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We classify topological insulators and superconductors in the presence of additional symmetries such as
reflection or mirror symmetries. For each member of the 10 Altland-Zirnbauer symmetry classes, we have a
Clifford algebra defined by operators of the generic (time-reversal, particle-hole, or chiral) symmetries and
additional symmetries, together with gamma matrices in Dirac Hamiltonians representing topological insulators
and superconductors. Following Kitaev’s approach, we classify gapped phases of noninteracting fermions under
additional symmetries by examining all possible distinct Dirac mass terms which can be added to the set of
generators of the Clifford algebra. We find that imposing additional symmetries in effect changes symmetry
classes and causes shifts in the periodic table of topological insulators and superconductors. Our results are in
agreement with the classification under reflection symmetry recently reported by Chiu, Yao, and Ryu [Phys. Rev.
B 88, 075142 (2013)]. Several examples are discussed including a topological crystalline insulator with mirror
Chern numbers and mirror superconductors.
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I. INTRODUCTION

Since the theoretical proposals and experimental confir-
mations of two- and three-dimensional topological insulators
with Z2 topological numbers,1–12 topological characterization
of gapped phases has been intensively studied as a new way
to classify states of matter, beyond the conventional way
in terms of broken symmetries. The concept of topological
insulators can be extended to any system of noninteracting
fermions with excitation gap including superconductors where
fermionic quasiparticles are well described by the BCS mean-
field theory. More generally, the topological insulators and
superconductors can be defined as systems of noninteracting
(or weakly interacting) fermions which have gapped excitation
spectra in the bulk and topologically stable gapless boundary
excitations. There exist a large variety of topological insulators
and superconductors in the broad sense defined above. A
prominent example of topological insulators is integer quan-
tum Hall states.13 Examples of topological superconductors
include a one-dimensional p-wave superconductor14 and a
chiral p-wave superconductor in two dimensions.15

The zoo of topological insulators and superconductors has
been classified theoretically.16–22 Systems of noninteracting
fermions are known to be divided into ten Altland-Zirnbauer
(AZ) symmetry classes,23 in terms of the presence or absence
of time-reversal symmetry (TRS), particle-hole symmetry
(PHS), and chiral symmetry (or sublattice symmetry). Ac-
cording to the classification,16–19 in every spatial dimension,
there exist five distinct classes of topological insulators and
superconductors out of the ten AZ symmetry classes. Among
the five classes of topological insulators and superconductors,
three are characterized by an integer (Z) topological index,
and two characterized by a binary (Z2) topological index.
Topological indices are defined from Bloch wave functions
or Hamiltonians. The general classification of topological
insulators and superconductors has been achieved in various
ways: stability analysis of gapless boundary states against
(random) perturbations,16,17 dimensional reduction in repre-
sentative massive Dirac Hamiltonians,18 and application of

K theory and Clifford algebras.19,20 The last approach is the
most elegant and mathematically powerful.

The so-called periodic table of topological insulators and
superconductors was obtained by Kitaev19 using K theory
and Clifford algebras. In this approach, a Clifford algebra
is formed from generic symmetry transformations such as
TRS, PHS, or chiral symmetry. One can then ask how many
different types of generators (related to Hamiltonians after
spectral flattening) can be added to the set of generators of
the Clifford algebra. The answer to this question is provided
by “classifying space.” This formulation naturally leads to the
periodic table of topological insulators and superconductors
for the 10 AZ symmetry classes in any spatial dimension,
which has the periodic structure of period 2 or 8 coming from
the Bott periodicity.

As an attempt to find a novel class of topological insu-
lators in noninteracting systems, Fu introduced the idea of
topological crystalline insulators,24 i.e., band insulators which
become topologically nontrivial only when some crystalline
symmetry is present in addition to TRS.24,25 Furthermore, Fu
and his collaborators made a theoretical proposal26 that SnTe
should be a topological crystalline insulator whose topological
stability is guaranteed by a mirror Chern number27 defined
on a mirror-invariant plane in the Brillouin zone. Subsequent
experimental studies have confirmed that SnTe and its alloys
Sn1−xPbxTe are topological crystalline insulators.28–30 The
successful discovery of topological crystalline insulators urges
us to generalize the classification theory of topological insu-
lators and superconductors to include crystalline symmetries.
Indeed, Chiu et al. have recently developed such classification
by explicitly constructing possible topological invariants for
representative Dirac Hamiltonians with a mirror symmetry for
each symmetry class.31

In this paper we follow the approach pioneered by Kitaev19

to classify topological insulators and superconductors with
additional symmetries such as reflection symmetries. Our
approach is complementary to the one taken by Chiu et al.
and takes advantage of simple and powerful mathematics of
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representation theory of Clifford algebras and K theory.32 A
drawback of our approach is that it does not give us an explicit
formula of topological invariants.

While we focus on noninteracting systems in this paper,
we note that new topological phases can appear in inter-
acting systems, since interactions can modify the above-
mentioned classifications of noninteracting fermions. For one-
dimensional systems of interacting particles, modifications of
the classification are explicitly shown and the full classification
is obtained, e.g., in terms of matrix product states.33–36

For bosonic systems, classification of symmetry-protected
topological (SPT) phases in higher dimensions is recently
proposed using group cohomology37 and (2 + 1)-dimensional
Chern-Simons theory.38

This paper is organized as follows. In Secs. II and III we
briefly review Clifford algebras and their application to the
classification of topological insulators and superconductors
in zero dimensions for the 10 AZ symmetry classes. These
sections give a summary of the theoretical formalism which
is used in the following sections. In Sec. IV we apply the
formalism to classify zero-dimensional topological insulators
and superconductors in the presence of an additional symmetry
constraint. We find that the additional symmetry in effect
shifts symmetry classes in the periodic table. In Sec. V we
take gamma matrices in Dirac Hamiltonians as additional
symmetry generators, to obtain classification of d-dimensional
topological insulators and superconductors from classification
at d = 0. In Sec. VI we derive the periodic table of topological
insulators/superconductors with a reflection symmetry. Our
table is in agreement with the one obtained earlier by Chiu
et al. In Sec. VII we study cases when multiple additional
symmetries are imposed. We find more complicated shuffling
of symmetry classes in the periodic table. In Sec. VIII
we discuss several examples of topological insulators and
superconductors which are protected by reflection symme-
tries, including topological crystalline insulators with mirror
Chern numbers or Z2 indices. Some mathematical details are
summarized in appendices.

II. FORMALISM

We briefly introduce AZ symmetry classes and Clifford al-
gebras and summarize our program for classifying topological
insulators and superconductors with additional symmetries in
terms of real and complex Clifford algebras.

A. Ten symmetry classes

The AZ symmetry classes give classification of Hamilto-
nians of free fermion systems. Hamiltonians can be block
diagonalized when they commute with a unitary matrix
representing (continuous) symmetry transformation such as
(spin) rotation or translation. In the following discussions we
assume that Hamiltonians are already block diagonalized. The
Hamiltonians may still have discrete symmetries represented
by antiunitary operators, and are classified into the 10 AZ
symmetry classes according to the presence or absence of
time-reversal and particle-hole symmetries (Table I).23

When Hamiltonian H has neither time-reversal nor particle-
hole symmetry, H is in class A or AIII of the complex classes;

TABLE I. Altland-Zirnbauer symmetry classes for (a) complex
and (b) real cases. The presence of time-reversal symmetry (TRS)
and particle-hole symmetry (PHS) is denoted +1 or −1, depending
on whether they square to +1 or −1. The absence of the TRS
or PHS symmetry is denoted by “0”. The next to last columns
show the classifying spaces (a) Cq and (b) Rq that characterize
zero-dimensional Hamiltonian in each symmetry class. The last
columns denote type of possible topological numbers, i.e., the number
of disconnected parts of each classifying space.

(a) Complex classes

Class Chiral Cq π0(Cq )

A 0 C0 Z
AIII 1 C1 0

(b) Real classes

Class TRS PHS Rq π0(Rq )

AI +1 0 R0 Z
BDI +1 +1 R1 Z2

D 0 +1 R2 Z2

DIII −1 +1 R3 0
AII −1 0 R4 Z
CII −1 −1 R5 0
C 0 −1 R6 0
CI +1 −1 R7 0

see Table I(a).18,23 When there exists a unitary transformation
� that changes the sign of H (i.e., �−1H� = −H ), the
Hamiltonian H has so-called chiral symmetry and is a member
of class AIII.

Both time-reversal operator T and particle-hole operator C

are an antiunitary operator whose square equals either plus or
minus identity operator. When H has either time-reversal or
particle-hole symmetry (or both), H belongs to real classes
which are further divided into eight symmetry classes listed in
Table I(b), in terms of the sign of T 2 and C2.18,23 When H has
both T and C symmetries, the product of the two symmetry
operations yields a chiral symmetry transformation, a unitary
operator that anticommutes with H .

B. Clifford algebras and their extensions

We are going to classify topological insulators and su-
perconductors with additional reflection symmetries using
Clifford algebras, which are algebras with generators which
anticommute with each other.

A complex Clifford algebra Cln has n generators ei

satisfying

{ei,ej } = 2δi,j . (1)

Linear combination of their products e
p1
1 e

p2
2 · · · epn

n (pi =
0,1) multiplied by complex numbers form a 2n-dimensional
complex vector space, accompanied with the multiplication
law (1).

A real Clifford algebra Clp,q has p + q generators satisfy-
ing

{ei,ej } = 0 (i �= j ),

e2
i =

{−1, 1 � i � p,

+1, p + 1 � i � p + q.
(2)
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Their products with real coefficients form a 2p+q-dimensional
real vector space, accompanied with the multiplication
law (2).

