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In this work we have calculated U from first principles for the early lanthanides (Ce-Gd) using the constrained
random phase approximation (cRPA). We compare the static limit of U with experimental estimations from x-ray
photoemission spectroscopy (XPS) and bremsstrahlung isochromat spectroscopy (BIS) spectra and also discuss
the frequency dependence of U across the series.The localized subspace is constructed using maximally localized
Wannier functions (MLWFs). We discuss the choice of parameters used to construct the Wannier functions and
show that in the case of Eu and Gd, where the local density approximation does not yield the correct position of
the 4f bands, a physically motivated choice gives better agreement with experiment.
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I. INTRODUCTION

The lanthanide series covering 15 elements starting from
lanthanum with atomic number 57 to lutetium with atomic
number 71 occupy a special place in the periodic table. Despite
their more commonly known names as “rare earths,” they are
quite abundant in nature. Cerium is among the most abundant
element in the Earth’s crust and neodymium is more abundant
than gold. Their electron configurations are rather unusual in
that after lanthanum with one 5d electron, the energy of the
4f shell lies lower than the energy of the 5d shell so that
starting from cerium electrons start to occupy the 4f shell
rather than the 5d shell. The 4f electrons therefore lie deep
inside the core and they are shielded by the 5d as well as
5s-5p electrons. When the lanthanide atoms form crystals, the
very localized nature of the 4f electrons and their vicinity in
energy with the 5d and 5s-5p electrons result in hybridization
with many intriguing properties. Among the most interesting
properties of the lanthanides is magnetism, which arises from
unpaired 4f electrons and strong spin-orbit coupling that can
lead to higher magnetic moment than the unpaired electron
spins alone would suggest. This is the case, for example, with
Dy+3 and Ho+3 with magnetic moments in the range 10.4–10.7
bohrs magneton.

The lanthanides have found their way to many industrial
applications ranging from catalysts in oil refining, control
rods in nuclear reactors, Nd:YAG solid-state lasers, optical
fibers, and the well-known neodymium-iron-boron high-flux
magnets. The lanthanides are not only interesting from the
point of view of applications but also from a fundamental
theoretical point of view. It is by now well recognized that
mean-field or one-particle theories are far from adequate to
provide a sound description of the electronic structure of these
elements and their compounds. Thus, for example, the much
studied isostructural α to γ phase transition in cerium can
hardly be understood within the conventional local density
approximation (LDA) of density functional theory, which
predicts almost identical density of states for the two phases,
whereas experimentally there is a substantial reduction in
quasiparticle weight around the Fermi level in going from
the smaller α phase to the larger volume γ phase accompanied
by an increase in satellite weight. The α-γ phase transition

in cerium has been a subject of debate for many years and
only recently a consensus is emerging regarding the correct
description underlying the phase transition, which requires
a sophisticated many-body treatment like dynamical mean-
field theory (DMFT)1 well beyond one-particle description.
Although DMFT can provide a coherent description of the
electronic structure of cerium, the treatment is usually based
on a Hubbard or Anderson impurity model Hamiltonian and
a fully first-principles scheme comparable to LDA is still
lacking.

Due to the open-shell and localized nature of the 4f

valence electrons in the lanthanides these materials exhibit
strong electronic correlations. A recent fully first-principles
attempt to go beyond the LDA using the GW approximation
(GWA)2,3 fails to provide a correct description of the α-γ phase
transition in cerium. Like in the LDA, the calculated one-
particle spectra of both phases are almost identical, revealing
a fundamental problem inherent in the GWA when applied
to strongly correlated systems. Quasiparticle self-consistent
GW (QSGW)4 has been shown to improve the one-shot GW
result for a number of 4f systems but the position of the
unoccupied 4f bands are overestimated by 1–4 eV compared
to the experimental spectra.5 Also, QSGW is a one-particle
theory and therefore many-body phenomena such as Mott
transitions and multiplet structures are not accounted for in
this model. It seems clear that to describe strongly correlated
systems the GWA is not sufficient and it is necessary to develop
more accurate methods. A natural first step is to determine the
parameters in model Hamiltonians from first principles and
then solve the models to all orders in the effective interaction
between the localized electrons using many-body techniques
such as DMFT. A suitable platform for this line of approach
is already available. In the LDA + DMFT method, the one-
particle spectrum is supplied from first principles by the LDA
and it remains to determine the effective interaction or the
Hubbard U 6 of the correlated electrons from first principles.
Usually U is taken as a parameter and fitted to experiment
which severely reduces the predictive power of the model.
Instead it would be desirable to calculate U from basic physical
principles. One of the earliest attempts initiated by Herring is
to estimate U from atomic data.7–10 Dederichs et al.11 used a
constrained LDA (cLDA) method with later improvement by
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Hybertsen et al.12 and Cococcioni and de Gironcoli13 by taking
into account the change in the kinetic energy of the electrons.
A cLDA approach using a supercell calculation,14–17 where
hopping integrals from the orbital with localized electrons are
cut off for the central atom in the supercell, has been widely
used to calculate U from first principles.

In the present work we use the constrained random-phase
approximation (cRPA).18–20 In this method U is identified as
the partially screened interaction (Wr ) where the transitions
between the localized states defined in the model have been
removed. This makes it possible to calculate the matrix
elements of U from the band structure alone by calculating
the partially screened interaction within the random phase
approximation (RPA). Since a large part of the short-range
correlations have been excluded from Wr one may expect
that it is relatively well described within the RPA. The cRPA
method has been applied with success to a wide range of ma-
terials from transition metals,19 iron-based superconductors,21

graphene,22 transition metal oxides,23,24 to metal and insulator
surfaces.25

In this work we do a systematic study of the Hubbard U

calculated using the cRPA for the lanthanides. We look both
at the static limit and frequency dependence and discuss how
the cRPA values compare with experimental estimations from
BIS and XPS spectra. We discuss in detail how to choose the
energy window used to construct the localized subspace and
show that for certain cases a physically motivated choice of
parameters can improve the result substantially.

II. METHOD

A. Constrained RPA

By dividing the Hilbert space into two parts, the subspace
of the model which is called the f subspace containing the
localized 4f states and the r subspace spanning the rest of the
space, it is possible to express the polarization as P = Pf +
Pr . Here Pf contains the polarization within the f subspace
and Pr contains the rest of the polarization. The main idea
of the cRPA18 is to identify the Hubbard U as the partially
screened Coulomb interaction

U = v

1 − vPr

(1)

which, if further screened by the polarization Pf of the model,
will reproduce the fully screened interaction

W = v

1 − vP
= U

1 − UPf

. (2)

The polarization is calculated within the random phase
approximation, which for a given spin is given by

P (r,r′; ω) =
occ∑
kn

unocc∑
k′n′

ψ∗
kn(r)ψk′n′ (r)ψ∗

k′n′(r′)ψkn(r′)
ω − εk′n′ + εkn + iδ

− ψkn(r)ψ∗
k′n′(r)ψk′n′(r′)ψ∗

kn(r′)
ω + εk′n′ − εkn − iδ

. (3)

The total polarization is the sum over the spin channels.
For the lanthanides the localized 4f bands are mixed with

the crossing s and p bands. In order to get a well defined
f subspace the hybridization is removed by disentangling

the f subspace from the r subspace.20 In practice this is
accomplished by removing all coupling between the f and
r subspaces in the Hamiltonian and diagonalizing the two
blocks separately:

H̃ =
(

Hff 0

0 Hrr

)
.

