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Switching and propagation of magnetoplasmon polaritons in magnetic slot waveguides and cavities
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The dispersion relations for surface plasmon polaritons propagating in the Voigt geometry in a metal-insulator-
metal waveguide with a magneto-optically active dielectric medium are derived. The symmetry between the upper
and lower interfaces is broken by the introduction of the magnetic field; the balance between the field distributions
on the two interfaces can be controlled by the applied field. This control is illustrated by finite-element method
numerical simulations of the field distributions around a point dipole placed in the center of the short waveguide;
it is shown that both the total emission of radiation from the cavity and the distribution of the far-field radiation
can be strongly modified by tuning the magnetization of the waveguide. This raises the possibility of using
magnetic fields to control light propagation in nanostructures.
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I. INTRODUCTION

Surface plasmon polaritons (SPPs)! are electromagnetic
waves that propagate along metal-dielectric interfaces and can
be guided by metallic nanostructures beyond the diffraction
limit.>3 They are attractive because of the very small length
scales over which it is possible to localize the electromagnetic
fields, giving very wide scope for the manipulation of those
fields on the nanoscale. They usually extend few hundreds
of nanometers in the surrounding dielectric. They can be
further confined and guided in metal-insulator-metal (MIM)
structures, which are building blocks for resonant guided wave
networks* and can be used for future on-chip nanocircuits.>®

Volume modes in waveguides propagate via multiple
reflections from the metal surfaces and the energy is localized
in the core of the structure. Surface plasmon modes, on the
other hand, are localized at the interfaces; for a structure with
two symmetric interfaces they couple to produce symmetric
or antisymmetric mode profiles. The case of metal-insulator-
metal (MIM) plasmonic waveguides with a nonmagnetic
dielectric has been studied previously both theoretically’~'?
and experimentally.'""'3 In these studies, MIM plasmons
were excited by an external light source using, for example,
in-coupling through slits in one of the metal cladding layers,
or via the electron beam of a scanning electron microscope.

Placing an emitter inside a MIM cavity is another possible
route to excite cavity plasmons. Dipolar emitters placed in
MIM slab and slot waveguide structures were found to couple
strongly to the plasmon waveguide modes.'* Such a structure
can serve as an optical nanoantenna.'> Active control of the
direction of emission of an optical nanoantenna has been
achieved by electrically controlling its load impedance.'® The
electric field has been shown!” to modulate the dispersion
relation of the plasmons propagating at the interface of an
electro-optically active dielectric and metal.

A quite different route for active control of plasmons is
by using a magnetic field. The combination of plasmonics
with magneto-optical materials is particularly interesting
because it introduces a nanoscale interaction between light
fields and magnetization, hence opening up the possibility
of using either one of these fields to control the other. For
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example, external magnetic fields could then be used to control
plasmonic devices through nanoscale analogies of the Kerr
and Faraday effects;'® alternatively, the light field could be
used to interact with a nanoscale magnetic system. SPPs
propagating at a single metal-dielectric interface where one or
both media are magnetic have been investigated theoretically
and experimentally.'”->3 Plasmons at the interface between
a magnetic metal and a photonics crystal have also been
considered.’* Enhanced magneto-optical activity occurs as
a result of surface plasmons in nanodisks with a magnetic
metal”>° or magnetic dielectric.*”

One notable effect occurs in the Voigt geometry (magneti-
zation perpendicular to the propagation direction), where the
wave vectors for left and right propagation become unequal.
There has been growing interest in these ideas in recent years,
and also in experimentally realizing active magnetic control
of the plasmons. For example, in Ref. 31 it was demonstrated
that a dc magnetic field can be used to modulate the plasmons,
and it has also been shown that introducing a periodic nanos-
tructure results in an enhanced magneto-optical Kerr effect
(MOKE) signal.>>33 For a review on magneto-plasmonics see
Refs. 34 and 35. Magneto-plasmonic waveguides consisting of
insulator-metal-insulator (IMI) geometry with a ferromagnetic
metal surrounded by nonmagnetic dielectrics®® or a nonmag-
netic metal bounded by ferromagnetic dielectrics®’ have been
studied for application as active devices in SPP-based optics.
MIM cavities with magnetic metals have been studied in
Ref. 38 where it was observed that the magnetic modulation
of SPP is higher when only one of the metallic interfaces is
magnetic.