Having introduced real and complex Clifford algebras, we
now explain our strategy for classifying topological insulators
and superconductors with additional symmetries, which is a
natural extension of Kitaev’s approach.19 Namely, we reduce
the classification problem of gapped free fermion systems
to that of possible extensions of Clifford algebras which are
generated by discrete symmetry operators and a Hamiltonian
with flattened spectra.

We begin with topological classification of zero-
dimensional systems (i.e., systems confined in a finite region)
with some symmetries. We first perform “spectral flattening”
of Hamiltonian H with an energy gap; i.e., we continuously
deform eigenenergies above the gap to +1 and those below
the gap to −1 while preserving wave functions. This is a
continuous deformation of the Hamiltonian and does not
change its topological properties. Next we express symmetry
constraints as generators {ei} of a Clifford algebra. The
relevant Clifford algebras for the complex and real AZ
symmetry classes (Table I) are complex and real Clifford
algebras, respectively. We consider a matrix representation
(of sufficiently large dimension) of the Clifford algebra. We
then consider extending the algebra by adding a generator
e0 which is obtained from the flattened Hamiltonian. That
is, for a fixed representation of symmetry constraints {ei},
we look for possible representations of a new additional
generator e0. The set of these representations for e0 forms a
“classifying space,” denoted as Cq and Rq for complex and real
symmetry classes, respectively (see Table VIII in Appendix A).
Now, topologically distinct states correspond to topologically
distinct extensions of the algebra, and classification of them
can be found from a zeroth homotopy group of a classifying
space π0(Cq) or π0(Rq), i.e., the number of disconnected
parts of Cq or Rq . The resulting classification for the 10 AZ
classes is summarized in Table I, whose explicit constructions
are given in Sec. III. We will apply this program to com-
plete topological classification in the presence of additional
reflection symmetries in the following sections. Once the
zero-dimensional systems are classified, the classification of d-
dimensional systems can be achieved by considering π0(Cq−d )
and π0(Rq−d ), as shown by Kitaev using K theory.19 In Sec. V
we will give an alternative explanation of the dimensional
shift (q → q − d) for massive Dirac Hamiltonians in d

dimensions.

C. Examples of classifying spaces

In order to gain intuitions about classifying spaces and
topological invariants, let us look at a couple of examples
of massive Dirac Hamiltonians and discuss their classifying
spaces by considering what kind of Dirac mass term γ0 is
allowed in specific models. The classifying space corresponds
to a set of allowed Dirac mass terms.

First we consider a two-dimensional system in class A,
which is described by a 2N × 2N Hamiltonian

H2D = kxσx ⊗ 1N + kyσy ⊗ 1N + γ0, (3)

with momenta ki , 2 × 2 Pauli matrices σi , an N × N identity
matrix 1N , and a mass term γ0. The classifying space
corresponds to a set of allowed Dirac mass term γ0. Since
γ0 anticommutes with the kinetic terms, γ0 should have the
form

γ0 = σz ⊗ A, (4)

where A is an N × N Hermitian matrix and is normalized
such that it squares to 1N . We can diagonalize A with a unitary
matrix U as

A = UIn,mU †,In,m =
(

1n 0

0 −1m

)
, (5)

with N = n + m. In,m is a diagonal matrix whose diagonal
entries consist of +1 and −1, appearing n and m times for
each. For a given n, A is determined by a choice of U from
a unitary group U (N ), but there is a redundancy in the choice
of bases in each eigenspace of ±1. Thus the set of A with
fixed n and m corresponds to a complex Grassmanian U (n +
m)/U (n) × U (m). The total classifying space is a union of
U (n + m)/U (n) × U (m) of different values of n. If we assume
N to be sufficiently large, complex Grassmanians each labeled
with n become almost the same, and we can write the total
classifying space as

[U (n + m)/U (n) × U (m)] × Z, (6)

which is exactly C0 in Table VIII. Since each complex
Grassmanian is a connected manifold, each disconnected
part of the classifying space (topologically distinct states) is
specified by n, the number of eigenvalues +1 of A. Actually, n
coincides with the Chern number defined for the 2-dimensional
system with a proper regularization. We regularize the Dirac
Hamiltonian by adding a k2 term as H2D − Ck2σz ⊗ 1N with
a small positive coefficient C. If we assume A = In,m for
simplicity, then the Hamiltonian decouples into N copies as
H2D = ⊕N

i=1Hi , where

Hi = kxσx + kyσy + (εi − Ck2)σz, (7)

with εi = +1 for 1 � i � n, εi = −1 for n + 1 � i � N .
Now the Chern number for Hi is + 1 for εi = +1 and 0 for
εi = −1. Therefore the total Chern number is n.

Next let us consider a one-dimensional system in class A,
with a 2N × 2N Hamiltonian

H1D = kxσz ⊗ 1N + γ0. (8)

The Dirac mass term γ0 should be Hermitian, anticommute
with σz, and square to 12N , which requires γ0 to be written as

γ0 =
(

0 U

U † 0

)
, (9)

where U is an N × N unitary matrix. Thus each choice of U

specifies the mass term γ0 and the classifying space is given by
U (N ), which is C1 in Table VIII. Since the unitary group U (N )
is connected, we can deform one state into another without
closing the energy gap; there exists only one phase which is
topologically trivial. This trivial classification is a consequence
of the existence of two mass terms that anticommute with each
other in the minimal Dirac model. Let us consider a minimal
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2 × 2 Hamiltonian,

H1D = kxσz + m1σx + m2σy. (10)

When there is only one allowed mass term (m0σz) as in the
previous example [Eq. (7)], two states with different signs of
the unique mass term are topologically distinct, and changing
the sign of m0 is only possible via a point m0 = 0 where the
bulk gap closes. On the other hand, if we have two masses (m1

and m2), the two states with masses (m1,m2) = (±1,0) are
connected through a rotation in the plane of (m1,m2); i.e., we
can deform one to the other without closing the bulk gap. This
deformation is regarded as a rotation in U (N ) with N = 1.

III. CLASSIFICATION FOR AZ CLASSES

In this section, we give a concise review of the topological
classification of the ten AZ symmetry classes in zero spatial
dimensions in terms of an extension problem of the Clifford
algebra, in a way complementary to the original Kitaev paper.19

The two complex classes are classified with complex Clifford
algebras while the eight real classes are classified with real
Clifford algebras. This section will serve as a starting point
for the topological classification in the presence of additional
reflection symmetries in the following sections.

A. Complex classes

We start with classification of the complex AZ classes
(A and AIII) in terms of complex Clifford algebras. The
extension problem for complex Clifford algebra Cln → Cln+1

is characterized by a classifying space Cn.19,32

When a zero-dimensional system is a member of class AIII,
its Hamiltonian H satisfies the chiral symmetry relation

{H,�} = 0, (11)

where � is a unitary operator. After spectral flattening, the
zero-dimensional Hamiltonian H has eigenvalues ±1, and
we set e0 := H . We note that relation (11) is not affected
by the spectral flattening. Without loss of generality we may
assume �2 = 1 and regard e1 := � as a generator of complex
Clifford algebra Cl1. We then consider extending the complex
Clifford algebra Cl1 to Cl2 by adding the generator e0 to the
algebra Cl1 (Table II). A set of the possible representations
of e0 in the extended algebras forms the classifying space C1.
Since π0(C1) = 0, zero-dimensional systems in class AIII are
topologically trivial (Table I).

For Hamiltonians in class A, we begin with complex
Clifford algebra Cl0. We consider the extension of Cl0 to
Cl1 with e0 = H , whose possible representations form the
classifying space C0 (Table II). We then find from π0(C0) = Z

TABLE II. Classification of the complex AZ classes (A and
AIII) in zero dimensions from the extension of complex Clifford
algebras. The last column shows classifying spaces Cq .

Class Generators Extension Classifying space

A e0 = H Cl0 → Cl1 C0

AIII e0 = H,e1 = � Cl1 → Cl2 C1

that zero-dimensional systems in class A are characterized by
an integer topological index (Table I).

B. Real classes

Next we review classification of the real AZ classes in
zero spatial dimensions in terms of real Clifford algebras.
Time-reversal symmetry (TRS) and particle-hole symmetry
(PHS) of Hamiltonian H are written as

T −1HT = H, C−1HC = −H, (12)

with antiunitary operators T and C, respectively. These
relations are not affected by spectral flattening of H ,

H 2 = 1. (13)

Without loss of generality we can assume

[T ,C] = 0, (14)

and we have

T 2 = εT , C2 = εC, (15)

where εT and εC are either +1 or −1; see Table III. Since both
T and C involve complex conjugation K, we introduce an
operator J representing the imaginary unit “ i ” so that we can
treat complex structure algebraically in real Clifford algebras.
We thus impose the operator J to satisfy the relations

J 2 = −1, {T ,J } = {C,J } = [H,J ] = 0, (16)

as expected for “ i ”.
Equations (12)–(16) are used to define real Clifford algebras

Clp,q . According to the absence or presence of the TRS and
PHS, we have a different set of generators for real Clifford
algebra in each class:

(i) T only (AI and AII): {e1,e2} → {e0,e1,e2}, where

e0 = JH, e1 = T , e2 = T J, (17a)

with

e2
0 = −1, e2

1 = εT , e2
2 = εT . (17b)

(ii) C only (C and D): {e1,e2} → {e0,e1,e2}, where

e0 = H, e1 = C, e2 = CJ, (18a)

TABLE III. Classification for the real AZ classes in zero dimen-
sions from the extension of real Clifford algebras. The second column
(εT ,εC) shows the sign of squared symmetry operators (T 2,C2), where
the absence of the symmetry is denoted by “0”.

