equations
predicts a localization of the spins for all values of h in sharp
contrast to the behavior of the single unbiased sub-Ohmic
spin-boson model which has a second-order phase transition
with an h- and ωc-dependent α̃c. It should be noted that this
is a rather unexpected result which is likely to hold for the
quantum Ising chain as well.

In Ref. 16 the authors simulated, among others, systems
of Ns = 2 and Ns = 4 noisy spins (for the Ohmic case). Their
simulation was restricted to values of h̃ � 0.2 and the small-h̃
limit could not be attained. They clearly showed that αc

depends on the number of coupled spins as long as h̃ � 0.2.
However, when h̃ is further lowered we expect the critical
dissipation to reincrease until αc(Ns,h̃ � 1) = 1 independent
of J and of Ns (by extrapolating our results for Ns = 1,2).
The probable scenario is the following: Upon increasing Ns ,
αc(Ns,h̃) decreases for h̃ ∈ [h̃m(Ns),h̃M (Ns)] with the lower
bound h̃m(Ns) → 0+ for Ns → ∞. In the limiting case of the
dissipative Ising chain αc(∞,h̃ � 1) drops to a J -dependent
value smaller than one which is for J � h equal to zero.15

We are convinced that the direct analytical treatment of
the dissipative Ising chain is well within reach by further
developing our adiabatic renormalization scheme. To date,
the only analytical theory available is the critical dissipative
φ4 theory.32 Note that the RG equations (32), (37), and (46)
give us already an idea of how the phase diagram of the
Ising chain, where each spin is coupled to a different Ohmic
bath, should look like. The isolated chain has a ferromagnetic
transition at h = J . Then, in the presence of the bath h and
J are renormalized. If we assume the analogous relation
h∗ ∝ J ∗ [where h∗ = h(∞) and J ∗ = J (∞) are the fully
renormalized couplings] for the ferromagnetic transition with
site dissipation, the initial couplings α0, h0, and J0 have to
satisfy

h∗(α0,h0,J0,ωc) ∝ J ∗(α0,h0,J0,ωc) (60)

at the critical point. By inspecting (32) we find that h∗ = 0
for α0 > αc, from which we deduce that the bath lowers
the critical J0 for fixed h0 until J0 = 0 for α0 > αc. Such a
behavior has indeed been observed in the simulations.15

The adiabatic renormalization equations break down as
soon as ωc ∼ h and therefore the low-frequency oscillators
cannot be dealt with within this approach. However, in the

last years several articles have demonstrated that a variational
theory of simple trial wave functions can be a promising candi-
date to find accurate approximations of the spin-boson ground
state.31,33,34 We think that it is possible to combine such varia-
tional calculations with the adiabatic RG, which in turn would
yield RG equations valid on the whole range of parameters.
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APPENDIX A: DEGENERATE PERTURBATION DETAILS

We review in this section the main formulas of degenerate
static perturbation theory that we used in this present work.
The usual idea is to write a perturbation series in some small
parameter p of the full states |ψn〉 = |ñ〉 + |ñ1〉 + |ñ2〉 + · · ·
(with |ñk〉 ∼ pk , k > 0, and |ñ〉 the unperturbed state) and
of the full energies En = En + E1

n + E2
n + · · ·. |ñ〉 is the true

physical superposition of the a priori basis vectors |k〉,k ∈ D

of D. More precisely, we have

|ñ〉 =
∑
k∈D

cnk|k〉,

|ñ1〉 =
∑
k∈D

c1
nk|k〉 +

∑
k /∈D

〈k|ñ1〉|k〉,

etc. We remind the reader that the unperturbed states and
energies do not carry a superscript 0 for the sake of a clear
notation.