In this paper we consider the case of a MIM waveguide
containing a magnetic insulator. We study the surface plasmon
modes of the waveguide, a preliminary investigation of
which was published in Ref. 39. We then employ numerical
simulation to show the field and energy distribution inside
the waveguide. We excite the modes by placing a dipole in the
middle of the structure and show that an external magnetic field
can switch on and off the coupling of the dipole to the surface
plasmons. We study the out-coupled radiation, the intensity,
and direction of which can also be controlled through external
magnetic field.
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II. MAGNETO-PLASMON DISPERSION RELATIONS

A. Single magnetic interface

To understand the behavior of the SPP guiding modes in a
cavity we first review the case of a single interface separating a
metal and a magnetic dielectric, which we take to be isotropic
apart from the magnetic effects. We take the boundary at the
plane y = 0, with the wave propagating in the x direction and
the static magnetization being in the z direction (i.e., in the
Voigt geometry). For the Voigt geometry only TM modes can
propagate on this interface,*’ so we also take the oscillating H
field in the z direction. The permittivity tensor for a gyrotropic
medium when M = (0,0,M) is

€ €y O
—€y € 0 (N
0 0 e

withe,, = g M. Letthe half-space y > 0 contain the magnetic
dielectric and y < O the nonmagnetic metal. We seek to find
waves damped as y — oo in the form

H; = HyeR*— oy Kya =/ k2 —w?eq/c?, y >0

in the dielectric, and

H, = Hoeik)X-H(ymy’ Kym = /k)% — wzem/c2’ y<0 2)

in the metal, where ¢; = ¢, + efv /€, and €, is the permittivity
of the metal. )

The dispersion relation can be found from the boundary
conditions on the tangential E and normal D fields and is
given by

: 2 2
€m€Erkyg — 1€ €,k + (er + exy)/cym =0, 3)

which for the nonmagnetic case €,, = 0 results in the well-

[
(€mt+er)’

ko = w/c is the magnitude of the free-space wave vector
corresponding to angular frequency w, in the region where
€qn€r <0andeg, +¢ <O.

To first order in €,,, the solution for k. at a magnetic
interface is

known plasmon dispersion relation k, = %k where

ke =4k, or —k_ 4)

Evq=—
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Correspondingly, for the decay constants in the y direction one
obtains the solutions
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Note in particular the structure of Eq. (5): the right-moving
[Re(ky) > 0] and left-moving [Re(k,) < O] solutions have
different magnitudes, because the left-right symmetry is
broken by the introduction of the magnetic field. The symmetry
is only restored if the sign of the static magnetic field is
also reversed. For Im(e,,) > 0 we have Re(ky) > Re(k_),
and vice versa. This “nonreciprocal” behavior has been
observed experimentally in surface plasmon propagation with
a magnetic medium.*'*? Note also how the presence of a real
(dissipative) part in €, introducing a non-Hermitian part to
Eq. (1) contributes to the imaginary part of k, and hence
increases the attenuation of the wave, while a purely imaginary
€xy leaves Eq. (1) Hermitian and introduces no additional
dissipation.

B. Metal-insulator-metal waveguide

Consider now the geometry shown in Fig. 2(a). We seek to
find plasmon solutions, i.e., surface-bound waves that in the
metal are of the form

Hy = Hoelo*morvont el 1y > T/2, (8)

and in the dielectric are linear combinations of decaying
exponentials from either side

H; = (Ae©®Y 4 Be “a)elbx=iot 1y /2. (9)

In general |A| # |B| when the dielectric is anisotropic (i.e.,
when €., # 0).