Class (εT ,εC) Extension Classifying space

AI (+,0) Cl0,2 → Cl1,2 R0

AII (−,0) Cl2,0 → Cl3,0 R4

D (0,+) Cl0,2 → Cl0,3 R2

C (0,−) Cl2,0 → Cl2,1 R−2 � R6

BDI (+,+) Cl1,2 → Cl1,3 R1

DIII (−,+) Cl0,3 → Cl0,4 R3

CII (−,−) Cl3,0 → Cl3,1 R−3 � R5

CI (+,−) Cl2,1 → Cl2,2 R−1 � R7
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with

e2
0 = 1, e2

1 = εC, e2
2 = εC. (18b)

(iii) Both T and C (BDI, DIII, CII, and CI):
{e1,e2,e3} → {e0,e1,e2,e3}, where

e0 = H, e1 = C, e2 = CJ, e3 = T CJ, (19a)

with

e2
0 = 1, e2

1 = εC, e2
2 = εC, e2

3 = −εT εC. (19b)

Before adding the generator e0, we have real Clifford algebras
Cl2,0 or Cl0,2 for the cases (i) and (ii), and Cl1,2, Cl2,1,
Cl0,3, or Cl3,0 for the case (iii), depending on the sign of
εT and εC (Table III). We then consider extension of the
real Clifford algebras by adding e0. We shall distinguish two
cases, e2

0 = +1 and e2
0 = −1. The classifying space for the

extension Clp,q → Clp,q+1 (e2
0 = +1) is known to be given

by Rq−p, while that for Clp,q → Clp+1,q (e2
0 = −1) is given

by Rp+2−q .19,32 The latter can be understood by noting that we
have an isomorphism Clp,q ⊗ R(2) � Clq,p+2, where R(2) is
an algebra of 2 × 2 real matrices (Appendix A). By taking
the tensor product with R(2) (which does not affect the
extension problem), the extension Clp,q → Clp+1,q is mapped
to the extension Clq,p+2 → Clq,p+3, whose classifying space
is Rp+2−q . From the Bott periodicity,19,32 the classifying
space has a periodic structure Rq � Rq+8, and the eight real
symmetry classes fall into eight distinct classifying spaces, as
listed in Table III (see Appendix A). Finally we find topological
classification of each AZ class from zeroth homotopy group
of the classifying spaces π0(Rq) (Table I).

IV. ADDITIONAL SYMMETRY

In this section, we study how the topological properties
change when an additional symmetry is imposed on each
symmetry class. Here we concentrate on an additional symme-
try denoted by a unitary operator M that anticommutes with
Hamiltonian H ,

{H,M} = 0. (20)

As we will see later in the following sections, this situation
has several interesting applications. The additional symmetry
is represented as a new generator in Clifford algebras, leading
to modification of the Clifford algebras and topological classi-
fication. While we consider zero-dimensional Hamiltonian H

in this section, we note that, once we find the classifying space
for zero dimensions as Cq or Rq , the topological classification
for d dimensions is given by π0(Cq−d ) or π0(Rq−d ), according
to K theory.19

A. Complex classes

We first consider zero-dimensional systems in complex
classes (see Table IV). For systems originally in class A,
M serves as a chiral symmetry operator. Hence the relevant
classifying space for class A changes from C0 to C1 upon
addition of the symmetry M .

For systems in class AIII with chiral symmetry �, we
impose the condition

�M = η�M�, (21)

TABLE IV. Shifts of classifying spaces due to an additional
symmetry for complex classes in zero spatial dimensions.

Class η� Relations Shift of Cn

A {e0,M} = 0 +1
AIII + [e0,�M] = [e1,�M] = 0 0
AIII − {e0,M} = {e1,M} = 0 +1

where the signature η� designates a commutation (+) or
anticommutation (−) relation between M and �. If η� = −1,
then M serves as an additional generator to the complex
Clifford algebra, and we need to consider an extension problem
Cl2 → Cl3, instead of the original Cl1 → Cl2. Hence the
classifying space is shifted by 1, from C1 to C2 � C0. Here
we have used the Bott periodicity,19,32 Cn � Cn+2.

On the other hand, when η� = +1, the product �M

commutes with the original generators � and H . Then, in
each eigenspace of �M , we have the same extension problem
of a complex Clifford algebra as before (Cl1 → Cl2), and the
topological classification is not changed from Table I.

B. Real classes

Next we consider zero-dimensional systems in the eight
real classes with an additional symmetry M . We require M to
satisfy

[J,M] = 0, M2 = 1. (22)

Furthermore, for systems which are invariant under time-
reversal or particle-hole transformation, we assume

T M = ηT MT, CM = ηCMC, (23)

where ηT and ηC designate commutation (+) or anticommu-
tation (−) relations with T and C.

If the system has either one of TRS and PHS, or if it has both
TRS and PHS with (ηT ,ηC) = (+,−) or (−,+), then we can
construct an additional generator ẽ from the symmetry M given
in Table V(a), which should be added to the set of generators
listed in Eqs. (17)–(19). By considering the extension problem
of Clifford algebras, {e1, . . . ,ẽ} → {e0,e1, . . . ,ẽ}, we find that
the index q of the classifying space Rq should be shifted by
±1, according to the sign of ẽ2, as listed in Table V(a).

On the other hand, if the system has both TRS and PHS
with (ηT ,ηC) = (+,+) or (−,−), then we can construct, not
an additional generator for Clifford algebras, but an operator M̃

which commutes with all generators of the relevant Clifford
algebras; see Table V(b). We have the following two cases
according to the sign of M̃2.

(1) M̃2 = +1: The Hilbert space splits into two eigenspaces
of M̃ . For each eigenspace of M̃ , we have the same Clifford al-
gebra and classifying space as in Table III, and the topological
classification is not changed from Table I.

(2) M̃2 = −1: M̃ effectively behaves like “ i ” and intro-
duces a complex structure into the real algebra. This situation is
formally written as Clp,q ⊗R Cl1,0 � Clp,q ⊗R C � Clp+q .
Then the classification is given by an extension problem of
a complex Clifford algebra Cl3 → Cl4, which falls into a
classifying space C3 � C1. This means that the additional
symmetry has changed real symmetry classes into class AIII.
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TABLE V. Classification of real symmetry classes in the presence of an additional symmetry M in zero dimension. (ηT ,ηC)
dictates commutation (+) or anticommutation (−) relation with T and C operators [Eq. (23)], or absence of symmetry denoted
by “0”. We distinguish the following two cases: (a) The additional symmetry operator M provides a new generator (ẽ) and
causes a shift in the classifying space. (b) The additional symmetry operator M provides an operator (M̃) commuting with all
preexisting generators.
(a)

Class (ηT ,ηC) ẽ ẽ2 Shift of Rq

AI, AII (+,0) JM −1 +1
(−,0) M +1 −1

D, C (0,+) JM −1 −1
(0,−) M +1 +1

BDI, DIII, CII, CI (+,−) M +1 +1
(−,+) JM −1 −1

(b)

Class (ηT ,ηC) M̃ M̃2 Classifying space

BDI, CII (+,+) T CM +1 same as in Table III
(−,−) T CJM −1 C1

DIII, CI (+,+) T CM −1 C1

(−,−) T CJM +1 same as in Table III

Changes in topological classification of real classes induced
by an additional symmetry in zero spatial dimensions are
summarized in Table V.

C. Commuting symmetries [H,M] = 0

So far we have studied additional symmetries that anticom-
mute with Hamiltonian. Here we briefly discuss additional
symmetries that satisfy

[H,M] = 0, M2 = 1. (24)

For example, this situation happens in 1D systems with mirror
lines, or in 2D systems with mirror planes as discussed in
Refs. 39,40. We show below that, upon block diagonalization
of H with respect to M , symmetry classes can change if actions
of the generic symmetries are not closed in eigenspaces of M .

We start with complex classes. In class A, the block
diagonalization does not change the symmetry class nor the
classification. In class AIII, when the chiral symmetry also
commutes as [�,M] = 0, the classification does not change.
On the other hand, when the chiral symmetry anticommutes
as {�,M} = 0, the chiral symmetry does not hold in subblocks
and the symmetry class changes into class A.

Let us move on to real classes. (i) T only (AI and AII)
or C only (C and D): When the additional symmetry M

commutes with the generic symmetry T or C, the block di-
agonalization does not change the symmetry class and, hence,
the classification. The situation changes for the additional
symmetry M that anticommutes with the generic symmetry.
Since TRS or PHS does not hold in each eigenspace of
M , the symmetry class changes into class A. In terms of
Clifford algebras, this situation is written as an extension
problem {e1,e2} ⊗ JM → {e0,e1,e2} ⊗ JM , where we adopt
a new generator JM that commutes with T or C but squares
to −1. Thus the extension Clp,q ⊗ C → Clp,q+1 ⊗ C turns
into that of complex algebras Clp+q → Clp+q+1. Then the
relevant classifying space is a complex one with Cp+q � C0

from Table III, which indicates that the symmetry class
changes into class A.

(ii) Both T and C (BDI, DIII, CII, and CI): Since we have
a chiral symmetry � in this case, we can construct an operator
that anticommutes with the Hamiltonian and squares to +1
(either M ′ = �M or M ′ = J�M), with which we can use the
result of Sec. IV B. We will later discuss an example for this
type of symmetry in Sec. VIII B.