The first-order Schrödinger equation reads

H0|ñ1〉 + V|ñ〉 = En|ñ1〉 + E1
n|ñ〉. (A1)

The general strategy is to multiply the Schrödinger equation
[whose first-order approximation is given by (A1)] by 〈k| from
the left. For k /∈ D we have

〈k|ñ1〉 = Vkñ

Enk

=
∑
k1∈D

cnk1

Vkk1

Enk

. (A2)

We introduced the notation Vkk′ = 〈k|V|k′〉 and Enk =
En − Ek . For k ∈ D on the other hand we obtain∑

k′∈D

Vkk′cnk′ = E1
ncnk, (A3)

which shows that �cn ≡ (cnk) is the eigenvector with eigenvalue
E1

n of the first-order perturbation operator V (1) = (Vkk′).
By repeating the preceding analysis we obtain the second-

order result. From the second-order Schrödinger equation

H0|ñ2〉 + V|ñ1〉 = En|ñ2〉 + E1
n|ñ1〉 + E2

n|ñ〉 (A4)

we have for k /∈ D

〈k|ñ2〉 =
∑

k1 /∈ D

k2 ∈ D

Vkk1Vk1k2

EnkEnk1

cnk2 − E1
n

∑
k2∈D

Vkk2

E2
nk

cnk2

=
∑

k1 /∈ D

k2 ∈ D

Vkk1Vk1k2

EnkEnk1

cnk2 −
∑

k1,k2∈D

Vkk2Vk2k1

E2
nk

cnk1 (A5)
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and for k ∈ D∑
k1 /∈ D

k2 ∈ D

Vkk1Vk1k2

Enk1

cnk2 +
∑
k2∈D

Vkk2c
1
nk2

= E1
nc

1
nk + E2

ncnk,

(A6)

which can be rewritten by using the first-order result as

V (2)
(�cn + �c1

n

) = (
E1

n + E2
n

)(�cn + �c1
n

)
. (A7)

The second-order perturbation operator is defined as

V
(2)
kk′ =

∑
k1 /∈D

Vkk1Vk1k′

Enk1

+ V
(1)
kk′ . (A8)

Note that the nth-order perturbation operator is the perturba-
tion operator up to nth order to use the same terminology as in
the main text. By using the results in the main text we know
that c1

nk = 0 in our case. This will lead to some simplifications
in the following higher order analysis.

The third-order result can be deduced in the same way as
before. From the third-order Schrödinger equation

H0|ñ3〉+V|ñ2〉= En|ñ3〉+ E1
n|ñ2〉+ E2

n|ñ1〉+ E3
n|ñ〉 (A9)

we find for k /∈ D

〈k|ñ3〉 =
∑

k1,k2 /∈ D

k3 ∈ D

Vkk1Vk1k2Vk2k3

EnkEnk1Enk2

cnk3− E1
n

∑
k1 /∈ D

k2 ∈ D

Vkk1Vk1k2

E2
nkEnk1

cnk2

−E1
n

∑
k1 /∈ D

k2 ∈ D

Vkk1Vk1k2

EnkE
2
nk1

cnk2 − E2
n

∑
k1∈D

Vkk1

E2
nk

cnk1

+
∑
k1∈D

Vkk1

Enk

c2
nk1

+ (
E1

n

)2 ∑
k1∈D

Vkk1

E3
nk

cnk1 . (A10)

By multiplying the third-order Schrödinger equation by 〈k|,
where k ∈ D, one finds

V (3)
(�cn + �c2

n

) = (
E1

n + E2
n + E3

n

)(�cn + �c2
n

)
, (A11)

where we used �c1
n = 0. The third-order perturbation operator

reads

V
(3)
kk′ =

∑
k1,k2 /∈D

Vkk1Vk1k2Vk2k′

Enk1Enk2

−
∑

k1 /∈ D

k2 ∈ D

Vkk1Vk1k2Vk2k′

E2
nk1

+V
(2)
kk′ + V

(1)
kk′ . (A12)

Finally, we wish to deduce the fourth-order perturbation op-
erator. By multiplying the fourth-order Schrödinger equation

H|ñ4〉+V|ñ3〉= En|ñ4〉+ E1
n|ñ3〉+ E2

n|ñ2〉+ E3
n|ñ1〉+ E4

n|ñ〉
(A13)

by 〈k|, k ∈ D, we obtain

〈k|V|ñ3〉 = E1
nc

3
nk + E2

nc
2
nk + E3

nc
1
nk + E4

ncnk. (A14)

We now replace |ñ3〉 by (A10) for k /∈ D and by c3
nk for k ∈ D

to find, by using the first to third order results,

V (4)
(�cn + �c2

n + �c3
n

) = (
E1

n + E2
n + E3

n + E4
n

)(�cn + �c2
n + �c3

n

)
.

