
PHYSICAL REVIEW B 88, 125130 (2013)

Universality and quantization of the power-to-heat ratio in nanogranular systems
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We study heating and dissipation effects in granular nanosystems in the regime of weak coupling between the
grains. We focus on the cotunneling regime and solve the heat-dissipation problem in an array of grains exactly.
We show that the power to heat ratio has a universal quantized value, which is geometrically protected: It depends
only on the number of grains.
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I. INTRODUCTION

A major design issue of modern nanoelectronic devices at
low temperatures is the control of temperature, which first
and foremost requires a fundamental understanding of self-
generated heat inside these systems. In particular, overheating
of quantum circuits strongly changes its transport properties,
sometimes irreversibly. A typical feature of these systems
is the nonlocality of the heat generation when the charge
carriers generate heat in the electrodes in the course of their
equilibration inside the junction due to inelastic propagation,
the latter being the most difficult to control. The fundamental
problem is to understand dissipation mechanisms and to
optimize cooling procedures.1

A prototypical system, which is also the most common
component of nanocircuits, is a junction made of nanostruc-
tured conducting materials weakly coupled to electrodes2–4

(see Fig. 1). Such systems are the building blocks of promising
high-density, high-speed, and low-power memory devices.5

The quantum regime in these circuits is realized when (i) the
electrostatic charging energies of the granulars corresponding
to a single charge carrier are much larger than the grain
temperatures and bias between the electrodes and (ii) the bare
tunnel resistances exceed the quantum resistance.

In this paper we study heating of such nanosystems at the
example of a chain of nanocrystalline grains or quantum dots
in the regime of weak coupling between the grains. Since we
are interested in the low-temperature behavior, we focus on the
cotunneling transport regime, which is the dominate transport
mechanism in that case. We solve the heat dissipation problem
in this junction exactly and show that the ratio of the total
dissipated power I · V to the heat dissipated in the grains Q̇

has a universal quantized value

Q̇

I · V
= n

n + 1
, (1)

where I is the current, V is the bias voltage, and n is an
integer corresponding to the total number of grains in the
chain. This rational value in Eq. (1) is geometrically protected,
i.e., it neither depends on the shape of the grains, nor on the
microscopic details of the tunnel junctions.

We assume that all grains are generally different meaning
that each grain has its own charging energy, its own shape,
and its own conducting material (the transparencies of tunnel
barriers are also individual). However, we find that the part of
heat dissipated in the grain is universal: It is given by a fraction
1/(n + 1) of the total power I · V .

Electrodes are bulk conductors attached to the granulars by
the tunnel contacts. We find that each electrode acquires the
universal fraction of heat

Q̇electrode

I · V
= 1

2

1

n + 1
. (2)

In particular, for a single grain, i.e., n = 1, half of the power
is dissipated in the grain and the other half in the leads.

The physical origin of this quantization is the creation of
electron-hole pairs in the grains by a cotunneling electron,
which shares part of its energy with those pairs. The other part
of electron energy (the same amount) is dissipated into the
leads.

Typically, the current-voltage characteristics, I (V,T ), of a
granular nanojunction is highly nonlinear both in voltage and
temperature. These nonlinearities are taken into account when
Eqs. (1) and (2) were derived. We only assumed that the leads
are in equilibrium at similar temperatures, energy relaxation
processes within each grain are fast enough such that a local
equilibrium description is applicable, and that the temperature
of the grains are similar to the lead temperatures as well. The
latter implies that excess heat from the grains is efficiently
transferred into a thermal bath by phonons. A more general
situation is discussed at the end of this paper. In particular,
we address the question of stability of universality and the
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FIG. 1. (Color online) Sketch of the system under consideration
in this work: a chain of weakly coupled nanograins. The red curved
arrows indicate an inelastic cotunneling process leaving behind an
electron-hole (e-h) pair in a grain. These processes are responsible
for the electron transport in the system (I ). The energy of this e-h
pair is then dissipated into the bath by Q̇. The form factor n

(LR)
�>0 in

Eq. (3) can be interpreted as the distribution function of electron-hole
pairs left behind by a tunneling event through the system, where the
electron sits on the left and the hole on the right lead, respectively.
The form factor n

(RL)
�>0 corresponds to the opposite situation.

power to heat quantization, Eqs. (1) and (2), with respect to
different grain temperatures. We show that the quantization is
still valid for biases well exceeding the dispersion of grain and
lead temperatures.