V. DIRAC MODEL AND DIMENSIONAL SHIFT

As Kitaev has shown using K theory,19,32 once classifying
spaces, Cq or Rq , is understood for each AZ symmetry class in
zero dimensions, topological classification of d-dimensional
systems (d � 1) of that class is directly found from π0(Cq−d )
or π0(Rq−d ). In this section we consider massive Dirac
Hamiltonians to see this dimensional shift explicitly in terms
of Clifford algebras with additional symmetries; similar
formulations are given in Refs. 20–22.

Let us consider a massive Dirac Hamiltonian in d dimen-
sions,

Hd =
d∑

i=1

γiki + H, (25)

where ki is a momentum in the ith direction and H is a
Dirac mass term which should satisfy appropriate symmetry
relations (11) or (12) for each symmetry class. We can impose
the constraint H 2 = 1 (by taking the Dirac mass as a unit
of energy). The gamma matrices obey the anticommutation
relations

{γi,γj } = 2δi,j , {H,γi} = 0. (26)

Furthermore, the TRS and PHS (if present) of the Hamiltonian
Hd imply

{T ,γi} = 0, [C,γi] = 0, (27)
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because complex conjugation (K) changes ki to −ki . The chiral
symmetry (if present) imposes

{�,γi} = 0. (28)

Now we show that topological classification of the Dirac
Hamiltonian Hd is obtained from π0(Cq−d ) or π0(Rq−d ) when
we study the extension (by adding e0 := H ) of Clifford
algebras generated by generic symmetry operators and the γi ’s.
We proceed by induction. Suppose that the classifying space
for the Dirac mass term H in the (d − 1)-dimensional system
Hd−1 is found to be Cq−d+1 or Rq−d+1. The d-dimensional
Hamiltonian Hd has an additional operator M = γd , which can
be considered as an additional symmetry constraint discussed
in Sec. IV. For real classes, when the Dirac mass term H

in Hd is invariant under T and/or C, the additional operator
M anticommuting with H has the signature ηT = −1 and/or
ηC = +1 from Eq. (27). We find from Table V(a) that the
addition of M induces a shift of the relevant classifying
space by −1; we have Rq−d . For complex classes A and AIII
(η� = −1), we find from Table IV that the addition of M

induces a shift by +1 = −1 (mod 2) in complex classifying
spaces; we have Cq−d .

VI. REFLECTION SYMMETRY

Let us discuss topological classification in the presence
of reflection symmetry using the Dirac model studied in the
preceding section. Our approach is similar but complementary
to the one in Ref. 31, where topological invariants are explicitly
constructed for Dirac models. We apply the classification
theory in terms of Clifford algebras, considering a reflection
symmetry as a special case of additional symmetries discussed
in Sec. IV. For the sake of simplicity, we first assume
translation symmetry and exclude terms which depend on
spatial coordinates (such as mass terms of CDW type) in the
Dirac Hamiltonian. We will comment on effects of relaxing
this condition at the end of this section and in Appendixes B
and C.

Let us assume that the Dirac Hamiltonian Hd is invariant
under reflection R in the lth direction, where momenta kj ’s
are changed as kj → (−1)δj,l kj . It follows from [R,Hd ] = 0
that {γl,R} = 0 and [γj ,R] = 0 for j �= l. We can always set
R2 = 1. Then, as an additional symmetry operator M , we can
take

M = JγlR, (29)

which satisfy M2 = 1, {H,M} = 0, and {γj ,M} = 0 (1 � j �
d), where again H is a Dirac mass term satisfying symmetry
relation (11) or (12) appropriate for each symmetry class.

Note that the commutation relations of R with C and �

are different from those of M . Namely, for real classes, when
R obeys the relations RT = η̃T T R and/or RC = η̃CCR with
η̃T ,C = + or −, M has the signatures (ηT ,ηC) = (η̃T , − η̃C).

Similarly, for class AIII, we have η� = −η̃� , where η̃� =
+ or − is specified by the relation R� = η̃��R. Now that
we have defined M with the signatures (ηT ,ηC,η�), we can
use Tables IV and V and the dimensional shift discussed in
Sec. V, to obtain topological classification in the presence of
the reflection symmetry R.

Let us discuss in more detail the consequence of reflection
symmetry for each class. We begin with complex classes. First,
class A turns into AIII with an effective chiral symmetry M .
For class AIII, if we denote R with its commutation relation
with � as Rη̃� , we find that R+ changes the classifying space
to C0, while R− does not change the classification. Now let
us move on to real symmetry classes. We write the R operator
with a superscript showing its commutation relations with T

or C as Rη̃T ,Rη̃C ,Rη̃T η̃C for symmetry classes with T only, C

only, and both T and C, respectively. Suppose that the original
classifying space for a given real symmetry class is Rq−d for d

dimensions. We find from Table V that R+ and R++ shift the
classifying space by +1 to Rq−d+1. Thus we may say that R+
and R++ have the effect of decreasing the spatial dimension by
1. In a similar way, R− and R−− shift the classifying space by
−1 to Rq−d−1 and effectively increase the spatial dimension
by 1. As for R+−, topological classifications for BDI and CII
remain the same, while DIII and CI change into complex class
AIII. On the contrary, with R−+, DIII and CI remain the same,
while BDI and CII change into complex class AIII.

Table VI summarizes classification in the presence of vari-
ous types of reflection symmetries for each spatial dimension.
The periodic structures are evident.

A brief comment is in order on the relation between the
topological classification of Hamiltonian in the bulk and the
presence of gapless boundary states. In topological mirror
insulators/superconductors where the bulk Hamiltonian has
a nontrivial topological index only in the presence of a
reflection symmetry, the existence of gapless states on a
boundary depends on whether or not the boundary preserves
the reflection symmetry.24 When the presence of a boundary is
compatible with reflection symmetry (e.g., when the boundary
is normal to a mirror plane), gapless boundary states are stable
and protected by the above classification. On the other hand, if
a boundary breaks reflection symmetry, the boundary states are
generally gapped. This is the case for one-dimensional systems
where the presence of an edge breaks the reflection symmetry
(unless the mirror plane is parallel to the one-dimensional
system itself).

So far we have assumed the translation symmetry. However,
as pointed out in Ref. 31, if the condition of translation
symmetry is removed, the “second descendant”18 Z2 states
under the reflection symmetry R− or R−− can be adiabatically
deformed into a topologically trivial insulator by introducing
an extra mass term with a finite wave number. These unstable
Z2 phases are denoted by “Z2” in Table VI. Once we replace
“Z2” with 0, Table VI becomes identical to Table I of Ref. 31.
These “Z2” phases are similar to three-dimensional weakZ2

topological insulators in class AII with (say) two Dirac cones
on a two-dimensional surface, in that the two surface Dirac
cones can be gapped out by a perturbation (of CDW type) that
couples them. From this analogy we expect that the “Z2” states
should be stable against disorder, if the disorder average of any
mass term is assumed to be spatially uniform. In Appendix B,
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TABLE VI. Classification in the presence of a reflection symmetry. The first column shows types of reflection symmetry, where superscripts
of R show its commutation relations with basic symmetry operators such as �, T , and C, i.e., Rη̃� for the complex classes, and Rη̃T ,Rη̃C ,Rη̃T η̃C

for real classes with T only, C only, and both T and C, respectively. The second column shows symmetry classes in which a given Hamiltonian
is classified without reflection symmetry taken into account. The third column shows classifying spaces for zero-dimensional Hamiltonian in
the presence of reflection symmetry, and the following columns show topological classifications for spatial dimensions d = 0,1,2, . . . ,7 (mod
8). Note that the classifying spaces in the third column are shifted from those listed in Table I. The “Z2” phases appearing under the reflection
R− or R−− turn into topologically trivial (0), when spatially nonuniform perturbations are applied (see the discussion at the end of Sec. VI and
Appendix B).

Reflection Class Cq or Rq d = 0 d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7

R A C1 0 Z 0 Z 0 Z 0 Z
R+ AIII C0 Z 0 Z 0 Z 0 Z 0
R− AIII C1 0 Z 0 Z 0 Z 0 Z

R+,R++ AI R1 Z2 Z 0 0 0 Z 0 Z2

BDI R2 Z2 Z2 Z 0 0 0 Z 0
D R3 0 Z2 Z2 Z 0 0 0 Z

DIII R4 Z 0 Z2 Z2 Z 0 0 0
AII R5 0 Z 0 Z2 Z2 Z 0 0
CII R6 0 0 Z 0 Z2 Z2 Z 0
C R7 0 0 0 Z 0 Z2 Z2 Z
CI R0 Z 0 0 0 Z 0 Z2 Z2

R−,R−− AI R7 0 0 0 Z 0 “Z2” Z2 Z
BDI R0 Z 0 0 0 Z 0 “Z2” Z2

D R1 Z2 Z 0 0 0 Z 0 “Z2”
DIII R2 “Z2” Z2 Z 0 0 0 Z 0
AII R3 0 “Z2” Z2 Z 0 0 0 Z
CII R4 Z 0 “Z2” Z2 Z 0 0 0
C R5 0 Z 0 “Z2” Z2 Z 0 0
CI R6 0 0 Z 0 “Z2” Z2 Z 0

R+− BDI R1 Z2 Z 0 0 0 Z 0 Z2

R−+ DIII R3 0 Z2 Z2 Z 0 0 0 Z
R+− CII R5 0 Z 0 Z2 Z2 Z 0 0
R−+ CI R7 0 0 0 Z 0 Z2 Z2 Z

R−+ BDI, CII C1 0 Z 0 Z 0 Z 0 Z
R+− DIII, CI C1 0 Z 0 Z 0 Z 0 Z

we discuss the deformation of “Z2” to 0 in more detail in terms
of Clifford algebras. We will also show in Appendix C that the
deformation of nontrivial states with CDW-type perturbation
takes place only for these second descendants “Z2” of the R−
and R−− cases and no other such deformations are possible in
Table VI.