The r-subspace polarization is then calculated as Pr =
P − Pf , where the full polarization P and the f -subspace
polarization Pf are calculated for the disentangled band
structure according to Eq. (3). There is some arbitrariness
in defining the f subspace which depends on the choice of
the energy window when constructing the Wannier orbitals. A
physically motivated choice of the energy window is therefore
needed. The fully screened interaction [W in Eq. (2)] can be
calculated both for the original LDA band structure (Worig)
and for the disentangled band structure (Wdis). Ideally, if the
disentangled band structure is close to the original one, these
two quantities will be nearly identical but if there is a large
hybridization between the f and r subspaces there could be
substantial differences.

The matrix elements of U are given by

U (n1σ,n2σ,n3σ
′,n4σ

′; R; ω)

=
∫ ∫

d3rd3r ′[φσ
n10(r)

]∗
φσ

n20(r)U (r,r′; ω)

× [
φσ ′

n3R(r′)
]∗

φσ ′
n4R(r′), (4)

where {φσ
niR′ } are the Wannier functions spanning the f

subspace and σ reflects the fact that these functions, in general,
are different for the two spin channels.

In this work we mainly consider the on-site direct compo-
nents (Uσσ ′

nm ) and the on-site exchange (J σσ
nm ) as well as spin-flip

and pair-hopping (J σσ̄
nm ) components of the partially screened

interaction:

Uσσ ′
nm =

∫ ∫
d3rd3r ′|φσ

n0(r)|2U (r,r′; 0)|φσ ′
m0(r′)|2, (5)

J σσ ′
nm =

∫ ∫
d3rd3r ′ [φσ

n0(r)
]∗

φσ
m0(r)U (r,r′; 0)

×φσ ′
n0(r′)[φσ ′

m0(r′)]∗. (6)

Further on we will denote the average diagonal element of
Uσσ ′

nm by U and the average exchange element of J σσ
nm (n �= m)

by J . The corresponding quantities of the bare and the fully
screened interaction will be denoted by v (bare direct) and
W (screened direct) as well as vx (bare exchange) and Wx

(screened exchange).

B. Computational details

As a starting point we use the LDA band structure
calculated with the full-potential linearized augmented plane-
wave (FLAPW) code FLEUR.26 The f subspace is constructed
using maximally localized Wannier functions27,28 (MLWFs)
calculated with the WANNIER90 code29,30 and finally the matrix
elements of U are calculated using the cRPA as implemented
in the SPEX code.31 For the elements between Pr and Gd
spin-polarized calculations were done including the 5s and
5p core states as local orbitals. For Ce the calculations were
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FIG. 1. (Color online) U calculated for hcp Gd and fcc Gd with
the same electron density. The energy windows with a width of 2.6 eV
were used for both the majority and minority spin.

done without spin polarization, since Ce is not spin polarized
within the LDA. For these calculations it was also sufficient to
only include the 5p core states as local orbitals. In the cRPA
calculations we used 8 × 8 × 8 k points.

In the present work the disentanglement approach20 de-
scribed in the previous section is used rather than the more
recent weighting approach of Ref. 32. The disentanglement
scheme has the advantages that a larger part of the low energy
excitations are removed from Pr and that there are well defined
one particle bands associated with the model. This simplifies
the construction of effective Hamiltonians using, e.g., the
Hubbard model.

For all calculations the lattice parameters taken from Ref. 33
were used. In order to reduce the computational time for
the elements with close-packed structures and more than one
atom per unit cell (such as hcp and dhcp structures, etc.) we
used fcc structures with a unit-cell volume chosen to preserve
the atomic density. Since the static value of U is largely
determined by the coupling to the plasmon excitation and
the plasma frequency is determined by the electron density
through the f -sum rule this approximation is not expected to
affect any of the main features of U . Furthermore, since the
4f orbitals are highly localized they are not much affected by
the crystal structure. Especially, the 4f bandwidth is expected
to be the same for the unit cells chosen in this work and the
experimental unit cells. Due to the similarities of the fcc and
the hcp, dhcp as well as Sm structures (all are close packed
but with different stacking), one would also expect the main
features of the r-subspace DOS to be well represented by the
density preserving fcc cell. Considering these arguments the
errors introduced by our choice of unit cells are expected to be
much smaller than the errors introduced by other factors, such
as removing the coupling between the f and r subspace. In
Fig. 1 we show U calculated for hcp Gd and the corresponding
phenomenological fcc Gd used in this work. From this figure
one can see that U is indeed very similar for the two cases
which confirms that the choice of a density preserving fcc cell
rather than the experimental close-packed cell does not have
much influence on U .

In the lanthanides the localized 4f bands are mixed with
the crossing 6s and 5d bands. In order to determine which
states should be used to construct the MLWFs a combination
of energy window and band index is used. That is, only states

belonging to certain bands and with energies within a given
energy interval are used to construct the MLWFs. Naturally, the
choice of energy window will affect both the Wannier basis
functions and the disentangled band structure. In principle
it would be desirable to remove all hybridization and thus
keep the energy window and number of bands unrestricted.
However, this often leads to unphysically narrow bands and
substantial overestimations of U . Instead, one often looks at the
disentangled band structure and chooses the energy window
so that this gives a good representation of the original band
structure. Such a choice is well motivated if the LDA band
structure is close to the true band structure. For the middle
and later lanthanides, however, the LDA is a rather poor
starting point and the choice of energy window is therefore
associated with a certain amount of arbitrariness. Therefore
we will put some emphasis on the choice of energy window
in this work, especially for the case of Eu and Gd where the
LDA is particularly poor.

III. RESULTS AND DISCUSSION

A. Eu and Gd: Determining the energy window

The electronic configuration of Eu is 4f 76s2. Within the
LDA, the majority spin bands will be filled but close to
the Fermi energy and there will be some hybridization with
the crossing 6s and 5d bands (r subspace). The minority spin
bands are empty and are centered at approximately 4 eV above
the Fermi energy (see Fig. 2).