The quantization of the power to heat ratio in Eq. (1)
is a result of inelastic cotunneling processes, which govern
the electron transport. The essence of these processes is that
an electron tunnels via virtual states in intermediate grains
thus bypassing the huge Coulomb barrier.2,4,6–17 This can be
visualized as coherent superposition of two events: tunneling
of an electron into a granule and the simultaneous escape of
another electron from the same granule. There are two distinct
mechanisms of cotunneling processes, elastic- and inelastic
cotunneling. Elastic cotunneling means that the electron that
leaves the grain has the same energy as the incoming one. In
the case of inelastic cotunneling, the electron coming out of
the grain has a different energy than the entering electron (see
curved arrows in Fig. 1). This energy difference is absorbed
by an electron-hole excitation in the grain, which is left behind
in the course of the inelastic cotunneling process. Below we
concentrate on the inelastic case, since only this transport
mechanism contributes to heating effects. In particular, elastic
cotunneling and sequential tunneling do not create electron-
hole pairs inside the grain.

At temperatures and voltages below the Coulomb energy,
cotunneling typically dominates other mechanisms of electron
transport in granular nanojunctions such as “the single-charge
transistor” mechanism and sequential tunneling. The single-
charge transistor tunneling in a granular device in the quantum
case is realized only for rare combinations of parameters and
needs in addition well controlled gate voltages applied to each
grain. In this case the excess charge carriers can classically stay
in the grains for a sufficiently long time.2,18–25 Even then it is
difficult to maintain this regime due to charge migration into
the nearby gates and insulating areas. The contribution from
sequential electron tunneling is exponentially suppressed in
the Coulomb blockade regime for temperatures and voltages

below the characteristic single-electron charging energy in the
grain, eV , T < Ec.

Each grain is characterized by two energy scales: (i) the
mean energy level spacing δ and (ii) the charging energy
Ec ∼ e2(4πκε0a)−1, where κ is the relative static permittivity
of the grain material and a is the grain size. We concentrate
on the case of metallic grains which are most commonly
encountered in applications, where the free electron spectrum
can be considered continuous. In this case Ec, all involved
temperatures, and voltage far exceed δ. In this regime inelastic
cotunneling dominates elastic processes.2,4

II. MODEL CALCULATION

The current-voltage characteristics I (V ) of the multigran-
ular nanojunction in the cotunneling regime can be found
microscopically in several ways starting from the tunnel
Hamiltonian, see, e.g., Ref. 4 for a review. We follow the rate
approach, where the current is expressed through the difference
of backward and forward electron tunnel rates from one lead to
the other, similar to Ref. 2. To write the rates and observables
we use the “bosonic” language26,27 that has a direct physical
interpretation and allows for analytical calculations. We can
write the final result for the current-voltage characteristics
I (V ) for an arbitrary number of grains n in the nanosystem as

I = e

R

∫ ∞

−∞

(
n

(LR)
� − n

(RL)
�

)
P (�)�d�, (3)

where R = ∏n
i=0 Ri,i+1/Rq , Rq = πh̄/e2 is the quantum

resistance, and Ri,i+1 is the bare resistance of the tunnel
barrier between the grains (0 < i < n) or the grains and leads
if i ∈ {0,n}. �d� is the integration weight over frequencies.
Here n

(LR)
� = 1

�

∫ ∞
−∞ dεf (L)(ε+)[1 − f (R)(ε−)] are the bosonic

form factors composed from electron distribution functions
f (ε) in the left and right leads and ε± = ε ± �/2. These
form factors can be interpreted as the probability densities
to find electron-hole pairs excited by the tunneling processes
in the leads.26,28 Namely, n

(LR)
�>0 describes the distribution of

electron-hole pairs with the electron sitting at the left and the
hole on the right leads while the distribution function n

(RL)
�>0

corresponds to the opposite situation, see Fig. 1.
Using the distribution functions f (L)(ε,TL) = fF (ε −

eV/2,T ) and f (R)(ε,TR) = fF (ε + eV/2,T ), with T being
the temperature of both leads, we find the explicit form of the
form factors

n
(LR)
� = � − eV

�
NB(� − eV,T ), (4a)

n
(RL)
� = � + eV

�
NB(� + eV,T ), (4b)

with NB(�,T ) being the equilibrium Bose distribution func-
tion. The function P (�) in Eq. (3) is the probability density for
a tunneling electron to exchange energy � with the effective
bath of electron-hole pairs in the grains. A similar function
appears in the transport theory of ultrasmall tunnel junctions
interacting with an electromagnetic environment.2,29 In this
theory the current can be reduced to a form identical to Eq. (3)
with P (�) describing the probability of energy exchange with
an electromagnetic environment.26 In our case the function
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P (�) in Eq. (3) has the form