VII. MULTIPLE ADDITIONAL SYMMETRIES

We generalize the analysis of Sec. IV to systems with
multiple additional symmetries {Mi}. Here, we only consider
the situation where additional symmetries anticommute with
each other,

{Mi,Mj } = 2δi,j , (30)

as well as with zero-dimensional Hamiltonian (Dirac mass)
H , {Mi,H } = 0. The dimensional shift discussed in Sec. V
is a special case of choosing Mi = γi . Other interesting
applications can be found in systems with several independent
reflection symmetries (Ri) along different directions. Since in-
dependent Ri’s should commute with each other, the additional
symmetries Mi = iγiRi constructed from Ri anticommute
with each other, and the results of this section are applicable.

A. Complex classes

The consequences of imposing multiple additional symme-
tries on systems in complex classes are as follows.

Class A: The index q of the classifying space Cq is shifted
by + 1 each time an additional symmetry is imposed, so that
the relevant classifying space becomes CN when the number
of Mi’s imposed is N .

Class AIII: Suppose that the Mi’s have the following
algebraic relations with the chiral symmetry operator �:

Mi� =
{−�Mi, 1 � i � m,

+�Mi, m + 1 � i � m + n.
(31)

We then define new generators as e0 = H , e1 = �, e−
i =

Mi (i = 1, . . . ,m), and e+
i = �Mi+m (i = 1, . . . ,n), such

that {e0,e1,e
−
1 , . . . ,e−

m} and {e+
1 , . . . ,e+

n } form two Clifford
algebras which commute with each other. Thus we have an
extension problem Clm+1 ⊗ Cln → Clm+2 ⊗ Cln, for which
the classifying space is Cm+1.
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B. Real classes

We separately discuss the cases where either of TRS or PHS
is present and the cases where both are present.

(i) T only (AI and AII) or C only (C and D): Let us
write the symmetry operators Mi as M

ηT

i or M
ηC

i , with a
superscript indicating its signature ηT or ηC defined in Eq. (23).
We denote the numbers of M+

i ’s and M−
i ’s by n+ and n−,

respectively. Now we can construct a new Clifford algebra
with the generators

{e0,e1,e2,ẽ
+
1 , . . . ,ẽ+

n+ ,ẽ−
1 , . . . ,ẽ−

n−}, (32)

where e0, e1, and e2 are defined in Eqs. (17) and (18), and ẽ±
i

are defined by

ẽ+
i = JM+

i , ẽ−
i = M−

i , (33)

as in Table V. We thus find that, upon imposing additional
symmetries M±

i , the relevant classifying space is changed from
Rq to Rq̃ with

q̃ =
{
q + n+ − n− (T only: AI and AII),

q + n− − n+ (C only: C and D).
(34)

(iii) Both T and C (BDI, DIII, CII, and CI): We use the no-
tation M

ηT ηC

i for the additional symmetries with the signatures
ηT ,ηC = + or − specifying commutation or anticommutation
relations with T and C. We denote the numbers of M

ηT ηC

i ’s by
nηT ηC . We then define generators as

ẽ+−
i = M+−

i (i = 1, . . . ,n+−), (35a)

ẽ−+
i = JM−+

i (i = 1, . . . ,n−+), (35b)

ẽ++
i = T CM++

i (i = 1, . . . ,n++), (35c)

ẽ−−
i = T CJM−−

i (i = 1, . . . ,n−−), (35d)

with which we have two decoupled Clifford algebras,

{e0,e1,e2,e3,ẽ
+−
1 , . . . ,ẽ+−

n+− ,ẽ−+
1 , . . . ,ẽ−+

n−+} (36a)

and

{ẽ++
1 , . . . ,ẽ++

n++ ,ẽ−−
1 , . . . ,ẽ−−

n−−}. (36b)

For each symmetry class, the generators {e0,e1,e2,e3} are
given in Eq. (19), and the original extension problem Clp,q →
Clp,q+1 (in zero dimensions) is listed in Table III. With the
additional generators, a new extension problem is dictated as

Clp+n−+,q+n+− ⊗ Clm1,m2 → Clp+n−+,q+n+−+1 ⊗ Clm1,m2

(37)

with (m1,m2) = (n++,n−−) for DIII and CI, and (n−−,n++)
for BDI and CII. We can show by using Eq. (A2e) and dropping
R(2) that the extension (37) is equivalent to

Cl0,q̃ ⊗ Cl0,m → Cl0,q̃+1 ⊗ Cl0,m (38)

with

q̃ = q + n+− − p − n−+, (39a)

m =
{
n−− − n++ (DIII and CI),

n++ − n−− (BDI and CII).
(39b)

TABLE VII. Classification with multiple additional symmetries
for classes with both TRS and PHS (BDI, DIII, CII, and CI). When
the numbers of additional symmetries MηT ηC are given by nηT ηC , the
relevant Clifford algebras and classifying spaces can be read off from
the indices m and q̃ defined in Eqs. (39). The second column shows
Clifford algebras to be extended as q̃ → q̃ + 1, Eq. (38). The last
column shows the classifying space, whose zeroth homotopy group
gives topological classification.

m (mod 8) Clifford algebra Classifying space

0 Cl0,q̃ Rq̃

1 Cl0,q̃ ⊕ Cl0,q̃ Rq̃ × Rq̃

2 Cl0,q̃ Rq̃

3 Clq̃ Cq̃

4 Cl0,q̃+4 Rq̃+4

5 Cl0,q̃+4 ⊕ Cl0,q̃+4 Rq̃+4 × Rq̃+4

6 Cl0,q̃+4 Rq̃+4

7 Clq̃ Cq̃

We see that n+− and n−+ cause a shift in q̃ of a relevant
classifying space, which can be understood from successive
applications of the procedure described in Sec. IV. On the
other hand, n−− and n++ may effectively alter the base field
of the algebra from real to complex or quaternion, according
to the value of m; see Table VIII(b). This change cannot be
fully expected from successive applications of the procedure
in Sec. IV. Changing the base field into the complex numbers
brings real symmetry classes to complex ones (m = 3,7 mod
8), while changing the base field into the quaternion shifts the
relevant classifying space by 4 in the periodic table, Table I(b)
(m = 4,5,6 mod 8).

The new classification arising from the extension problem
(38) is summarized in Table VII (some mathematical details
needed in the derivation can be found in Appendix D). With
Table VII, we can find topological classification in the presence
of additional symmetries as follows. First, without additional
symmetries, we identify the relevant Clifford algebra Clp,q

for a given symmetry class in Table III. Next from the
(anti)commutation relations of additional symmetries Mi’s
with T and C, we find the numbers nηT ηC , which determine q̃

and m in Eqs. (39). Table VII then tells us associated extension
problem of the relevant Clifford algebra. Once the relevant
classifying space is found, the topological classification of
zero-dimensional systems is obtained from the zeroth homo-
topy group, which is listed in Table I. As for d-dimensional
systems, we only have to replace q̃ with q̃ − d, as we have
discussed in Sec. V (each gamma matrix in the kinetic term of
Dirac Hamiltonian gives M−+). For a classifying space of a
direct product such as Rq × Rq , the d-dimensional topological
invariant is also a direct product as π0(Rq−d ) × π0(Rq−d ).

Finally, let us point out an interesting consequence from
Table VII. As we decrease m from 0 to −2 by imposing some
additional symmetries, we find that the classification changes
into a complex class at m = −1, and at m = −2 it comes back
to a real symmetry class with a shift of 4 in the Bott periodicity.
We will discuss an example of this type in Sec. VIII, where
two types of reflection symmetries are imposed to cause such
changes in a symmetry class.
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VIII. EXAMPLES

We discuss several examples of insulators or superconduc-
tors which exhibit a change in topological properties due to
addition of reflection or mirror symmetries. We will use “ i ”
in real algebras instead of J in this section.

A. Mirror Chern number

In relation to mirror Chern numbers27 which character-
ize a recently discovered topological crystalline insulator
SnTe,26,28–30 let us consider Dirac Hamiltonian defined by

H = mσz + v(kxsy − kysx)σx + vzkzσy, (40)

where σi and si are Pauli matrices for orbital and spin
degrees of freedom. This Hamiltonian26 describes low-energy
excitations near an L point of SnTe and belongs to class AII,
since it is invariant under time-reversal operation, T = isyK.
We can define a topological index which is determined by the
sign of m. If we double the degrees of freedom to account
for another L point as H2 = H ⊗ τ0, where τ0 is a unit 2 × 2
matrix in the valley sector (L1 and L2), then the Hamiltonian
can have another T -invariant mass term, m′szσxτy , where τy is
a Pauli matrix and couples the two valleys. With the additional
mass m′, insulators with different signs of m are no longer
topologically distinguished, because rotation in the m-m′ plane
can adiabatically connect the two. Thus H is characterized by
a Z2 topological index.

Let us now take into consideration reflection symmetry in
the x direction (kx → −kx). The Hamiltonian H is indeed
invariant under the reflection transformation, which can be
written as R−1H (−kx,ky,kz)R = H (kx,ky,kz) with R = sx .
Following the analysis in Sec. IV B, we define M = isyσxsx =
σxsz, which anticommutes with T ; i.e., ηT = −1. We then find
from Table VI that class AII with the reflection R− effectively
behaves like class DIII, which is characterized by an integer
topological number Z in d = 3. As we discuss below, the
integer topological number corresponds to the mirror Chern
number.26,27 Incidentally, the mirror symmetry does not allow
the doubled Hamiltonian H2 = H ⊗ τ0 to have the additional
mass term m′szσxτy , so that the topological numbers from the
two valley sectors can add up.