Pr , which determines U , contains both the r-r and the
f -r screening channels. However, in the disentangled band
structure for Eu, since the f -r hybridization is removed,
the f -subspace DOS will be zero at the Fermi energy.
Hence the low energy part of Pr will only contain r-r
polarization. The r-r polarization depends strongly on how
much hybridization that is removed from the r subspace,
which makes the value of U for Eu extremely sensitive to the
choice of (majority spin) energy window, much more so than
U for the earlier lanthanides where the screening due to r-r
polarization is negligible compared to the contribution from
the f -r polarization. The f -r polarization is less sensitive
to the disentanglement, as can be understood intuitively by
noting that removing a large part of the hybridization reduces
the r-subspace DOS at the Fermi energy but correspondingly
increases the f DOS which keeps the f -r contribution to Pr

roughly constant.
In Fig. 3 we can see how the value of the fully screened

interaction (W ) as well as the partially screened interaction (U )
varies for different widths of the majority spin energy window.
The fully screened interaction is calculated both for the original
(Worig) and for the disentangled states (Wdis). (For definitions
see Sec. II A.) Since the f subspaces of the majority and
minority spins are, respectively, completely filled and empty,
there is no polarization within these f subspaces so that Wdis

and U are identical.34 The bare Coulomb interaction across
the series is also shown in the the inset of Fig. 3.

Key to understanding the behavior of U is the recognition
that the value of U depends on two factors; the localization of
the Wannier functions and the screening by Pr . On the other
hand, for a given material the bare interaction and the original
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FIG. 2. (Color online) LDA band structure of Eu (left) and Gd (right).

screened interaction Worig depend only on the shape and extent
of the Wannier orbitals. Since Worig is approximately constant
and the bare interaction only increases slightly as the energy
window is widened, we may conclude that the change in the
localization of the Wannier orbitals does not have much direct
influence on U . Thus, the increase of U in Fig. 3 can be
attributed to decreased screening. As the energy window is
widened a larger part of the hybridization with the r subspace
is removed and therefore the screening associated with Pr is
reduced so that U increases.

The growing difference between Worig and Wdis implies
that the disentangled and original band structures become
increasingly different as the energy window is increased. If
the LDA had been a good starting point it would have been
natural to keep this difference small and choose a narrow
energy window. However, for Eu the majority spin bands will
be pushed down in a more accurate treatment like the LDA + U

(see, e.g., Ref. 35), which reduces the hybridization between
the 4f orbitals and the 5d and 6s orbitals substantially.
Therefore, removing a large part of the hybridization by
choosing a wide energy window for the majority spin channel

will give a disentangled band structure that better mimics the
properties of the true band structure. In the 4f -partial density
of states shown in Fig. 4 one can see that there are small
4f components even at energies higher than 10 eV above the
Fermi energy which further motivates a wide energy window.
In this work we do not use an energy window for Eu, instead we
only use states with band indices between 5 and 18 to create the
Wannier functions. This choice excludes the core states from
the Wannier functions and also provides a high-lying upper
bound in form of the 18th energy band at an approximate
energy of 10 eV. It should be noted that from the DOS in Fig. 4
any energy window with a width from 3 to 12 eV could be
motivated, which would give values of U ranging from 6 to
9 eV. The reason that we choose a relatively large window in
this work is to better mimic the properties of a self-consistent
calculation using, e.g., LDA + U . However, the present choice
is associated with a certain amount of arbitrariness and to
obtain a more accurate value one should do a self-consistent
calculation, using, e.g., LDA + U .

The sensitivity of U with respect to the energy window for
Eu is an inherent problem with the disentanglement approach
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FIG. 3. (Color online) Left: The static average direct diagonal matrix element of the fully screened interaction (W ) and the partially
screened interaction (U ) for Eu for different majority spin energy windows. W is calculated using both the original states (Worig) and
the disentangled states (Wdis). The majority spin energy window is centered at −0.5 eV and the minority spin energy window is kept
constant at 2.5–5.5 eV. The inset shows the values of the bare interaction calculated for the same energy windows. Right: Worig, Wdis, and
U calculated for Gd. The minority spin energy window is centered at 0.4 eV and the majority spin energy window is kept constant at −5.6
to −3 eV.
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FIG. 4. (Color online) Left: Interpolated band structure for the minority spin of Gd. Right: Partial f density of states for the majority spin
of Eu and the minority spin of Gd, respectively.

for this particular material. In the more recent weighting
approach,32 where the f -subspace polarization is calculated
for the original band structure but each transition is weighted
by the probability that the electron will reside in the f subspace
before and after the transition, U is less sensitive to the choice
of energy window. Since the hybridization between the 4f

states and the 6s and 5d bands is included in the model
the value of U is also much smaller using this approach
(≈3.2 eV). It is also much smaller than the experimentally
deduced value in Fig. 5. However, in a self-consistent calcu-
lation the two methods are expected to give a similar result
since the hybridization is smaller in the self-consistent band
structure.

Gd has the electronic configuration 4f 75d16s2. For this
element the majority spin bands are situated well below
the Fermi level resulting in a small hybridization and U is
therefore rather insensitive to the choice of a majority energy
window. The minority spin bands, on the other hand, are close
to the Fermi energy and will become slightly filled in the
disentangled band structure. Looking at Fig. 3 one can see that
Wdis and Worig coincide for an energy window with a width
around 2.2–2.4 eV, which could motivate a choice within this
energy range. However, such an energy window would exclude

a substantial amount of 4f states from the f subspace (see
DOS Fig. 4). By choosing a slightly wider energy window
with a width of 3 eV we include a larger part of the 4f states
which results in a smoother band structure, still close to the
original one, while keeping the difference between Wdis and
Worig smaller than 1 eV.

B. Static values for the entire series

We begin by discussing the diagonal elements of the
Coulomb interactions shown in the inset of the left plot of
Fig. 5. The bare interaction increases monotonically through
the series. It is clear from Eq. (5), with U replaced by the bare
interaction, that the increase in the bare Coulomb interaction
reflects the increasing localization of the Wannier functions
(see Fig. 6).

We now consider the fully screened interaction. When going
from Ce to Pr the fully screened interaction W experiences a
decrease of approximately 50%. This may be understood from
the substantial increase of metallic screening within the 4f

band (f subspace) when going from one 4f electron/atom
(Ce) to three (Pr). The increase in screening is large enough
to overcome the opposing effect of increasing Wannier
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FIG. 5. (Color online) Left: The static average direct diagonal matrix element of the fully screened interaction (W ) and the partially
screened interaction (U ) for the lanthanides. W is calculated using both the original states (Worig) and the disentangled states (Wdis). The energy
windows presented in Table I were used. The experimental data are taken from Ref. 36 and are estimations of U from XPS and BIS spectra.
Karlsson et al. is U calculated using a cRPA based self-consistent LDA + U scheme.38 The inset shows the average diagonal element of the bare
interaction across the series. Right: The static average exchange matrix element of the fully screened interaction (Wx), the partially screened
interaction (J ), and the bare interaction (vx) for the lanthanides.
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localization which should increase W . Between Pr and Sm W

is approximately constant, showing a small increase of only
0.04 eV, indicating that the increase in W due to the effect of
Wannier localization is almost compensated by the decrease
in W due to the increase in total screening, associated with
the increase in the number of 4f electrons in the majority
band. At Eu the 4f majority band becomes fully occupied,
whereas the 4f minority band becomes completely empty
so that the polarization within the 4f band, or f -subspace
polarization Pf , vanishes which causes a substantial decrease
of the total screening and we can therefore see an abrupt
increase of W for this element. Pf is partially restored for
Gd due to the small filling of the f -subspace minority spin
bands in the disentangled band structure (Fig. 4). This yields
an increased screening which lowers the value of W . Although
less pronounced, this decrease is also seen in the original fully
screened interaction and can be attributed to the LDA band
structure which places the minority band too close to the Fermi
level.