P (�) =
∫ ∞

−∞
δ

⎛
⎝� +

n∑
j=1

ωj

⎞
⎠ n∏

i=1

ωidωi

2π
(
E

(i)
c

)2 N (gi )
ωi

, (5)

with N
(g)
ω = 1

ω

∫ ∞
−∞ dεf (g)(ε+)[1 − f (g)(ε−)] being the effec-

tive distribution function of electron-hole pairs in grain i and
f (g)(ε) being the electron distribution function in the same
grain. The identity N

(g)
ω = −[1 + N

(g)
−ω] ensures that function

P (�) is positively defined and for frequencies |�| � E(i)
c ,

i = 1, . . . ,n, is properly normalized. We note that all integrals
over the frequencies ω in Eq. (5) are quickly converging
for energies much smaller than the charging energy E(i)

c (on
frequency scales on the order of voltage or grain temperature).

For positive frequencies, ωi > 0, the factor N
(gi )
ωi

in Eq. (5)
describes the transfer of energy from an electron-hole pair
decaying in the grain i to the cotunneling electron. For
negative frequencies, ωi < 0, we rewrite the product ωiN

(gi )
ωi

=
(−ωi)(1 + N

(gi )
−ωi

), which describes the process of excitation
of one electron-hole pair in grain i with energy |ωi | by the
cotunneling electron.

Several methods exist to investigate the heat transfer in
granular junctions especially for a single grain junction, when
the heat flows from one lead to the other due to temperature
gradients, see, e.g., Refs. 1,23,30–35. Again, we follow the
rate approach to calculate the heat related to the excitation of
electron-hole pairs by the cotunneling electron generalizing
the method of Refs. 26 and 31 and applying it to the case
of an arbitrary number of grains in the system. For the total
electron-hole heat rate (the sum of the heat rates that electron
donates to the electron-hole pairs in all grains in the course of
inelastic cotunneling) we obtain

Q̇ = 1

R

∫ ∞

−∞
�

(
n

(LR)
� + n

(RL)
�

)
P (�)�d� . (6)

We note that for leads (or/and the grains) with different
temperatures there is an additional contribution to the heat,
in addition to Q̇, produced by temperature gradients: see, e.g.,
Refs. 23, 31, and 34 and references therein.

Equation (6) has an intuitive physical meaning if we
introduce the bosonic form factor n� = 1

2 (n(LR)
� + n

(RL)
� ) de-

scribing the distribution of electron-hole pairs in the leads. This
bosonic form factor, contrary to n

(LR),(RL)
� , satisfies the relation

n−� = −[1 + n�], which is the same as for Bose functions.
Taking into account the fact that the boson distribution function
depends on positive frequencies we can rewrite Eq. (6) in the
form

Q̇ = 2

R

∫ ∞

0
�[n�P (�) − (1 + n�)P (−�)]�d�. (7)

The term �n� P (�) in Eq. (7) describes the amount of
electron energy dissipated into the electron-hole bath inside
the grains; the factor n� implies an annihilation of the
electron-hole pair in the leads. The term �(1 + n�)P (−�)
describes the amount of heat, which electron acquires from
the electron-hole bath; 1 + n� describes the creation of an
electron-hole pair in the leads.

First we assume that all the grains and the leads have the
same temperature T . In this case the distribution function N

(g)
ω

in Eq. (5) is the Bose function, NB(ω) = 1/[exp(ω/T ) − 1]
and the density distribution P (�) can be found analytically

P (�) = �[1 + NB(�)](
2πE2

c

)n
(2n − 1)!

n−1∏
j=1

[�2 + (2πTj )2], (8)

where Ec ≡ (
∏n

i=1 E(i)
c )1/n. From Eq. (8) it follows that

function P (�) satisfies the detailed balance symmetry relation,
P (−�) = P (�) exp(−�/T ). In particular, for zero grain
temperatures, T = 0, the cotunneling electron can release its
energy only into the grains, leading to P (−�) = 0.2,29

Substituting Eq. (8) for the P (�) function into Eqs. (3) and
(6) we find the current voltage characteristics I (V,T ) and the
heat dissipated in the granular system Q̇ as follows

I (V,T ) = e2V

R

∏n
j=1[(eV )2 + (2πTj )2]

(2n + 1)!
(
2πE2

c

)n , (9a)

Q̇ = n

n + 1

(eV )2

R

∏n
j=1[(eV )2 + (2πTj )2]

(2n + 1)!
(
2πE2

c

)n . (9b)

Equation (9a) for the current is in agreement with the results
of Refs. 2 and 4. The ratio of Eqs. (9a) and (9b) reproduces
our main result, Eq. (1), immediately.