The mirror Chern number is a Chern number defined from
Bloch states on the mirror plane (kx = 0) for each eigenspace
of the reflection R (i.e., sx = ±1). In each subspace the
Hamiltonian (40) reduces to

H± = mσz ∓ vkyσx + vzkzσy, (41)

which falls into class D (with C = σxK) and apparently pos-
sesses a Chern number Z. Now let us relate this mirror Chern
number to our classification. The original extension problem
for class AII with mirror symmetry in d = 3 is Cl2,4 → Cl3,4,
which we find from Eq. (A2) is equivalent to Cl2,2 ⊗ Cl0,2 →
Cl2,3 ⊗ Cl0,2. The latter can be regarded as an extension
problem for class D in d = 2, if we drop the trivial part Cl0,2 �
R(2). The original generators of the Clifford algebra for class
AII with a mirror forming Cl3,4 are {e1,e2,γx,γy,γz,M,e0},
where (e1,e2,e0) = (isyK,syK,iσz) are defined in Eq. (17),
and (γx,γy,γz) = (syσx, − sxσx,σy) come from kinetic terms
in H . Using these generators, we can construct generators for

the new algebra Cl2,3 ⊗ Cl0,2 explicitly as

{−e2γx,e1γx,γxγyM, − e1e2γz,e1e2e0}
⊗{e1e2γxM,e1e2γxγy}

= {σxK, − iσxK,iσx,iσy,σz} ⊗ {sx,sz}. (42)

The latter half of the right-hand side spans the spin degrees
of freedom si , while the former half corresponds to a Clifford
algebra Cl2,3 for Dirac Hamiltonians of class D in d = 2.
We can read from Eqs. (18) and (42) and Table V(a) that the
particle-hole transformation is C = σxK, the gamma matrices
in the kinetic terms are (σx,σy), and the mass term ∝ σz. Indeed
this construction reproduces the Hamiltonian in Eq. (41), for
which a mirror Chern number is defined. Thus the topological
number Z for class AII with a mirror in d = 3 is equivalent
to a topological number Z for class D in d = 2, i.e., a mirror
Chern number.

B. Topological mirror superconductor (d = 1)

Next we consider a one-dimensional model of a time-
reversal invariant topological mirror superconductor discussed
in Ref. 39, in which an integer number of Majorana Kramers
pairs live at an end of a mirror invariant wire. We consider
the Hamiltonian of a Rashba quantum wire with proximity
coupling to a nodeless s±-wave superconductor,

H = (−2t cos kx + 2λ sin kxσz − μ)τz + 2�1τx cos kx, (43)

where t is hopping, λ Rashba coupling, σi and τi are Pauli
matrices in the spin and particle-hole spaces, and the condition
|μ| < 2λ is assumed.39 This Hamiltonian is in class DIII with
T = iσyK, C = σyτyK, characterized by a Z2 topological
number and the existence of a Kramers pair of Majorana
zero modes at the edge. If we consider a doubled system
H2 = H ⊗ ρ0 where ρ0 is a 2 × 2 unit matrix, we have another
mass term σxτzρy that can deform a Z2 nontrivial state into a
trivial state, indicating that two pairs of Majorana zero modes
are unstable.

Now let us impose a “mirror line” symmetry R = σz, which
commutes with H . As we discussed in Sec. IV C, combining R

with the chiral symmetry T C, we can introduce an additional
symmetry M = σzτy , which anticommutes with H . Since the
commutation relations of M with symmetry operators T and C

are characterized by (ηT ,ηC) = (+1, + 1), we have a change
in the symmetry class from DIII to AIII [Table V(b)], so that
we can define a topological number Z in each eigenspace of
R, which is a mirror winding number.39 The change in the
classification from Z2 to Z is reflected in the disappearance of
the additional mass term (σxτzρy) in the doubled system upon
imposing R, which guarantees the stability of Kramers pairs
of Majorana zero modes.39

C. CI → AIII → DIII (d = 2)

In this section we construct a toy model in d = 2 whose
symmetry class changes (a) from CI to AIII when we impose
an additional symmetry M1, and (b) from CI to DIII when we
impose two additional symmetries M1 and M2. We assume that
both symmetry operators M1 and M2 commute with T and C;
i.e., (ηT ,ηC) = (+,+). These symmetries can be thought of as
coming from reflection symmetries in the x and y directions,
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for example. In the context of Sec. VII, our toy model is
an example where a real symmetry class turns into (a) a
complex class (m = −1 and q̃ = 7 in Table VII) and (b) a
real class shifted by 4 in the Bott period (m = −2 and q̃ = 7
in Table VII). The d = 2 topological number of our model
changes as (a) 0 → 0 and (b) 0 → Z2.

Let us consider a two-dimensional 8 × 8 Dirac Hamilto-
nian,

H = (kxσx + kyσz)τx +
∑

i

migi . (44)

The Dirac mass operators gi are 8 × 8 matrices made from 3
sets of Pauli matrices σ , τ , and ρ. We require the system to be
in class CI with the symmetry operators,

T = τyρyK, C = τxρyK, � = τz, (45)

which satisfy T 2 = +1, C2 = −1, and [T ,C] = 0. We find
the following set of possible gi’s which anticommute with the
kinetic terms and which are compatible with the symmetries
(45):

τy ⊗ {ρx,ρy,ρz}, σyτx. (46)

The two additional symmetries which we are going to impose
are

M++
1 = τzρz, M++

2 = τzρy, (47)

both of which anticommute with the kinetic terms and
commute with T and C. As discussed in Sec. IV and VII,
we can define new operators M̃i = T CM++

i which commute
with H , T , and C: M̃1 = iρz, M̃2 = iρy .

First we impose only the M1 symmetry. The allowed gi’s
which anticommute with M1 are reduced to

τyρz, σyτx. (48)

Since M̃1 = iρz commute with H , we can concentrate on
the subspace of ρz = +1. We then find that the relevant
symmetry class is AIII with the chiral symmetry � = τz. This
is consistent with Table V(b), where the classifying space for
class CI with (ηT ,ηC) = (+,+) and M̃2 = −1 is shown to be
C1, i.e., class AIII [Table I(a)]. We observe that, when H has
a mass term taken from Eq. (48), we can always add a second
mass term which anticommutes with the first mass term. This
indicates that the system is topologically trivial, in agreement
with topological triviality of class AIII in d = 2.

When both symmetries M1 and M2 are imposed, among
those in Eq. (46), the only allowed Dirac mass operator which
anticommutes with both M1 and M2 is σyτx . Then the Dirac
Hamiltonian reads

H = (k1σx + k2σz)τx + m1σyτx, (49)

which does not contain Pauli matrices ρ’s, since H has to
commute with both M̃1 = iρz and M̃2 = iρy . The Hamiltonian
(49) belongs to class DIII with new symmetry generators T =
iτyK and C = τxK. It has a unique mass term m1σyτx and is
characterized by a Z2 topological index.

D. BDI → AIII → CII (d = 3)

Next we construct a toy model in d = 3 whose symmetry
class changes (a) from BDI to AIII when we impose an addi-

tional symmetry M1 and (b) from BDI to CII when we impose
two additional symmetries M1 and M2. Accordingly, the d = 3
topological number changes as (a) 0 → Z and (b) 0 → Z2.

We consider a Dirac Hamiltonian of the form

H = (kxσxsz + kysx + kzσzsz)τx +
∑

i

migi, (50)

where the Dirac mass operators gi’s are 16 × 16 matrices
written as products of Pauli matrices σ , s, τ , and ρ. We choose
basic symmetry operators as

T = syτ0ρyK, C = syτzρyK, � = τz, (51)

which makes the model to be in class BDI (T 2 = +1, C2 =
+1). The Dirac mass operators gi’s, which anticommute with
the kinetic terms in Eq. (50) and are compatible with the
symmetries (51), are taken from the following set:

σyszτx, {syτx,τy,σysxτy} ⊗ {ρx,ρy,ρz}. (52)

The additional symmetries to be imposed are again given by

M−−
1 = τzρz, M−−

2 = τzρy, (53)

which anticommute with T and C; i.e., (ηT ,ηC) = (−,−). We
then define M̃i = iT CM−−

i , which commute with H , T , and
C: M̃1 = iρz, M̃2 = iρy . We may think of M−−

1 and M−−
2

as coming from reflection symmetries along the x and y

directions, respectively.
Let us impose only the M−−

1 symmetry. The allowed gi’s
anticommuting with M−−

1 are reduced to

σyszτx, {syτx,τy,σysxτy} ⊗ ρz. (54)

Since [ρz,H ] = 0, we can concentrate on the eigenspace
ρz = +1 (or −1) and find that the system in this subspace
is in class AIII with the chiral symmetry � = τz. This is in
agreement with Table V(b), where the classifying space for
class BDI with (ηT ,ηC) = (−,−) is shown to be C1, as well
as with Table VII (m = −1 and q̃ = 1). We observe that,
among the mass operators in Eq. (54), σysxτyρz is special
in that it commutes with the other three operators, while
these three anticommute among themselves. This means that
Hamiltonians with different signs of the mass term σysxτyρz

are topologically distinct, which is consistent with the fact
that systems in class AIII are characterized by an integer
topological index.

When both symmetries M1 and M2 are imposed, we have
only a single allowed mass operator, σyszτx . In this case the
Hamiltonian has the form

H = (kxσxsz + kysx + kzσzsz)τx + mσyszτx, (55)

which turns out to be in class CII with T = syK and C =
syτzK, and is characterized by a Z2 topological index. The
change in the symmetry class from BDI to CII is indeed
expected from Table VII with m = −2 and q̃ = 1 indicating
the classifying space to be R5, which corresponds to class CII
(Table I).