From the Maxwell equations the electric fields in the metal
have the form

—1kym ky
LmI_Im Eym =—H,, (10)

W€y Y WEy,

while the E fields in the dielectric for an H field of the form
Eq. (9) are

E.n =

ek el g, 10, (Be ™00 — AeY) + €,yk (Ae?Y + Be™dY)]

a)(er2 + efy)

ek T il [ig, k (— Be Y — Ae“Y) + €54k yq(A? — Be )]

)

Ey =

w(e? +€2))

From the boundary conditions at the two interfaces at y = £7 /2 we obtain two equations for A and B. In order for them to have
nonzero solutions the determinant formed from the coefficients should equal zero. This condition gives the dispersion relation

for the system:

(26,6,,1 (er2 + e)%y)fcyd/cym cosh[ky T]+ (efn (efykﬁ + erzx)z,d) + (er2 + efy)zlcz ) sinh[k 4T _
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12)
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The solutions are
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ky =
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+ - .
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ke

(13)
c? (€2 + e)%y)2 sinh?[k,4T]
In the limit of small €,, and small cavity thickness T the solution can be approximated by
. \/ €2k2, tanh[ky, T /2] Lo €2,€2 (k2 + e,k3 + (K2, + €,kF) coshlky T1) tanh? [k, T/2] -
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Note the quadratic dependence on €,, in contrast with the
linear dependence exhibited by Eq. (5)

The corresponding values of ky,, can be immediately
recovered from Eq. (2). In the nonmagnetic case €,, =0
we recover the well-known (cf. Ref. 11) plasmon dispersion

. ey tanhl iy T2 :
relations ., = 2 @I 2] o responding to the symmet-

ric (A = B) and ky,, = Enkya Ol T/21 4 the antisymmetric
(A = —B) H fields, respectively. Note that in the nonmagnetic
limit the E, field has the opposite symmetry to H,: E, is odd
if A = B and even if A = —B. In this paper we shall always
refer to the symmetry (or approximate symmetry) of the H
field when describing a mode.

For large cavities cosh[ky4T] and sinh[k,4T'] in the disper-
sion relation [Eq. (12)] approach the same value and we recover
the single-interface solutions given by Egs. (5)—(7). There
are two forward-propagating and two backward-propagating
modes: The right-moving mode with k, = k, and the left-
moving mode with k, = —k_ are localized on the upper
interface (which has the same orientation as that considered
in Sec. IT A), while the other two modes with k, = k_ and
k, = —k, are localized on the lower interface, which has
the opposite orientation. The additional degeneracy between
positive and negative k appears because the structure is now
invariant under a reflection in the line y = 0.

C. Example system

To illustrate these effects, we describe a specific example
where the magnetic dielectric is bismuth-substituted yttrium-
iron garnet (Bi:YIG) and the metal is silver. The magneto-
optical data for the Bi:YIG is taken from experimental
data.*3** The permittivity for the silver is fitted from the Drude
model
o, T

_ 16
w? 1cu(1+a)2r2) (16)

€n=1—
where w, is the bulk plasma frequency, with parameters
taken from Refs. 45 and 46. Both permittivities are therefore
frequency dependent, as shown in Fig. 3. Throughout we take
h =1 and so give values for angular frequency in energy
units. The geometry is shown in Fig. 1, which also shows

€2 k%, cothlky,T/2] w?
26;‘\/ St e

2
6?‘

the E, field distribution for a symmetric and antisymmetric
mode. Figure 2 shows the dispersion relation of the waveguide
for different thicknesses when there is no magnetization in
the dielectric. The thick blue line is the dispersion relation
[Eq. (3)] of surface plasmons on a single interface; for the
MIM waveguide the mode frequency is split into two modes
moving in each direction, as expected. The lower lying cavity
plasmonic modes have a symmetric magnetic field profile,
while the high energy ones shown with the dark red line
on the figure are antisymmetric. For thicker cavities the
energy difference between the symmetric and antisymmetric
solutions gets smaller as one would expect as in the limit
of infinite waveguide thickness both solutions will become
almost degenerate, corresponding to the separate solutions

D ),
I
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z

FIG. 1. (Color online) The MIM waveguide geometry. The coor-
dinate system, showing the direction of the static magnetization and
plots of the electric field distribution for the antisymmetric (above)
and symmetric (below) modes—note the symmetry descriptions refer
to the symmetry of the H field (not shown).
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FIG. 2. (Color online) The solutions of the dispersion relation
Eq. (12) for w as a function of k, for the nonmagnetic case for a range
of cavity sizes. The thick blue line is the solution for a single interface.
The coupled cavity modes are split into low-energy symmetric (SM)
and high-energy antisymmetric (AM) modes. The black lines are the
light lines in free space (thick) and in the dielectric (dashed).