Below we show that the amount of heat dissipated in each
grain is the same during the inelastic cotunneling process and
it is given by the fraction 1/(n + 1) of the total power I · V .
Similar to Eq. (6) we find the heat Q̇(i) delivered by cotunneling
electrons to electron-hole pairs in grain i

Q̇(i) = − 2

R

∫ ∞

−∞
ωin�δ

(
� +

n∑
j=1

ωj

)
�d�

×
n∏

s=1

ωsdωs

2π
(
E

(s)
c

)2 N (gs )
ωs

. (10)

Here the summation over the grain index i reproduces Eq. (6)
for Q̇. It follows from Eq. (10) that for equal distribution
functions N

(gs )
ωs

(all grain temperatures are the same) the heat
dissipated in each grain Q̇(i) does not depend on the grain
index i and it is equal to Q̇(i) = Q̇/n. Below we investigate
whether Q̇(i) depends on the grain index i for different grain
temperatures.

For a two-grain junction, n = 2, shown in the inset in
Fig. 2 it follows that the heat dissipated in each grain
is different for different grain temperatures, Q̇(1) �= Q̇(2).
However, for large voltages, |eV | � |Tg1 − Tg2|, as it follows
from Fig. 2, a uniform distribution of the heat over the grains
is asymptotically rebuilt.

The fundamental question to address is the stability of
the quantization condition (1) with respect to temperature
differences between grains and the leads. For a single grain
junction, n = 1, with lead and the grain temperatures Tlead and
Tg , respectively, we obtain, using Eqs. (3)–(5) and (6)

Q̇

IV
= 1

2
+ T 2

lead − T 2
g

(eV )2

(eV )2 + 8
5 T̄ 2

(eV )2 + (2πT̄ )2
π4, (11)

where T̄ =
√

(T 2
lead + T 2

g )/2 is the characteristic temperature

scale. For equal lead and grain temperatures, Tlead = Tg , the
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FIG. 2. (Color online) The difference of the heat rates dissipated
in the first and second grains of a two-grain junction shown in the
inset with the different grain temperatures, Tg1 �= Tg2. The curves
from top to bottom correspond to temperatures T = Tg1 = Tlead and
Tg2/T = 1.2,1.1,1.05,0.95,0.09,0.8.

ratio in Eq. (11) is exactly one half, Q̇

I V
= 1/2, in accordance

with Eq. (1). For different temperatures, Tlead �= Tg , numerical
calculations show that the quantization of the ratio in Eq. (11)
is smeared out, see Fig. 3. However, even in this case
for temperatures |T 2

lead − T 2
g |/(eV )2 � 1, as it follows from

Eq. (11), the ratio approaches one half, see Fig. 3.
We obtain qualitatively similar result for junctions with

many grains, n > 1. We define the vector of temperatures: 	τ =
(Tlead,T

(1)
g , . . . ,T (n)

g ), the average temperature τ̄ = 1
n+1

∑
τ ,

and the dispersion δτ =
√

1
n

∑
(τ − τ̄ )2 and show that Eqs. (1)

and (2) are valid for voltages |eV |/n � δτ .
Another important consequence of Eq. (11) is the appear-

ance of a characteristic voltage scale V0(Tlead,Tg) for which
Q̇ = 0

V0 = π
√

2

[(
2T 4

g + 3T 4
lead

5

)1/2

− T 2
lead

]1/2

. (12)

FIG. 3. (Color online) The ratio of the heat Q̇ dissipated in
the grain to the total power IV , 2Q̇/IV for a single grain
junction with the grain temperature Tg and the lead temperature
Tlead. The curves from top to bottom correspond to Tg/Tlead =
0.6,0.8,0.9,0.99,1.01,1.1,1.2,1.4. The inset shows a density plot of
2Q̇/IV as the function of Tg/Tlead and V/Tlead with V being the bias
voltage.