The partially screened interaction U exhibits a more com-
plicated behavior and one can identify three main features:

1. The difference between the two phases of Ce,
2. the slight decrease from Ce-γ to Sm, and
3. the rapid increase between Sm and Gd.
The Ce γ -α phase transition is an isostructural volume

collapse from the larger γ phase to the smaller α phase. The
larger atomic spacing for Ce-γ enables the formation of more
localized Wannier functions that in turn gives increased values
of the matrix elements of the Coulomb interactions. However,
seeing the small effect it has on the bare interaction (≈0.55
eV), the localization of the Wannier functions are not sufficient
to explain the relatively large difference of U between the
two phases. The larger lattice constant for Ce-γ will, apart
from leading to more localized Wannier states, also lead to a
smaller 4f (f subspace) bandwidth. A smaller 4f bandwidth
implies a larger 4f DOS at the Fermi energy and thus also
a larger screening by Pf . From Eq. (2) we can see that the
fully screened interaction is obtained by letting U be further
screened by the f -subspace polarization Pf . Seeing that W

is approximately equal for the two phases and the screening
associated with Pf is larger for the γ phase, this implies that
also U is larger for Ce-γ , in agreement with the results in
Fig. 5. In other words, the f -subspace polarization, which is

excluded from U , contains a smaller part of the total screening
for Ce-α, which indicates a substantial hybridization also in
the disentangled band structure for this element.

From Ce-γ to Pr U follows the same trend as the
fully screened interaction implying that also the screening
associated with Pr increases, which decreases U as can be
seen from Eq. (1). The increase in Pr can be understood by
noting that Pr includes both the r-r and the f -r polarization
channels. An increase of the 4f (f subspace) DOS at the
Fermi energy will tend to increase the screening due to the
f -r polarization and therefore also decrease the value of U .
From this argument one would also expect U to be smaller for
Pr than for Ce-α, contrary to what can be observed in Fig. 5.
This discrepancy further emphasizes the large ratio of Pr/P

for Ce-α, due to hybridization.
Between Pr and Sm the fully screened interaction W is

approximately constant, whereas U decreases slowly. This
suggests that in the case of U , the cancellation between the
decrease in the screened interaction as a result of an increase in
the polarization due to an increase in the DOS around the Fermi
energy and the increase in the screened interaction due to the
increase in Wannier localization is not as complete as for W . In
other words, in the case of U the effects of the increase in the
polarization Pr slightly dominates the effects of the increased
localization of the Wannier orbitals.

As discussed in detail in the previous section the value of
U for Eu is highly dependent on the choice of energy window.
By choosing a large (majority spin) energy window the 4f

Wannier orbitals become more localized and consequently we
remove a large part of the hybridization between the 4f and the
5d-6s orbitals resulting in a decrease in Pr and consequently
in a larger value of U . Between Eu and Gd the increase in U

can be ascribed to the increased localization of the Wannier
functions.

For the average exchange element J in Fig. 5 the screening
is small and J therefore follows the same trend as the average
exchange element of the bare interaction (vx). This is due
to the fact that it is much harder to screen an exchange
charge distribution which has no spherical component than
to screen a spherical charge distribution so that, as has been
commonly assumed for a long time, the value of J in a crystal
is approximately the same as its atomic value. Since both J and
vx are relatively constant the structure that can be seen for Wx

reveals the variation of Pf across the series. A small value of
Wx corresponds to a large f -subspace screening which further
confirms that Pf is larger for Ce-γ than for the α phase and also
indicates that the screening due to Pf reaches its maximum
for Nd. The static values of U and J for all elements are given
in Table I.

When comparing the cRPA results with the experimental
estimations in Fig. 5 one can see that both the theoretical
and experimental values follow the same basic trend. It
is noteworthy that both the experimental estimates and the
theoretical predictions of U across the series reveal a structure
at Nd. We speculate that the origin of this structure is due to
the fact that at Nd the majority 4f band becomes half-filled
and the polarization Pf reaches its maximum. We observe
that the fully screened interaction W is rather constant across
the series and by examining Eq. (2) we may conclude that
to maintain a constant W with an increase in Pf , the value
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TABLE I. Static U , J , and energy window used for the calcula-
tions. Win 1/2 are the majority/minority spin windows in eV. U and
J are given in eV.

U J Win 1 Win 2

Ce-α 4.3 0.5 −1.1→2.3 –
Ce-γ 5.4 0.6 −1.0→2.0 –
Pr 4.8 0.6 −1.4→1.6 0.0→3.0
Nd 4.8 0.6 −1.5→1.5 0.4→3.8
Pm 4.3 0.6 −1.7→1.3 0.8→4.2
Sm 4.0 0.6 −1.7→1.3 1.8→5.2
Eu 9.1 0.7 ∞ 2.5→5.5
Gd 9.6 0.8 −5.6→−3 −1.1→1.9

of U for Nd should be larger than those of its neighboring
elements.

The cRPA yields slightly smaller values of U than the values
obtained from the experimental spectra. This underestimation
may be explained by two factors. First, the experimentally
deduced value of U may be regarded as an effective static
value which is not necessarily the same as the calculated static
limit of U [U (ω = 0)]. When estimating an effective static
U one should in principle include the effects of the frequency
dependence of U by downfolding the high-energy part of U

into the static value. However, there is, to our knowledge, no
known way to do this and therefore we have simply taken the
static limit of U [U (ω = 0)] in this work. A different point of
view concerning this important issue was recently proposed by
Casula et al.37 In their work it is formally shown that the static
value of U obtained within the cRPA is the appropriate value to
use provided one first renormalizes the one-particle dispersion.
In this approach, the effects of the frequency dependence of U

is taken into account in the one-particle dispersion so that the
effective static value of U for the renormalized quasiparticle
band is just the static value of U calculated in cRPA. Another
possible source of underestimation of U is that the LDA
band structure is not a sufficiently good starting point for the
lanthanides. Thus, in order to get an improved result for these
elements U has to be calculated in a self-consistent manner.
That a self-consistent calculation indeed increases the value of
U in the case of Gadolinium was shown by Karlsson et al.38

within a self-consistent LDA + U scheme. Here one could
see that the self-consistent U showed a smoother frequency
dependence at low energies and also a higher static value
[U (ω = 0)] than the original cRPA result. The peaks in the
imaginary part of U corresponding to the f -r transitions
were pushed up in energy towards self-consistency, which
effectively gave a smoother low frequency structure of the
real part of U through the Kramers- Kronig relation. However,
as will be discussed in the next section, this effect is expected
to be smaller for the parameters chosen in this work since a
larger part of the hybridization is removed already in the initial
cRPA calculation.