[Eqg. (5)] on the upper and lower interfaces of the slab. The
thick black line is the vacuum light line w = ck,; solutions to
the left of it are inaccessible to coupling from the outside world
in a translationally invariant system. The dashed black line
indicates the light line in the dielectric medium w = ck,/\/€4;
modes to the left of the dielectric light line have propagating
solutions in the dielectric (i.e., nearly imaginary « 4, provided
dissipation in the dielectric is weak). Modes to the right of
the dielectric light line have nearly real «,4; these are the
bound surface-plasmon solutions that we seek. The lowest
symmetric mode always has a frequency below the plasmon
of the semi-infinite surface and remains bound for arbitrarily
small cavities; the lowest antisymmetric solution always spills
out and becomes a propagating state in the dielectric region
(i.e., crosses the light line of the dielectric) for sufficiently
small k,. All modes are rapidly decaying into the metallic
boundaries of the cavity.

When a magnetic field is added in the dielectric, the
dispersion relation is modified. We choose a field large
enough to saturate the magnetization, and hence the magneto-
optic response; in practice 2 kOe would be sufficient.** For
simplicity we give the magnetization in units of the saturation
value, so magnetization along +z and —z correspond to
M = =1, respectively. The changes 8k in k, are shown as
a function of energy in Fig. 4(a). Modest changes (of the
order of 1%) are predicted, the sensitivity to magnetization
being greatest at high energies where the magneto-optical
response of the dielectric [Figs. 3(b) and 3(d)] is larger. For the
semi-infinite single interface the real part of §k depends on the
imaginary part of €,, shown on Fig. 3(d) as can be seen from
Eq. (5). (Note that ¢, is negative hence it is the imaginary part
of €., which contributes to the real part of k. .) For the cavity 6k
depends on the real part of ef,y as seen from Eqs. (14) and (15).
For large cavities the absolute values of §k for the symmetric
and antisymmetric modes converge to the same value.
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FIG. 3. (Color online) Frequency dependence of the dielectric
functions: real parts of (a) €, (b) €,,; imaginary parts of (c) €, and
(d) €xy.

Figure 4(b) shows the wave vector of the propagating modes
in the x direction for w = 2.37 eV, which is the highest
frequency shown in Fig. 2, for waveguides with different
thickness. The wave vectors for the single interface are shown
for reference. The wave vector for the cavity modes doesn’t
depend on the sign of the magnetization as is clear from
the dispersion relation Eq. (12). For thin waveguides the
symmetric and antisymmetric modes are far apart. As the
thickness increases the wave vector approaches the solutions
for a single interface. The change in the wave vector versus
the waveguide thickness for change in the magnetization from
M = 0to M = —1 for different energies is shown in Fig. 4(c).
At small thickness the difference in the magnetization modes
is insignificant. The waveguides are less sensitive for the
magnetization at lower energies. This is due to the frequency
dependence of €, which increases at higher energies. The
change of the wave vector with the magnetization is shown in
Fig. 4(d); note the expected quadratic dependence for small
M in the finite waveguides. For single interface the change
is linear as is clear from Eq. (5). For cavities the dependence
is quadratic. The two modes on the two interfaces couple to
produce the anticrossing. The magnetic field changes further
the levels. For small thickness the change of the wave vector
due to the coupling of the two interfaces is predominant.
At larger waveguide thickness the coupling between the
interfaces weakens which makes the magnetic field effect
more pronounced. In the limit of large cavities the solution
will follow the one for a single interface.

The intensity of a surface plasmon propagating along an
interface decays as exp(—2Im[k,]x), owing to the energy
loss from Joule heating; the corresponding propagation length

is L, = m.‘” Figure 5(a) shows the propagation length
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FIG. 4. (Color online) (a) The change in wave vector §k = k. — k
resulting from magnetization of the dielectric as a function of
frequency for different cavity thicknesses; (b) dependence of wave
vector on the thickness of the waveguide for w =2.37 eV and
different magnetizations; (c) absolute change in the wave vector vs
waveguide thickness when the magnetization changes from M = 0
to M = —1 for different energies; (d) dependence of the wave vector
on the magnetization for different cavity thicknesses at w = 2.37 eV.