This voltage scale can be physically understood as follows: For
bias voltages larger than V0, V > V0, the cotunneling electrons
heat the grain, while for bias voltages smaller than V0, V < V0,
the grain is cooling. It follows from Eq. (12) that the voltage
scale V0 is nonzero, V0 > 0, for grain temperatures larger than
the lead temperatures, Tg > Tlead and it is zero, V0 = 0, for
equal temperatures Tlead = Tg = T , meaning that the grain
heats up for any bias voltage V . Similarly defined voltage
scales appear in multigrain circuits.

Finally, we address the question of existence of universality
and quantization of the heat to power ratio in a realistic
experimental system. “Hot” electron-hole pairs generated in
the grains by the inelastic cotunneling process drive electrons
in the grains away from equilibrium state while electron-
electron and electron-phonon interactions in the grains do
the opposite: they thermalize electron distribution. Many
experiments on granular systems in the inelastic cotunneling
regime4,36 show that the effective temperature approximation
for electrons1 in the grains (Fermi distribution with effective
temperature) describes well the transport measurements in
nearly whole range of the phonon bath temperatures Tbath and
driving biases V (except the case of ultralow bath temperatures
and very high biases). In our consideration above we assume
that the grain temperature is the effective electron temperature,
Ti(V ), which is found by solving the heat balance equations.
Experiments on variable range hoping in granular systems
(special case of inelastic cotunneling4) show that at small bias
the effective electron temperature is equal with high accuracy
to the temperature of the phonon bath while overheating starts
with relatively high bias. In our case, the heat dissipated into
particular grain i is Q̇(i) = κe-ph (T k

i − T k
bath), i = 1, . . . ,n,

with κe-ph being the electron-phonon interaction constant
and k being integer 4,5, or 6 depending on the particular
electron-phonon interaction model.1,36,37 For small bias, Q̇(i)

is also small leading to the condition Ti(V ) ≈ Tbath for all
grains i. This is the regime of validity of Eqs. (1) and (2). For
a single grain, the condition |Tg − Tbath| � Tbath implies that
V 2(V 2 + T 2

bath)/(RE2
c κe−ph T k

bath) � 1.

III. DISCUSSION: HEAT/POWER QUANTIZATION AND
SYMMETRY OF P(�)

The “quantization” of heat dissipation we are discussing
above is formally related to the specific structure of the
probability distribution function P (�). We show that the
general expressions for the current and heat in the multi-
granular junction are similar to that in the ultrasmall tunnel
junction connected to the electromagnetic environment. The
important question then arises: if the same quantization effect
can be observed in ultrasmall tunnel junction and what
symmetry of distribution function P (�) would then provide
the quantization.

A. Electromagnetic environment: single frequency mode.

First we consider an ultrasmall tunnel junction interacting
with electromagnetic environment with the single mode. The
probability that tunneling electron share the energy � to this
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FIG. 4. (Color online) The ratio IV/Q̇ for single mode environ-
ment. This environment produces large dissipation when V ∼ ω0. As
follows, there is no universal quantization of the power to heat ration
in general.

environment is given by the expression2,29

P (�) =
∞∑

k=−∞
pkδ(� − kω0), (13)

pk = e−ρ coth βω0
2 Ik

(
ρ

sinh(βω0/2)

)
exp(kβω0/2), (14)

where ρ > 0 is the interaction constant between tun-
neling electron and environment. It follows that p−k =
pk exp(−kβω0). Then∫ ∞

−∞
�

(
n

(LR)
� − n

(RL)
�

)
P (�)d�

=
∞∑

k=−∞

pke
−kβω0/2(kω0 − V )

sinh[β(kω0 − V )/2]
sinh(βV/2). (15)

Similarly we find:∫ ∞

−∞
�2

(
n

(LR)
� + n

(RL)
�

)
P (�)d�

=
∞∑

k=−∞

pke
−kβω0/2kω0(kω0 − V )

sinh[β(kω0 − V )/2]
sinh(βV/2). (16)

Finally we obtain

IV

Q̇
=

V
∑∞

k=−∞ Ik

(
ρ

sinh(βω0/2)

)
/ sinh[β(kω0 − V )/2]∑∞

k=−∞ kω0Ik

(
ρ

sinh(βω0/2)

)
/ sinh[β(kω0 − V )/2]

.

(17)

The ratio IV/Q̇ is shown in Fig. 4. It follows that IV/Q̇

is always far from unity. Therefore the environment absorbs
only the part of the Joule heat as it is for the granular junction.
However IV/Q̇ does not quantize in general. Only in the
limit ρ � 1 the ratio IV/Q̇ starts approaching the integer
number asymptotically. The question arises—Why does the
ratio IV/Q̇ not quantize? We will address this question below
after considering one more example.