In Refs. 39 and 40 a number of the rare-earth metals were
studied using the Hubbard-I formalism. Of special interest to
this work are the results for Pr, Nd, and Sm where a value of
U of 7 eV was used for all elements. The calculated spectral
function reproduced experimental XPS and BIS spectra well,
except for one peak which was concluded to be of nonlocal

character and therefore not well described by the model.
However, the peaks in the spectral function corresponding
to the unoccupied f states were positioned slightly higher in
energy than the corresponding experimental BIS peaks. This is
understandable since U determines the separation between the
occupied and unoccupied 4f states and the value of U used in
Ref. 39 is slightly larger than what one would estimate from
the experimental spectra (see, e.g., Fig. 5). Correspondingly,
since the static values of U presented in this work are slightly
smaller than the experimental estimations a straightforward
use of these parameters, without accounting for the frequency
dependence of U , is expected to give a small underestimation
of the splitting between the occupied and unoccupied 4f states.

C. Frequency dependence

In Fig. 7 the full frequency dependent U and W are
displayed.

Since all transitions within the f subspace have been
removed from U it has a much smoother behavior at low
frequencies than the fully screened interaction. The remaining
low frequency structure, mainly in Ce, comes from low
frequency f -r transitions. This structure could be reduced
by increasing the energy window in the calculation. However,
a larger energy window would also increase the difference
between the disentangled and original band structures. For high
frequencies U (ω) → W (ω) since the screening associated
with Pf vanishes for energies much larger than the bandwidth
of the f subspace.

The peaks in the imaginary part of the screened interaction
correspond to the zeros of the dielectric function. The large
peak at approximately 12 eV originates from a collective
plasma oscillation. The position of the plasmon peak could
roughly be estimated from an electron gas model as ωp =√

4πρ, where ρ is the valence electron density. This gives a
value ranging from 12.7 eV (Ce) to 16.1–20.4 eV (Eu-Gd).
However, due to their localized nature, the 4f electrons do not
contribute fully to the plasmon oscillation which explains the
overestimation by the electron gas model compared to Fig. 7.

The two subsequent peaks at approximately 20 and 35 eV
originates from particle-hole transitions from the two shallow
5s and 5p core orbitals. The poles of the response function for
a two level system provides a rough estimation of the position
of these peaks:41

�nn′ =
√

ε2
nn′ + 2Jnn′εnn′ ≈

{
18 eV (5p)
37 eV (5s), (7)

where εnn′ is the energy difference between the 4f states and
the 5s (5p) core states and the exchange interaction between
the states Jnn′ has been approximated to zero in the last step. In
Fig. 8 we present calculations of U for Nd where all transitions
from the 5s and 5p orbitals have been excluded from the
polarization function. From this figure we can see that the
high energy peaks indeed disappears, as expected from the
above analysis.

A resonance with the 5p orbital is also clearly visible for J

in Fig. 9. Apart from this peak J follows the expected trend,
there is some low frequency structure due to f -r polarization
but J quickly approaches its atomic value.
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FIG. 7. (Color online) U and W for the entire series. W was calculated using the disentangled band structure.

In the self-consistent LDA + U calculations for Gd by
Karlsson et al.38 it was found that the self-consistent treatment
increases the static value of U and also removes some of
the low frequency structure. However, the result from the
initial cRPA calculation by Karlsson et al.38 shows significant
differences from the result in this work; a smaller static
U is found and U also exhibits a more pronounced low

frequency structure. These differences can be understood from
the differences in the methods. Although U as defined in
Eq. (1) is basis independent, the matrix elements of U will
inevitably depend on the basis in which these are taken.
Karlsson et al. use a basis composed of the head of the LMTO
basis functions. Since the head of the LMTO is by construction
localized within a muffin-tin sphere it is expected to be more
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FIG. 8. (Color online) The partially screened interaction U for
Nd. The 5s and 5p core states have been excluded from the
calculation.

localized than the Wannier orbitals used in the present work, so
that the matrix elements of U are also expected to be larger than
those of the present work, contrary to the obtained results. We
think that this discrepancy lies in the calculation of Pr . In this
work, by using the disentanglement approach combined with
a large energy window in defining the Wannier functions, the
screening due to Pr is reduced. This yields an increased value
of the static U with less pronounced low frequency structure.
Thus, with the method used in the present work we include
some of the effects of a self-consistent LDA + U calculation
already in the initial cRPA calculation.

IV. CONCLUSION

We have calculated the Hubbard U for the early lanthanides
using the constrained random phase approximation. The static
values of U show almost the same trend across the series as
the experimental estimations, although there is a consistent
underestimation. In this work we have simply taken the static
limit of U [U (ω = 0)], however, in principle, the effects of
the frequency dependence should be incorporated into the
static value by means of downfolding of the high-frequency
part of U . A self-consistent calculation of U is expected to
improve the result and it is probably the main reason for the
underestimation.

We have discussed the choice of energy window used
to construct the Wannier functions spanning the localized

0 10 20 30 40
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0.5

1

ω (eV)

J 
(e

V
)

Ce−γ
Nd
Eu

FIG. 9. (Color online) The real and imaginary parts of the average
matrix element of J for Ce-γ , Nd, and Eu.

subspace. For the late lanthanides the LDA is a rather poor
starting point and the choice of energy window becomes
increasingly arbitrary. We have discussed the choice of energy
window in detail for Eu and Gd and shown that, based on
physical arguments, it is possible to choose the energy window
so that the disentangled band structure improves the LDA
starting point by removing a larger part of the hybridization.
This will give a disentangled band structure that is less similar
to the LDA band structure but instead closer to the true
one. Thus, although still a source of arbitrariness, the energy
window can be used as a tool to improve the LDA band
structure.

The frequency dependence of U has been studied in detail
and we have explained the origins of the different structures.
The frequency dependence is very similar across the series, the
main difference being the low energy peaks that can be seen for
Ce that are absent for the other elements. These peaks originate
from low energy f -r transitions. The two distinct peaks at high
energy are shown to originate from particle-hole transitions
from the shallow 5s and 5p core states. This structure is also
clearly visible in the average exchange element J .

In the Appendix all matrix elements Unm and Jnm are given.
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APPENDIX: FULL INTERACTION MATRICES
Uσσ ′

nm AND Jσσ ′
nm

Here we present the full matrices

Uσσ ′
nm =

∫ ∫
d3rd3r ′|φσ

n0(r)|2U (r,r′; 0)|φσ ′
m0(r′)|2,

J σσ ′
nm =

∫ ∫
d3rd3r ′ [φσ

n0(r)
]∗

φσ
m0(r)U (r,r′; 0)

×φσ ′
n0(r′)[φσ ′

m0(r′)]∗.

From the above definition the conventional reduced matrices
Ũ σσ ′

nm are derived as

Ũ σ σ̄
nm = Uσσ̄

nm ,

J̃ σσ ′
nm = J σσ ′

nm ,

Ũσσ
nm = Uσσ

nm − J σσ
nm .