for symmetric and antisymmetric modes for different cavity
thickness. Generally the propagation length rises as the
frequency is reduced, especially for modes which approach or
cross the dielectric light line so the fields become less strongly
bound to the metal-dielectric interfaces; the plasmons can
then propagate long distances of more than 20 um. However,
once solutions reach the minimum frequency for propagation
along the waveguide without penetrating the electrodes (i.e.,
approach the frequency axis in Fig. 2), the fields are forced
to penetrate the metal once again as the frequency is reduced
further and the propagation lengths drop rapidly. For a given
type of mode the propagation length L, becomes shorter as
the cavity thickness 7 is reduced.

In Fig. 5(b) we show the normalized propagation length
given by L, /X, which is important if we want to apply these
waveguides as cavities as it gives the number of oscillation
cycles before decay and is therefore a key factor in the
determination of the sharpness of the resonance, i.e., the
quality factor of the cavity. The antisymmetric modes for
small cavities have much less than one cycle of oscillation
for smaller energies where there are no propagating solutions
in the waveguide, in accordance with the dispersion relation.
For thicker cavities and symmetric modes there are several
cycles of oscillations, but the oscillations decay rapidly for
energies above 2 eV.

Figures 5(c) and 5(d) show the skin depths in the dielectric
core in the metal claddings §; and §,,. The skin depths are
defined as §; = 1/Re[k,q] and 6, = 1/Re[«,,, ], respectively.
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FIG. 5. (Color online) Decay lengths for a range of cavity sizes
(nonmagnetic case) as a function of w: (a) the propagation length L ,;
(b) the normalized propagation length Re(k,)L,/(2m); (c) the skin
depth in the dielectric §,; (d) the skin depth in the metal §,,,.

Note that the the smaller skin depth at larger energies of the
incident light doesn’t correspond to longer propagation length;
the losses are instead determined by the proportion of the field
energy forced to reside in the metallic regions, which is in turn
determined by the geometry of the cavity.

Figure 6 shows the propagation length for the symmetric
and antisymmetric modes for a waveguide with a thickness
of 200 nm and for semi-infinite interfaces for different
magnetizations. For the symmetric mode the magnetization
increases the propagation length while for the antisymmetric
mode it reduces it. This behavior is implied by Eq. (13),
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FIG. 6. (Color online) The propagation length for a cavity of
thickness 200 nm for different magnetizations.
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FIG. 7. (Color online) Field and energy distributions for symmetric modes as a function of distance from the waveguide median for a
Ag/Bi:YIG/Ag structure with core thickness 7 = 200 nm at frequency w = 2.37 eV: (a) the electric field E,; (b) the magnetic field H.; (c) the

average total energy density.

which indicates that the magnetization has different effects on
the wave vectors of different modes. The difference between
the propagation length for different magnetizations for the
waveguide modes is insignificant for low energies but becomes
larger than the corresponding difference for a single interface
at higher energies. For a semi-infinite interface the propagation
length is different for the positive and negative directions of
the magnetization, as expected from the dispersion relation
given by Eq. (5).

In a nonmagnetic plasmonic waveguide the fields have
a maximum value at the interfaces and are exponentially
decaying away from them. The field has a symmetric or
antisymmetric profile inside the waveguide, and the energy
density is symmetrically distributed along the two interfaces.
In the case of a magnetic waveguide the magnetic field will
perturb the symmetry. The field normalizations can be found
from the orthogonality condition*®

o0
| ELGIHI) ~ B0 0) = N800 = 81,
a7

where o,y denote the forward and backward propagating
waves. The relationship between the fields of the forward
and backward propagating modes inside the waveguide are
given by

Hence in Eq. (17) the forward and backward propagating fields
have to be taken at opposite magnetizations. The electric field
in the waveguide will be expressed as

M
£=Y (@E;(y.2e"* + b,E, (y.2e"),  (19)

n=0

where E;\~ are the modal profiles in the forward and backward
direction satisfying the orthogonality condition Eq. (17) and
a, and b, are the mode amplitudes of the two waves.