IX. SUMMARY

We have studied changes in classification of topological
insulators and superconductors due to additional symmetries,
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TABLE VIII. Clifford algebras and classifying spaces for (a)
complex and (b) real classes (after Table 2 of Ref. 19). The last
columns denote the zeroth homotopy group of each classifying space.

(a) Complex classes

q Clq Cq π0(Cq )

0 C [U (n + m)/U (n) × U (m)] × Z Z
1 C ⊕ C U (n) 0

(b) Real classes

q Cl0,q Rq π0(Rq )
0 R [O(n + m)/O(n) × O(m)] × Z Z
1 R ⊕ R O(n) Z2

2 R(2) O(2n)/U (n) Z2

3 C(2) U (2n)/Sp(n) 0
4 H(2) [Sp(n + m)/Sp(n) × Sp(m)] × Z Z
5 H(2) ⊕ H(2) Sp(n) 0
6 H(4) Sp(n)/U (n) 0
7 C(8) U (n)/O(n) 0

by considering extension problems of Clifford algebras gen-
erated from operators representing symmetry constraints. Our
theory provides a simple and clear derivation of topological
classification which agrees with the periodic table obtained by
Chiu et al.,31 who studied topological invariants for topological
insulators and superconductors with a reflection symmetry. We
have also discussed several examples including a topological
crystalline insulator characterized by mirror Chern numbers
and mirror topological superconductors.

ACKNOWLEDGMENTS

This work was supported by Grants-in-Aid from the Japan
Society for Promotion of Science (Grants No. 24840047 and
No. 24540338) and by the RIKEN iTHES Project.

APPENDIX A: PROPERTIES OF THE
CLIFFORD ALGEBRAS

We summarize some useful formulas of Clifford algebras
used in this paper. We begin with complex Clifford algebras:

Cl1 � C ⊕ C, (A1a)

Cl2 � C(2), (A1b)

Cln+2 � Cln ⊗ C(2). (A1c)

The classifying space for the extension problem Cln →
Cln+1 is denoted by Cn. Since a fixed representation for 2 × 2
complex matrices C(2) does not affect the extension problem,
Eq. (A1) leads to a periodic structure of the classifying space
Cn+2 � Cn.

The real Clifford algebras have the following properties:32

Cl0,1 � R ⊕ R, (A2a)

Cl0,2 � R(2), (A2b)

Cl1,0 � C, (A2c)

Cl2,0 � H, (A2d)

Clp+1,q+1 � Clp,q ⊗ R(2), (A2e)

Clp,q ⊗ Cl0,2 � Clq,p+2, (A2f)

Clp,q ⊗ Cl2,0 � Clq+2,p, (A2g)

Clp,q ⊗ Cl0,4 � Clp,q+4, (A2h)

where H denotes the set of quaternions. The classifying space
for the extension problem Clp,q → Clp,q+1 is given by Rq−p.
The extension problems Clp,q ⊗ R(2) → Clp,q+1 ⊗ R(2) and
Clp,q → Clp,q+1 are equivalent, since the sector of 2 × 2 real
matrices R(2) with fixed representation does not change the
degrees of freedom of the extension. Furthermore, we have

Clp+8,q � Clp,q+8 � Clp,q ⊗ R(16). (A3)

SinceR(16) does not affect extension problems, the classifying
space Rq has the periodic structure Rq+8 � Rq .

Clifford algebras and classifying spaces for complex and
real classes are summarized in Table VIII.

APPENDIX B: DEFORMATION OF SECOND
DESCENDANT Z2 INTO 0 UNDER R− OR R−− SYMMETRY

In this appendix we show, first with an explicit example
and second by applying Clifford algebras for general cases,
that insulating states characterized with a nontrivial second
descendant Z2 index [=π0(R2)] in the presence of a reflection
symmetry R−− (or R−) can be deformed into a topologically
trivial state with a mass term that mixes Dirac cones at different
momenta, when the translation symmetry is not assumed.

Let us begin with an example of a two-dimensional 8 × 8
Hamiltonian written as

H = σxτzkx + σyτzky +
∑

i

migi, (B1)

which we assume to be in class CII with the symmetry
operators

T = iσyρzK, C = iσyτxρzK, � = τx. (B2)

The Dirac mass terms gi’s, which anticommute with kinetic
terms and are compatible with the generic symmetries in Eq.
(B2), are given by

g1 = σzτzρx, g2 = τyρx. (B3)

The presence of these two mutually anticommuting mass terms
implies that the system is topologically trivial “0”. Now we
impose a reflection symmetry along the x direction,

R−− = σyρz, (B4)

which anticommutes with T and C defined in Eq. (B2). Then
the possible Dirac mass term is g1 only, and the system is
classified by a Z2 index.

So far we implicitly assumed translation symmetry. How-
ever, if we admit terms breaking the translation symmetry,
we can find an extra mass term that anticommutes with g1

in Eq. (B3) and turns a Z2 topological state into a trivial
state, as we explain below. First, we add to the Hamiltonian a
term δ� = δσxτzρx . Since it commutes with the kinetic term
in the x direction, it causes splitting of the Dirac points as
kx → kx ± δ. We then add an extra mass term m2(x)τyρx ,
which is reflection symmetric if m2(x) is an odd function of x.
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Now the Hamiltonian reads

H = σxτz(kx + δρx) + σyτzky + m1σzτzρx + m2(x)τyρx.
(B5)

Let the Fourier component of m2(x) at kx = 2δ be mδ
2. Then

rotations in the masses (m1,m
δ
2) will connect any insulating

state to trivial insulators. In particular, gapless edge states,
formed along the boundary parallel to the x axis, will be gapped
out by the m2 term with a finite mδ

2. Hence we have only a single
(trivial) insulating phase.

The disappearance of the second descendantZ2 topological
states can be also understood in terms of Clifford algebras. The
deformation to a trivial state is possible when we have the two
kinds of operators � and g2 with the following properties:

(1) � commutes with γx , anticommutes with the other
kinetic terms and the mass term (g1), and is compatible with
TRS, PHS, and R−−.

(2) g2 anticommutes with g1, �, and the kinetic terms, and
is compatible with TRS and PHS, but not with R−−.

When these two operators are available, we can split Dirac
points along the kx direction with �, and couple the split Dirac
points by adding an extra mass term m2(x)g2 with the mass
modulation m2(x) which is odd in x.

The existence condition for a �-type operator can be
formulated as an extension problem of Clifford algebra. The
Clifford algebra characterizing class CII in d = 2 with R−− is
given by

{e0,e1,e2,e3,J γx,Jγy,γxR
−−}, (B6)

where ei’s are defined in Eq. (19), and the extension Cl6,0 →
Cl6,1 yields a classifying space R2. If we have an operator �̃

that squares to −1 and anticommutes with all the generators
in Eq. (B6), then we can define � as

� = J �̃R−−. (B7)

Thus the problem which we need to consider is whether the
Clifford algebra Cl5,1, generated by {e0,e1,e2,e3,J γy,γxR

−−},
can be extended by introducing another generator squaring
to −1 (i.e., Jγx or �̃). The extension is Cl5,1 → Cl6,1 with
a classifying space R6, whose topological index is “0”. This
ensures simultaneous existence of Jγx and �̃ that anticommute
with each other, hence, the existence of �. This argument
can be applied to other spatial dimensions as well. When
the original classification of a given second descendant “Z2”
state is characterized by Clp,q → Clp,q+1 (corresponding
classifying space, Rq−p), the extension problem regarding �̃ is
Clp−1,q+1 → Clp,q+1, whose classifying space is Rp−q . Since
we have q − p = 2 (mod 8) for the second descendant Z2

states, we can always find a � operator because π0(Rp−q) =
π0(R6) = 0.

Next, we repeat a similar discussion to show the existence
of a g2-type operator. If we have an operator g̃2 that squares to
−1 and anticommutes with all the generators in the Clifford
algebra

{e0,e1,e2,e3,J γx,Jγy,γxR
−−, − J�R−−}, (B8)

we can construct g2 as

g2 = J�γxg̃2. (B9)

The existence of g̃2 is established by considering the ex-
tension problem Clp,q+1 → Clp+1,q+1, where we try to add

�̃ to (B6). The topology of the associated classifying space
π0(Rp−q+1) = π0(R7) = 0 tells that we always have another
generator anticommuting with �̃, namely, g̃2. Thus we find
that a g2-type operator also exists. The existence of the two
types of operators (g2 and �) reduces the second descendant
Z2 states to trivial “0” states.

A similar argument can be applied to the second descendant
Z2 states under a R− symmetry, and we conclude that “Z2”
in Table VI are changed into 0, when we include nonuniform
terms such as m2(x)g2.

Finally, we discuss stability of the surface states of a “Z2”
nontrivial insulator with R−− or R− symmetry. We have
shown above that the surface states are gapless if mδ

2 = 0.
Now we ask what happens if we take m2(x) to be a random
odd function of x. We argue below that the surface states
remain critical, as long as random perturbation is spatially
uniform on average (disorder average of mδ

2 vanishes). To
this end, we consider classification of the g2-type mass term.
Let us examine the extension problem of (B8) with g̃2.
The extension is characterized with Clp+1,q+1 → Clp+2,q+1,
whose classifying space turns out to be Rp−q+2. This means
that the g2-type operator is classified with π0(R0) = Z. For
slow modulation of m2(x) we can imagine that the surface is
divided into domains possessing various values of Z, with
gapless edge states running along domain boundaries and
percolating through the surface. Thus we can expect that the
gapless surface states of a “Z2” topological insulator remain
critical, when random perturbations are spatially uniform on
average. This is similar to criticality of surface states of 3D
weak topological insulators in the presence of random potential
with zero mean.41–44

APPENDIX C: STABILITY OF TOPOLOGICAL STATES
WITH REFLECTION SYMMETRY

In Appendix B, we have shown that the second descendant
Z2 states with R−− or R− reflection symmetry (labeled with
“Z2” in Table VI) can be deformed into trivial states with a
CDW-type mass term. Here we prove that, besides the second
descendant “Z2” states, there are no such deformations of
topological states to trivial ones in Table VI.