The Wannier basis functions are labeled by the projection
onto spherical harmonics in the following way:

1. Y30 3. −√
2Im(Y31) 5.

√
2Im(Y32)

2. −√
2Re(Y31) 4.

√
2Re(Y32) 6. −√

2Re(Y33).
7. −√

2Im(Y33).

See Tables II–IX.
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TABLE II. Cerium-α.

U J⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4.4 3.7 3.7 3.2 3.2 2.7 2.7
3.7 4.4 3.1 3.2 3.3 2.8 2.8
3.7 3.1 4.4 3.2 3.3 2.8 2.8
3.2 3.2 3.2 3.9 3.3 3.2 3.2
3.2 3.3 3.3 3.3 4.0 3.2 3.2
2.7 2.8 2.8 3.2 3.2 4.6 4.0
2.7 2.8 2.8 3.2 3.2 4.0 4.6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4.4 0.4 0.4 0.9 0.9 0.4 0.4
0.4 4.4 0.7 0.5 0.5 0.5 0.5
0.4 0.7 4.4 0.5 0.5 0.5 0.5
0.9 0.5 0.5 3.9 0.3 0.7 0.7
0.9 0.5 0.5 0.3 4.0 0.7 0.7
0.4 0.5 0.5 0.7 0.7 4.6 0.3
0.4 0.5 0.5 0.7 0.7 0.3 4.6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

TABLE III. Cerium-γ .

U J⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

5.5 4.7 4.7 4.2 4.3 3.7 3.7
4.7 5.5 4.1 4.2 4.3 3.8 3.8
4.7 4.1 5.5 4.2 4.3 3.8 3.8
4.2 4.2 4.2 4.9 4.3 4.2 4.2
4.3 4.3 4.3 4.3 5.1 4.3 4.3
3.7 3.8 3.8 4.2 4.3 5.6 5.1
3.7 3.8 3.8 4.2 4.3 5.1 5.6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

5.5 0.4 0.4 0.9 0.9 0.4 0.4
0.4 5.5 0.7 0.6 0.6 0.5 0.5
0.4 0.7 5.5 0.6 0.6 0.5 0.5
0.9 0.6 0.6 4.9 0.3 0.7 0.7
0.9 0.6 0.6 0.3 5.1 0.7 0.7
0.4 0.5 0.5 0.7 0.7 5.6 0.3
0.4 0.5 0.5 0.7 0.7 0.3 5.6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

TABLE IV. Praseodymium.

U↑↑ U↓↓

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4.9 4.2 4.2 3.7 3.7 3.2 3.2
4.2 5.0 3.6 3.7 3.8 3.3 3.3
4.2 3.6 5.0 3.7 3.8 3.3 3.3
3.7 3.7 3.7 4.5 3.8 3.7 3.7
3.7 3.8 3.8 3.8 4.6 3.7 3.7
3.2 3.3 3.3 3.7 3.7 5.1 4.6
3.2 3.3 3.3 3.7 3.7 4.6 5.1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4.9 4.0 4.0 3.5 3.7 3.1 3.1
4.0 4.8 3.4 3.5 3.7 3.2 3.2
4.0 3.4 4.8 3.5 3.7 3.2 3.2
3.5 3.5 3.5 4.2 3.7 3.5 3.5
3.7 3.7 3.7 3.7 4.5 3.7 3.7
3.1 3.2 3.2 3.5 3.7 5.0 4.4
3.1 3.2 3.2 3.5 3.7 4.4 5.0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

U↑↓ J ↑↑⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4.9 4.1 4.1 3.5 3.7 3.1 3.1
4.1 4.9 3.5 3.6 3.7 3.2 3.2
4.1 3.5 4.9 3.6 3.7 3.2 3.2
3.6 3.6 3.6 4.3 3.8 3.6 3.6
3.7 3.7 3.7 3.7 4.6 3.7 3.7
3.1 3.2 3.2 3.6 3.7 5.1 4.5
3.1 3.2 3.2 3.6 3.7 4.5 5.1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4.9 0.4 0.4 0.9 0.9 0.4 0.4
0.4 5.0 0.7 0.6 0.6 0.5 0.5
0.4 0.7 5.0 0.6 0.6 0.5 0.5
0.9 0.6 0.6 4.5 0.4 0.7 0.7
0.9 0.6 0.6 0.4 4.6 0.7 0.7
0.4 0.5 0.5 0.7 0.7 5.1 0.3
0.4 0.5 0.5 0.7 0.7 0.3 5.1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

J ↓↓ J ↑↓⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4.9 0.4 0.4 0.9 0.9 0.4 0.4
0.4 4.8 0.7 0.5 0.6 0.5 0.5
0.4 0.7 4.8 0.5 0.6 0.5 0.5
0.9 0.5 0.5 4.2 0.3 0.7 0.7
0.9 0.6 0.6 0.3 4.5 0.7 0.7
0.4 0.5 0.5 0.7 0.7 5.0 0.3
0.4 0.5 0.5 0.7 0.7 0.3 5.0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4.9 0.4 0.4 0.9 0.9 0.4 0.4
0.4 4.9 0.7 0.6 0.6 0.5 0.5
0.4 0.7 4.9 0.6 0.6 0.5 0.5
0.9 0.6 0.6 4.3 0.4 0.7 0.7
0.9 0.6 0.6 0.4 4.6 0.7 0.7
0.4 0.5 0.5 0.7 0.7 5.1 0.3
0.4 0.5 0.5 0.7 0.7 0.3 5.1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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TABLE V. Neodymium.

U↑↑ U↓↓

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4.9 4.1 4.1 3.7 3.7 3.1 3.1
4.1 5.1 3.6 3.7 3.7 3.3 3.3
4.1 3.6 5.1 3.7 3.7 3.3 3.3
3.7 3.7 3.7 4.5 3.8 3.7 3.7
3.7 3.7 3.7 3.8 4.5 3.7 3.7
3.1 3.3 3.3 3.7 3.7 5.2 4.6
3.1 3.3 3.3 3.7 3.7 4.6 5.2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4.9 4.0 4.0 3.4 3.6 3.0 3.0
4.0 4.7 3.3 3.4 3.6 3.1 3.0
4.0 3.3 4.7 3.4 3.6 3.0 3.1
3.4 3.4 3.4 4.0 3.6 3.4 3.4
3.6 3.6 3.6 3.6 4.5 3.6 3.6
3.0 3.1 3.0 3.4 3.6 4.9 4.3
3.0 3.0 3.1 3.4 3.6 4.3 4.9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