The electric and magnetic fields and the energy distribution
are shown as a function of y (i.e., distance from the center
line of the dielectric) for the MIM structure in Fig. 7 for the
symmetric and Fig. 8 for the antisymmetric modes. The mode
profiles are obtained from Eqgs. (8)—(11) and Eq. (17). The
fields shown are calculated at frequency w = 2.37 eV. At zero
magnetization M = 0 the fields in Fig. 8 are completely anti-
symmetric (for H,) or symmetric (for E,). The magnetization
breaks the symmetry and as a result the zero of the H, field is
shifted from the middle of the waveguide. The energy density
is still localized along the interfaces but in the presence of
magnetization it is localized preferentially along one of them.
The maximum field amplitude is correspondingly different
at the two interfaces. The difference in the field amplitudes
depends also on the cavity thickness. The field profiles shown
are for a 200 nm thick waveguide. The thinner the waveguide

Ef(M)=E_(-M) Ef(M)=—E (-M). (18)  the smaller the difference will be.
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FIG. 8. (Color online) Field and energy distributions for asymmetric modes as a function of distance from the waveguide median for a
Ag/Bi:YIG/Ag structure with core thickness 7' = 200 nm at frequency w = 2.37 eV: (a) the electric field E,; (b) the magnetic field H,; (c) the

average total energy density.
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FIG. 9. (Color online) The E, field from a radiating electric
dipole within a cavity of thickness 40 nm and length 400 nm for
different magnetizations of the dielectric.
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III. MAGNETIC CONTROL OF THE LIGHT FIELD

To illustrate the effect of these differences, and to show how
the relatively small magnetic modifications to the dispersion
relation can nevertheless have large effects on the field
distributions, we employ finite-element method simulation
using commercial software (COMSOL Multiphysics) to find
the field distribution in a Bi:YIG magnetic waveguide of
80 nm thickness and length 400 nm confined between two
silver plates. We excite the radiation by a point dipole
emitter placed in the center of the structure. We work at
two different excitation frequencies: at the higher frequency
w = 2.37 eV the waveguide has two propagating plasmonic
modes (one approximately symmetric and one approximately
antisymmetric) while at the lower frequency w = 2 eV there
is only one such mode (approximately symmetric).

This shift in the node of the electric field across the cavity
with the magnetization allows us to control the coupling of the
dipole to the cavity modes and effectively switch it on and off.
To demonstrate this we simulate an oscillating electric dipole
of magnitude d with a current dipole moment wd = 1 nA and

T, @

ﬂ////"—‘\\\\\\F)M:O
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frequency w = 2.37 eV, oriented along the x axis and placed
in the middle (at coordinates x = 0 and y = 0) of a cavity
which is 400 nm long and 40 nm thick. Such a narrower
cavity supports only one propagating plasmonic mode (sym-
metric in H, and antisymmetric in E,) even at this higher
frequency.

Figure 9 shows the E, field for different magnetizations.
At zero magnetization (M = 0) the electric field is exactly
zero in the middle of the waveguide for the propagating mode,
hence this mode is not excited. The electric dipole excites only
the antisymmetric (i.e., symmetric in E,) mode which is very
rapidly decaying; the resulting field is strongly bound to the
central region of the waveguide. When M # 0, as was shown
in Fig. 8, the electric field is also different from zero at the posi-
tion of the dipole for the symmetric (i.e., antisymmetric in E,)
mode; hence both modes are excited. The symmetric mode has
a significantly longer propagation length and even though little
energy couples into it, it is carried away across the interfaces.
The antisymmetric mode decays very fast and at less than half
of a plasmon wavelength away from the dipole its electric
field becomes equal to that of the symmetric mode. This
leads to a relatively complex interference of the two modes in
this region.

These effects also have consequences for the radiation
which couples out of the cavity. We study the radiation emitted
into free space for the case where the cavity is 40 nm thick
but only 200 nm long and where the silver layers are 300 nm
thick. The resulting E\-field is shown in Fig. 10 for different
magnetizations at distances up to 1 wm around the structure.
As can be seen, the magnetic field skews the emitted electric
field pattern: The angle of emission is dominated by the
geometry of the slot and its effect on the relative phase of
the fields around it.