B. Electromagnetic environment: Ohmic impedance

Now we consider the Ohmic environment related to the
resistance embedded into the circuit.2,29 Without loss of
generality we focus on the zero temperature limit, T = 0.
Then P (�) ∝ θ (�) and we get

IV

Q̇
= V

∫ V

0 (eV − �)P (�)d�∫ V

0 �(eV − �)P (�)d�
. (18)

In this case for small frequencies (smaller than the charging
energy Ec of the tunnel junction) for distribution function we
have

P (� > 0) ∝ �
2
g
−1

, P (� < 0) = 0, (19)

where R is the resistance and Rq is the resistance quantum and
the parameter g = Rq

R
< 1. Using Eqs. (19) we obtain

IV

Q̇
= V

∫ V

0 (V − �)P (�)d�∫ V

0 �(V − �)P (�)d�
= 2 + 3g + g2

2 + g
= 1 + g.

(20)

This result is valid for voltages below the charging energy,
V � Ec. Equation (20) says that the Ohmic electromagnetic
environment is very effective as the absorber of energy. The
universality of heat/power ratio does not take place.

out) out)out)
’

in)
’

f( ) f( )1 ( ’)-f - 1 ( ’)-f -

(in) (in)
’

f( ) 1 ( ’)-f +

out) (in)

f( ) f( )1 ( )-f - 1 ( )-f +

3-terms: ...
...

2-terms:

-terms:

(a)

(b)

FIG. 5. (Color online) (a) The diagrams for P (�) in the first,
second, and partially in the third order over the electron-environment
interaction parameter ρ in the ultrasmall tunnel junction. (b) All
the diagrams for P (�) for the two-granular junction. The difference
between the two cases is apparent from the symmetry structure of the
diagrams.

125130-5



N. M. CHTCHELKATCHEV, A. GLATZ, AND I. S. BELOBORODOV PHYSICAL REVIEW B 88, 125130 (2013)

C. General P(�)

To summarize the results, we have demonstrated that in
general there is no heat to power quantization in ultrasmall
tunnel junctions while in the granular junction this quantization
exists while they are in the cotunneling regime. The funda-
mental question is: What specific mechanism (“symmetry”)
provides this quantization? We understand the following:
While an electron goes through the granular junction it
effectively produces the same number of electron-hole pairs
in each grain (1/2 in leads) and this is the physical origin
of the quantization. (In the sequentional tunneling regime
there is no such environment of electron-hole pairs and so
no universality.) This physics of the universality is hidden in
the polynomial structure of the P -function prefactor as the
function of � where the polynomial has the order of 2n − 1
over �, with n being the number of grains. A difficult question
exists: If we take an arbitrary polynomial of order 2n − 1
and build the P function, would it produce the quantization
effect? What mathematical restrictions should be given to the
P functions to provide the quantization? These important,
however purely mathematical, questions will be addressed in
the forthcoming publication.

To distinguish the “symmetry” of the granular junction
problem in the cotunneling regime from the “symmetry” of
the ultrasmall tunnel junction problem in electromagnetic
environment we show the diagrams that correspond to the
probability P (�) in Fig. 5. Here N (in) and N (out) are the Bose
functions. The symbols (in) and (out) here just help us to
understand what term effectively corresponds to emission or
absorbtion of the environment (e-h) excitation. The notations
we use here drawing these diagrams follow Refs. 26 and 38. In

Refs. 26 and 38 one can also find the detailed rules how to build
P (�) from the diagrams. One should take the products of the
distribution functions shown in the diagram and integrate over
all frequencies with prime except ω to get the corresponding
contribution to P (ω). So, here we demonstrate the difference
of the topology (symmetry) of the diagrams for the ultrasmall
tunnel junction problem and for the cotunneling problem in
the granular junction.

IV. CONCLUSIONS

In conclusion, we studied heating and dissipation effects in
granular nanosystems in the regime of weak coupling between
the grains. We focused on the cotunneling regime and solved
the heat dissipation problem exactly in a chain of grains. We
showed that, while the temperatures of the grains are kept
equal, the power to heat ratio has a universal quantized value,
Eq. (1), meaning that this ratio is geometrically protected: it
depends only on the number of grains. For different grain
and lead temperatures the quantization effect is recovered
asymptotically for large enough bias voltages.
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