U↑↓ J ↑↑⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4.9 4.0 4.0 3.4 3.6 3.0 3.0
4.1 4.9 3.5 3.5 3.7 3.2 3.2
4.1 3.5 4.9 3.5 3.7 3.2 3.2
3.6 3.6 3.6 4.3 3.8 3.6 3.6
3.6 3.6 3.6 3.6 4.5 3.6 3.6
3.1 3.1 3.1 3.5 3.7 5.0 4.5
3.1 3.1 3.1 3.5 3.7 4.5 5.0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4.9 0.4 0.4 1.0 1.0 0.4 0.4
0.4 5.1 0.7 0.6 0.6 0.6 0.6
0.4 0.7 5.1 0.6 0.6 0.6 0.6
1.0 0.6 0.6 4.5 0.4 0.7 0.7
1.0 0.6 0.6 0.4 4.5 0.7 0.7
0.4 0.6 0.6 0.7 0.7 5.2 0.3
0.4 0.6 0.6 0.7 0.7 0.3 5.2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

J ↓↓ J ↑↓⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4.9 0.4 0.4 0.9 1.0 0.4 0.4
0.4 4.7 0.7 0.5 0.6 0.5 0.5
0.4 0.7 4.7 0.5 0.6 0.5 0.5
0.9 0.5 0.5 4.0 0.3 0.7 0.7
1.0 0.6 0.6 0.3 4.5 0.7 0.7
0.4 0.5 0.5 0.7 0.7 4.9 0.3
0.4 0.5 0.5 0.7 0.7 0.3 4.9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4.9 0.4 0.4 0.9 1.0 0.4 0.4
0.4 4.9 0.7 0.6 0.6 0.6 0.5
0.4 0.7 4.9 0.6 0.6 0.5 0.6
0.9 0.6 0.6 4.3 0.4 0.7 0.7
1.0 0.6 0.6 0.4 4.5 0.7 0.7
0.4 0.6 0.5 0.7 0.7 5.0 0.3
0.4 0.5 0.6 0.7 0.7 0.3 5.0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

TABLE VI. Promethium.

U↑↑ U↓↓⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4.4 3.6 3.6 3.1 3.1 2.6 2.6
3.6 4.6 3.1 3.2 3.2 2.7 2.7
3.6 3.1 4.6 3.2 3.2 2.7 2.7
3.1 3.2 3.2 4.1 3.2 3.2 3.2
3.1 3.2 3.2 3.2 3.9 3.1 3.1
2.6 2.7 2.7 3.2 3.1 4.7 4.1
2.6 2.7 2.7 3.2 3.1 4.1 4.7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4.3 3.4 3.4 2.8 3.0 2.4 2.4
3.4 4.1 2.8 2.8 3.0 2.5 2.5
3.4 2.8 4.1 2.8 3.0 2.5 2.5
2.8 2.8 2.8 3.5 3.0 2.8 2.8
3.0 3.0 3.0 3.0 3.9 3.0 3.0
2.4 2.5 2.5 2.8 3.0 4.3 3.8
2.4 2.5 2.5 2.8 3.0 3.8 4.3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

U↑↓ J ↑↑⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4.3 3.4 3.4 2.9 3.1 2.5 2.5
3.6 4.3 2.9 3.0 3.2 2.6 2.6
3.6 2.9 4.3 3.0 3.2 2.6 2.6
3.1 3.1 3.1 3.8 3.2 3.1 3.1
3.0 3.0 3.0 3.0 3.9 3.0 3.0
2.5 2.6 2.6 2.9 3.1 4.5 3.9
2.5 2.6 2.6 2.9 3.1 3.9 4.5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4.4 0.4 0.4 1.0 1.0 0.4 0.4
0.4 4.6 0.8 0.6 0.6 0.6 0.6
0.4 0.8 4.6 0.6 0.6 0.6 0.6
1.0 0.6 0.6 4.1 0.4 0.8 0.8
1.0 0.6 0.6 0.4 3.9 0.8 0.8
0.4 0.6 0.6 0.8 0.8 4.7 0.3
0.4 0.6 0.6 0.8 0.8 0.3 4.7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

J ↓↓ J ↑↓⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4.3 0.4 0.4 0.9 1.0 0.4 0.4
0.4 4.1 0.7 0.5 0.6 0.5 0.5
0.4 0.7 4.1 0.5 0.6 0.5 0.5
0.9 0.5 0.5 3.5 0.3 0.7 0.7
1.0 0.6 0.6 0.3 3.9 0.7 0.7
0.4 0.5 0.5 0.7 0.7 4.3 0.3
0.4 0.5 0.5 0.7 0.7 0.3 4.3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4.3 0.4 0.4 0.9 1.0 0.4 0.4
0.4 4.3 0.7 0.6 0.6 0.6 0.6
0.4 0.7 4.3 0.6 0.6 0.6 0.6
0.9 0.6 0.6 3.8 0.4 0.7 0.7
1.0 0.6 0.6 0.4 3.9 0.7 0.7
0.4 0.6 0.6 0.7 0.7 4.5 0.3
0.4 0.6 0.6 0.7 0.7 0.3 4.5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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TABLE VII. Samarium.

U↑↑ U↓↓

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4.2 3.4 3.4 2.9 2.8 2.3 2.3
3.4 4.4 2.8 3.0 2.9 2.5 2.5
3.4 2.8 4.4 3.0 2.9 2.5 2.5
2.9 3.0 3.0 3.9 3.0 2.9 2.9
2.8 2.9 2.9 3.0 3.7 2.9 2.9
2.3 2.5 2.5 2.9 2.9 4.5 3.8
2.3 2.5 2.5 2.9 2.9 3.8 4.5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

3.9 3.1 3.1 2.6 2.6 2.1 2.1
3.1 4.0 2.5 2.6 2.6 2.2 2.2
3.1 2.5 4.0 2.6 2.6 2.2 2.2
2.6 2.6 2.6 3.4 2.7 2.6 2.6
2.6 2.6 2.6 2.7 3.4 2.6 2.6
2.1 2.2 2.2 2.6 2.6 4.1 3.5
2.1 2.2 2.2 2.6 2.6 3.5 4.1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

U↑↓ J ↑↑⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4.0 3.2 3.2 2.7 2.7 2.2 2.2
3.3 4.2 2.7 2.8 2.8 2.4 2.3
3.3 2.7 4.2 2.8 2.8 2.3 2.4
2.8 2.8 2.8 3.6 2.9 2.8 2.8
2.7 2.8 2.8 2.8 3.5 2.7 2.7
2.2 2.3 2.3 2.7 2.7 4.3 3.7
2.2 2.3 2.3 2.7 2.7 3.7 4.3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4.2 0.4 0.4 1.0 1.0 0.5 0.5
0.4 4.4 0.8 0.6 0.6 0.6 0.6
0.4 0.8 4.4 0.6 0.6 0.6 0.6
1.0 0.6 0.6 3.9 0.4 0.8 0.8
1.0 0.6 0.6 0.4 3.7 0.8 0.8
0.5 0.6 0.6 0.8 0.8 4.5 0.3
0.5 0.6 0.6 0.8 0.8 0.3 4.5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

J ↓↓ J ↑↓⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

3.9 0.4 0.4 0.9 0.9 0.4 0.4
0.4 4.0 0.7 0.6 0.6 0.6 0.5
0.4 0.7 4.0 0.6 0.6 0.5 0.6
0.9 0.6 0.6 3.4 0.4 0.7 0.7
0.9 0.6 0.6 0.4 3.4 0.7 0.7
0.4 0.6 0.5 0.7 0.7 4.1 0.3
0.4 0.5 0.6 0.7 0.7 0.3 4.1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4.0 0.4 0.4 1.0 1.0 0.4 0.4
0.4 4.2 0.7 0.6 0.6 0.6 0.6
0.4 0.7 4.2 0.6 0.6 0.6 0.6
1.0 0.6 0.6 3.6 0.4 0.8 0.8
1.0 0.6 0.6 0.4 3.5 0.7 0.7
0.4 0.6 0.6 0.8 0.7 4.3 0.3
0.4 0.6 0.6 0.8 0.7 0.3 4.3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

TABLE VIII. Europium.