For simplicity we concentrate on systems with both TRS
and PHS, for which we have the Clifford algebra

{e0,e1,e2,e3,J γ1,J γ2, . . . ,J γd}, (C1)

supplemented by either ẽ or M̃ in Table V related to the
reflection symmetry M = Jγ1R.

To deform a topologically nontrivial state into a trivial state
by introducing a CDW-type mass perturbation, we need to
have two terms � and g2 satisfying the following conditions:

(1) � commutes with γ1, anticommutes with the other γi’s
and the mass term (e0), and is compatible with generic sym-
metries (TRS, PHS, and chiral) and the reflection symmetry.

(2) g2 anticommutes with e0, �, and all the γi’s, and is
compatible with generic symmetries, but not with the reflection
symmetry.

In general, the existence of an operator e+ (e−) which
squares to +1 (−1) and which can be used as a new generator
to extend a Clifford algebra Clp,q is judged by considering
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an extension problem of an algebra with one generator fewer.
Namely, we look at an extension problem Clp,q−1 → Clp,q

for e+ (Clp−1,q → Clp,q for e−). If topological classification
of the associated classifying space is “0”, the existence of e±
is guaranteed. On the other hand, if the classification is Z or
Z2, we cannot have e±. We note that this last statement is
valid under the assumption that we are dealing with minimal
models where the Hamiltonian is already block diagonalized
with respect to possible commuting unitary operators.45

1. R−− case

We assume that the original classification for the mass term
e0 is given by the extension Clp,q → Clp,q+1, where Clp,q+1

has generators

{e0,e1,e2,e3,J γ1, . . . ,J γd,γ1R
−−}, (C2)

whose classifying space is Rq−p. The question as to whether
the �-type operator can be added to the algebra as

{e0,e1,e2,e3,J γ1, . . . ,J γd,γ1R
−−,J�R−−} (C3)

is answered by examining the extension problem Clp−1,q+1 →
Clp,q+1, because (J�R−−)2 = −1. We find that the classify-
ing space is Rp−q . As for a g2-type operator, the extended
algebra with g2 is written as

{e0,e1,e2,e3,J γ1, . . . ,J γd,γ1R
−−,J�R−−,J�γ1g2}, (C4)

for which the extension is Clp,q+1 → Clp+1,q+1 because
(J�γ1g2)2 = −1. We then find that the associated classifying
space is Rp−q+1. Thus the conditions for the existence of
both � and g2 are given by π0(Rp−q) = π0(Rp−q+1) = 0,
which is met when q − p = 2,3. At q − p = 3, the original
classification is trivial. The case of q − p = 2 is exactly the
second descendant Z2 marked in Table VI as “Z2”.

So far we have discussed classes with both TRS and PHS.
Symmetry classes with either TRS or PHS can be discussed
in the same way. For classes with PHS and R−, the above
discussion is applicable if we drop e3 from the algebras. For
classes with TRS and R−, while constructions of algebras are
slightly different, the extension problems turn out to have the
same structures and the resulting existence conditions become
the same as the R−− case. Thus, we can conclude that the
deformation only occurs for the second descendant “Z2”, when
we have reflection symmetries R− or R−−.

2. R++ case

The original classification for the mass term e0 is obtained
from the extension Clp,q → Clp,q+1 with the extended algebra
Clp,q+1 generated by

{e0,e1,e2,e3,J γ1, . . . ,J γd,Jγ1R
++}, (C5)

whose classifying space is Rq−p. Let us examine whether the
�-type operator can be added to the algebra as

{e0,e1,e2,e3,J γ1, . . . ,J γd,Jγ1R
++,�R++}. (C6)

The existence condition for � is found from the extension
Clp,q → Clp,q+1, for (�R++)2 = +1. We note that this is
the same extension problem as that for the classification of
e0. This implies that, when we have a topologically nontrivial

classification for e0, which is the case of our interest, we cannot
have a �-type operator. Thus deformation of a topologically
nontrivial state to a trivial one is impossible for the R++
reflection symmetry.

For classes with either TRS or PHS and with a reflection
symmetry R+, we can repeat similar discussions to show that
the deformation does not occur.

3. R−+ and R+− case

The Clifford algebra with the reflection symmetry R−+ or
R+− is written as

{e0,e1,e2,e3,J γ1, . . . ,J γd} ⊗ {M̃}, (C7)

with M̃ that squares to either +1 or −1. M̃ is given in
Table V(b) with M = Jγ1R, according to which M̃ is either
of T Cγ1R or T CJγ1R depending on the symmetry class and
the type of R.

First let us consider the case where M̃2 = +1. We look into
the existence condition for � with the algebra

{e0,e1,e2,e3,J γ1, . . . ,J γd} ⊗ {M̃,Jγ1�M̃}. (C8)

Since M̃2 = (Jγ1�M̃)2 = +1, the existence of � is de-
termined from the extension Clp,q+1 ⊗ Cl0,0 → Clp,q+1 ⊗
Cl0,1. This corresponds to setting q̃ = 0 in Table VII, and
we find that the classification is always Z (or Z × Z). Thus,
nontrivial states cannot be deformed to a trivial one due to the
lack of a �-type operator.

When M̃2 = −1, we consider extending an algebra with �

and g2 to

{e0,e1,e2,e3,J γ1, . . . ,J γd,Jγ1�g2} ⊗ {M̃,Jγ1�}. (C9)

Since M̃2 = (Jγ1�)2 = −1, the existence of � is associated
with the extension problem Clp,q+1 ⊗ Cl0,0 → Clp,q+1 ⊗
Cl1,0, or equivalently, Clp,q+1 ⊗ Cl0,2 → Clp,q+1 ⊗ Cl0,3. By
setting q̃ = 2,m = q + 1 − p in Eq. (38) and Table VII, we
find that � can exist when q − p = 3,4,5. Among these
cases, only when q − p = 4, the original classification of
the Dirac mass e0 is nontrivial. We should then look at the
existence condition for g2 at q − p = 4. Since (Jγ1�g2)2 =
−1, the existence of g2 is associated with Clp−1,q+1 ⊗ Cl2,0 →
Clp,q+1 ⊗ Cl2,0, or equivalently, Clq+3,p−1 → Clq+3,p, clas-
sification of which is π0(R0) = Z for q − p = 4, and g2 does
not exist.

Thus we conclude that no deformation of nontrivial states
into trivial states can take place in the cases with R+− and
R−+.

4. Complex cases

Finally we briefly discuss the absence of the deformation
in the complex classes. Here we concentrate on the cases
when addition of reflection symmetry changes the topological
classification: class AIII with R+ and class A. Let us consider
the existence condition for a �-type operator which is added
to the algebra as

{e0,(e1,)γ1, . . . ,γd,γ1R,�R}, (C10)

where e1 = � is present for class AIII but is absent for class
A. Since there is no distinction between generators squaring
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to +1 and those to −1 in the complex Clifford algebra, we
see that the extension problems for classifying e0 and for the
existence of � are the same. Therefore, if the classification of
e0 is nontrivial, which is the case of our interest, then �-type
operators do not exist, and no deformation into a trivial state
occurs.

APPENDIX D: CLASSIFICATION FOR MULTIPLE
SYMMETRIES

We briefly explain how to derive classification of time-
reversal invariant topological superconductors in the presence
of multiple additional symmetries. For systems with both
time-reversal and particle-hole symmetries, the extension
problem is given as Eq. (37), which is equivalent to

Cl0,q̃ ⊗ Cl0,m → Cl0,q̃+1 ⊗ Cl0,m. (D1)

This equivalence can be understood by using Eq. (A2e) several
times.

For each value of m, we make use of the following relations:

Cl0,q̃ ⊗ Cl0,1 � Cl0,q̃ ⊕ Cl0,q̃ , (D2a)

Cl0,q̃ ⊗ Cl0,2 � Cl0,q̃ ⊗ R(2), (D2b)

Cl0,q̃ ⊗ Cl0,3 � Cl0,q̃ ⊗ Cl1,0 ⊗ Cl0,2 � Clq̃ ⊗ R(2),

(D2c)

Cl0,q̃ ⊗ Cl0,4 � Cl0,q̃+4, (D2d)

Cl0,q̃ ⊗ Cl0,5 � Cl0,q̃+4 ⊗ Cl0,1 � Cl0,q̃+4 ⊕ Cl0,q̃+4,

(D2e)

Cl0,q̃ ⊗ Cl0,6 � Cl0,q̃+4 ⊗ Cl0,2 � Cl0,q̃+4 ⊗ R(2),

(D2f)

Cl0,q̃ ⊗ Cl0,7 � Cl0,q̃+4 ⊗ Cl0,3 � Clq̃+4 ⊗ R(2),

(D2g)

which can be derived using Eqs. (A2). Having in mind that
Cl0,q → Cl0,q+1 is classified with Rq and that Clq → Clq+1

is classified with Cq , we obtain the classifying space listed in
the last column in Table VII.
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