(A15)

At last, we give the expression for V (4):

V
(4)
kk′

=
∑

k1,k2,k4 /∈D

Vkk4Vk4k1Vk1k2Vk2k′

Enk4Enk1Enk2

−
∑

k2,k4 /∈ D

k1 ∈ D

Vkk4Vk4k1Vk1k2Vk2k′

E2
nk4

Enk2

−
∑

k1,k4 /∈ D

k2 ∈ D

Vkk4Vk4k1Vk1k2Vk2k′

E2
nk4

Enk1

−
∑

k1,k4 /∈ D

k2 ∈ D

Vkk4Vk4k1Vk1k2Vk2k′

Enk4E
2
nk1

+
∑

k4 /∈ D

k1,k2 ∈ D

Vkk4Vk4k1Vk1k2Vk2k′

E3
nk4

+ V
(3)
kk′ + V

(2)
kk′ + V

(1)
kk′ .

(A16)

APPENDIX B: FOURTH-ORDER DOUBLE-SPIN-FLIP
MATRIX ELEMENT CANCELING IN THE SMALL- J

ANALYSIS

We demonstrate here that the fourth-order contribution to a
double-spin-flip matrix element cancels in the case J/ωc � 1.
We have

V (4)
2 =

∑
k1,k2,k3 /∈D

〈+ + |V|k1〉〈k1|V|k2〉〈k2|V|k3〉〈k3|V| − −〉
−Ek1Ek1Ek1

−
∑

k1,k2 /∈ D

k3 ∈ D

〈+ + |V|k1〉〈k1|V|k2〉〈k2|V|k3〉〈k3|V| − −〉
−E2

k1
Ek2

−
∑

k1,k2 /∈ D

k3 ∈ D

〈+ + |V|k1〉〈k1|V|k2〉〈k2|V|k3〉〈k3|V| − −〉
−Ek1E

2
k2

−
∑

k1,k3 /∈ D

k2 ∈ D

〈+ + |V|k1〉〈k1|V|k2〉〈k2|V|k3〉〈k3|V| − −〉
−E2

k1
Ek3

+
∑

k1 /∈ D

k2,k3 ∈ D

〈+ + |V|k1〉〈k1|V|k2〉〈k2|V|k3〉〈k3|V| − −〉
−E3

k1

.

(B1)

For the sake of a comprehensible notation we introduced | +
+〉 ≡ |+1〉|�n1,<〉|01〉|+2〉|�n2,<〉|02〉 with an analog definition
for | − −〉. The expression of V (4)

2 to lowest order in ω−1
c reads

V (4)
2 = h′4

4

∑
j1

−λ2
j1

ω2
j1

2

−ω3
j1

+ h′4

4

∑
j2

−λ2
j2

ω2
j2

2

−ω3
j2

−2
h′4

4

∑
j2

−λ2
j2

ω2
j2

1

−ω3
j2

− 2
h′4

4

∑
j1

λ2
j1

ω2
j1

1

−ω3
j1

−2
h′4

4

∑
j1

−λ2
j1

ω2
j1

1

−ω3
j1

− 2
h′4

4

∑
j2

λ2
j2

ω2
j2

1

−ω3
j2

+h′4

4

∑
j1

λ2
j1

ω2
j1

2

−ω3
j1

+ h′4

4

∑
j2

λ2
j2

ω2
j2

2

−ω3
j2

. (B2)
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The first line stems from the first summand of the rhs of (B1),
the second and the third lines from the second summand, and
the fourth line from the last summand of (B1). The fourth
summand does not contribute. Note also that only terms which
do not leave D invariant arise at this order; i.e., only the h term

in V contributes here. The final result thus reads

V (4)
2 = 0, (B3)

as expected.
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