In Fig. 11 we show the emitted radiation in the far field,
showing several different geometries in order to illustrate
the different regimes. The first three subfigures are for a
400 nm long cavity. At w = 2.37 eV [Figs. 11(a) and 11(b)]
the radiation at zero magnetization is largely suppressed,
since (as shown previously) no energy couples to the sym-
metric propagating mode (antisymmetric in E,), while the
antisymmetric mode has a very short propagation length. In
the presence of magnetization the electric field distribution is
only slightly different for different magnetization; the main

A 3.1935x10°

/’—\ ©M=1 15

k“
o

-15
¥ -1.0991x10°

FIG. 10. (Color online) The near-field distribution of E, outside a cavity of thickness 80 nm thick and length 200 nm containing a radiating

dipole at the center, for different magnetizations of the dielectric.
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FIG. 11. (Color online) Polar plots of the far-field radiation intensity |E|* = E2 + EZ + E? from a dipole placed in the center of a cavity
filled with magnetic or nonmagnetic Bi:YIG. The magnetic state of the dielectric is given by the color of the curves (blue for M = —1, dotted
green for M = 0, and dashed red for M = 1): (a) for a cavity of thickness 40 nm and width 400 nm at w = 2.37 eV, (b) for a cavity of thickness
80 nm and width 400 nm at w = 2.37 eV, (c) for a cavity of thickness 80 nm and width 400 nm @ = 2 eV, (d) for a cavity of thickness 40 nm
and width 200 nm at w = 2.37 eV, (e) for a cavity of thickness 80 nm and width 200 nm at w = 2.37 eV, (f) for a Bi: YIG slab with thickness

680 nm and width 400 nm (no cavity) at w = 2.37 eV.

role of M is to break the symmetry and turn on the radiation.
For shorter cavities, shown in Figs. 11(d) and 11(e), the
radiation emitted into free space at zero magnetization is due
to the energy coupled to the antisymmetric mode. When the
magnetisation is different from zero the two modes are both
excited; although they have different degrees of excitation
in the center of the structure, they decay so that the field
amplitudes at the edge are comparable. The magnetic field
then tunes the relative phases of these contributions and alters
the interference from constructive to destructive, depending on
the direction. The resulting interference pattern of the far-field
radiation is therefore skewed to different sides depending on
the magnetization. For an 80 nm cavity with a dipole oscillating
at w = 2 eV in short cavities such as the 400 nm [Fig. 11(c)],
the antisymmetric mode has not decayed by the end of the
cavity; hence the radiation patterns at M = 0 and for M # 0
are similar. Finally we show in Fig. 11(f) the radiation from a
dipole placed in the middle of a nanostructure consisting only
of a slab of magnetic insulator, with no metal cavity. Here a
change in the magnetic field does not result in any noticeable
change in the far-field radiation; this shows that the observed
effects are indeed due to the surface plasmons.

IV. CONCLUSION

The modes of a magnetized MIM waveguide form an
interesting contrast to the modes of a single magnetic interface.
Because the system as a whole has a plane of symmetry at
y = 0, the allowed values of the wave number are not direction
dependent for a given frequency. Instead, the modes come in
pairs with very different weights of the electric field on the
upper and lower waveguide surfaces.

Even though the changes in the dielectric function intro-
duced by the presence of the magnetization may be small in
absolute terms, these qualitative changes in the nature of the
optical modes can lead to significant changes in the response
of the structure to excitation. We have illustrated this by com-
puting the field distributions in a finite-length slot waveguide
in response to excitation by a point dipole placed at its center.
Both the total emission from the cavity and the pattern of
far-field radiation can be strongly modified by switching the
magnetic field; the total emission is predominantly controlled
by the presence or absence of propagating modes with strong
coupling to the radiating dipole, while the far-field radiation
pattern is controlled by the phase differences at the opposite
ends of the guide. These examples point to the possibility of
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using magnetic control to switch the propagation of fields in
more complex photonics structures.

One possible limitation in applications comes from the
match between the properties of the magnetic dielectric
and of the metal used in the waveguide. For the materi-
als used here, the magnetic effects become largest above
w =~ 2 eV, where the silver layers remain weakly dissipa-
tive. If another metal, for example gold, were used that
had a strongly dissipative response above 2 eV, shorter

PHYSICAL REVIEW B 88, 125136 (2013)

structures would be needed for the effects we describe to
survive.
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