U↑↑ U↓↓

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

9.8 8.8 8.8 8.2 8.2 7.5 7.5
8.8 9.9 8.1 8.3 8.3 7.7 7.7
8.8 8.1 9.9 8.3 8.3 7.7 7.7
8.2 8.3 8.3 9.2 8.3 8.2 8.2
8.2 8.3 8.3 8.3 9.2 8.2 8.2
7.5 7.7 7.7 8.2 8.2 10.1 9.4
7.5 7.7 7.7 8.2 8.2 9.4 10.1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

8.5 7.7 7.7 7.2 6.9 6.5 6.5
7.7 8.7 7.1 7.3 7.0 6.7 6.7
7.7 7.1 8.7 7.3 7.0 6.7 6.7
7.2 7.3 7.3 8.1 7.1 7.2 7.2
6.9 7.0 7.0 7.1 7.6 7.0 7.0
6.5 6.7 6.7 7.2 7.0 8.8 8.2
6.5 6.7 6.7 7.2 7.0 8.2 8.8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

U↑↓ J ↑↑⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

9.1 8.2 8.2 7.7 7.4 7.0 7.0
8.2 9.3 7.6 7.7 7.5 7.2 7.2
8.2 7.6 9.3 7.7 7.5 7.2 7.2
7.6 7.7 7.7 8.6 7.5 7.7 7.7
7.7 7.8 7.8 7.8 8.4 7.7 7.7
7.0 7.2 7.2 7.7 7.5 9.4 8.8
7.0 7.2 7.2 7.7 7.5 8.8 9.4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

9.8 0.5 0.5 1.2 1.2 0.5 0.5
0.5 9.9 0.9 0.7 0.7 0.7 0.7
0.5 0.9 9.9 0.7 0.7 0.7 0.7
1.2 0.7 0.7 9.2 0.4 0.9 0.9
1.2 0.7 0.7 0.4 9.2 0.9 0.9
0.5 0.7 0.7 0.9 0.9 10.1 0.4
0.5 0.7 0.7 0.9 0.9 0.4 10.1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

J ↓↓ J ↑↓⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

8.5 0.4 0.4 1.1 1.0 0.4 0.4
0.4 8.7 0.8 0.6 0.6 0.6 0.6
0.4 0.8 8.7 0.6 0.6 0.6 0.6
1.1 0.6 0.6 8.1 0.4 0.8 0.8
1.0 0.6 0.6 0.4 7.6 0.8 0.8
0.4 0.6 0.6 0.8 0.8 8.8 0.3
0.4 0.6 0.6 0.8 0.8 0.3 8.8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

9.1 0.4 0.4 1.1 1.1 0.5 0.5
0.4 9.3 0.9 0.7 0.7 0.6 0.6
0.4 0.9 9.3 0.7 0.7 0.6 0.6
1.1 0.7 0.7 8.6 0.4 0.9 0.9
1.1 0.7 0.7 0.4 8.4 0.8 0.8
0.5 0.6 0.6 0.9 0.8 9.4 0.3
0.5 0.6 0.6 0.9 0.8 0.3 9.4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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TABLE IX. Gadolinium.

U↑↑ U↓↓

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

10.2 9.1 9.1 8.4 8.4 7.7 7.7
9.1 10.4 8.4 8.5 8.5 7.9 7.9
9.1 8.4 10.4 8.5 8.5 7.9 7.9
8.4 8.5 8.5 9.6 8.6 8.5 8.5
8.4 8.5 8.5 8.6 9.5 8.5 8.5
7.7 7.9 7.9 8.5 8.5 10.5 9.8
7.7 7.9 7.9 8.5 8.5 9.8 10.5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

9.1 8.1 8.1 7.5 7.6 6.8 6.8
8.1 9.2 7.4 7.6 7.6 7.0 7.0
8.1 7.4 9.2 7.6 7.6 7.0 7.0
7.5 7.6 7.6 8.5 7.7 7.6 7.6
7.6 7.6 7.6 7.7 8.6 7.6 7.6
6.8 7.0 7.0 7.6 7.6 9.4 8.7
6.8 7.0 7.0 7.6 7.6 8.7 9.4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

U↑↓ J ↑↑⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

9.6 8.6 8.6 8.0 8.0 7.2 7.2
8.6 9.8 7.9 8.0 8.1 7.4 7.4
8.6 7.9 9.8 8.0 8.1 7.4 7.4
8.0 8.0 8.0 9.0 8.2 8.0 8.0
7.9 8.0 8.0 8.1 9.0 8.0 8.0
7.2 7.4 7.4 8.0 8.1 9.9 9.2
7.2 7.4 7.4 8.0 8.1 9.2 9.9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

10.2 0.5 0.5 1.3 1.3 0.6 0.6
0.5 10.4 1.0 0.8 0.8 0.8 0.8
0.5 1.0 10.4 0.8 0.8 0.8 0.8
1.3 0.8 0.8 9.6 0.5 1.0 1.0
1.3 0.8 0.8 0.5 9.5 1.0 1.0
0.6 0.8 0.8 1.0 1.0 10.5 0.4
0.6 0.8 0.8 1.0 1.0 0.4 10.5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

J ↓↓ J ↑↓⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

9.1 0.5 0.5 1.2 1.2 0.5 0.5
0.5 9.2 0.9 0.7 0.7 0.7 0.7
0.5 0.9 9.2 0.7 0.7 0.7 0.7
1.2 0.7 0.7 8.5 0.4 0.9 0.9
1.2 0.7 0.7 0.4 8.6 0.9 0.9
0.5 0.7 0.7 0.9 0.9 9.4 0.3
0.5 0.7 0.7 0.9 0.9 0.3 9.4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

9.6 0.5 0.5 1.2 1.3 0.5 0.5
0.5 9.8 0.9 0.8 0.8 0.7 0.7
0.5 0.9 9.8 0.8 0.8 0.7 0.7
1.2 0.8 0.8 9.0 0.5 1.0 1.0
1.3 0.8 0.8 0.5 9.0 1.0 1.0
0.5 0.7 0.7 1.0 1.0 9.9 0.4
0.5 0.7 0.7 1.0 1.0 0.4 9.9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Phys. Rev. B 78, 035120 (2008).
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