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Time-dependent charge-order and spin-order recovery in striped systems

Y. F. Kung,"> W.-S. Lee,> C.-C. Chen,? A. F. Kemper,* A. P. Sorini,>> B. Moritz,>% and T. P. Devereaux>’

' Department of Physics, Stanford University, Stanford, California 94305, USA

2Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University,

Menlo Park, California 94025, USA
3Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA
‘Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
5Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
®Department of Physics and Astrophysics, University of North Dakota, Grand Forks, North Dakota 58202, USA
"Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, USA
(Received 14 June 2013; revised manuscript received 26 August 2013; published 9 September 2013)

Using time-dependent Ginzburg-Landau theory, we study the role of amplitude and phase fluctuations in the
recovery of charge-stripe and spin-stripe phases in response to a pump pulse that melts the orders. For parameters
relevant to the case where charge order precedes spin order thermodynamically, amplitude recovery governs the
initial time scales, while phase recovery controls behavior at longer times. In addition to these intrinsic effects,
there is a longer spin reorientation time scale related to the scattering geometry that dominates the recovery
of the spin phase. Coupling between the charge and spin orders locks the amplitude and similarly the phase
recovery, reducing the number of distinct time scales. Our results well reproduce the major experimental features
of pump-probe x-ray diffraction measurements on the striped nickelate La; 75Sry »5NiO,4. They highlight the main
idea of this work, which is the use of time-dependent Ginzburg-Landau theory to study systems with multiple

coexisting order parameters.
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I. INTRODUCTION

Strongly correlated transition-metal oxides show a variety
of ordered phases, including charge density waves (CDW),
spin density waves (SDW), and superconductivity, that interact
to suppress or enhance one another.! For example, in the
cuprate high-temperature superconductors, superconductivity
competes with the charge-stripe state for carriers,” as well
as with the pseudogap for quasiparticles.® In the pseudogap
regime itself, resonant inelastic x-ray scattering (RIXS), angle-
resolved photoemission spectroscopy (ARPES), and scanning
tunneling microscopy (STM) measurements have found evi-
dence for charge ordering.*® Unraveling the interplay between
these different orders could hold the key to understanding
cuprate superconductivity.

Time-resolved pump-probe x-ray diffraction experiments at
the Linac Coherent Light Source (LCLS) provide a new tool
for studying how different ordered phases interact. Excitations
that are strongly coupled in equilibrium can be disentangled
in the time domain, leading to new understanding of their
behavior. Because the Bragg intensity is related to both the
orders’ amplitudes and phases, dynamical information also
allows separation of their behavior. Disentangling these
components offers insight into whether amplitude or phase
fluctuations determine the strength of the order at a given
time, as well as how strong coupling affects the system.

These experimental advances highlight the importance of
developing a theoretical framework to analyze and interpret
the experimental results. One useful phenomenological de-
scription of these systems is the versatile time-dependent
Ginzburg-Landau theory, which in principle can be applied
to any coexisting or competing symmetry-broken states. With
an appropriate formulation of the order parameters, the theory
can treat interactions between a wide range of phases. Not only
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has it been used to model density waves, but Ginzburg-Landau
theory is also used to study two-band superconductivity and
U(1) x U(1) systems.”!? In addition to capturing equilibrium
behavior, it describes time dynamics to elucidate the effects of
coupling strength between various orders, such as CDWs and
superconductivity, or CDWs and SDWs in the charge-stripe
state. In order to elaborate on the specifics of these ideas, we
choose to study systems with coupled charge and spin orders,
which provide a connection to existing experimental efforts.

Time evolution of the order parameters calculated from
the theory can be connected to experimental measurements
of Bragg intensity, leading to greater understanding of how
different components of phases interact. In analogy with the
atomic Bragg diffraction peaks, Bragg intensity of the ordered
phases [example images shown in Figs. 1(a) and 1(b)] can
be modeled in terms of each order’s amplitude and electronic
phase (its location with respect to the superlattice'!). It is
directly related to the squared amplitudes, but decreased by
phase fluctuations, or phasons, via a Debye-Waller-like factor
[Fig. 1(c)].!? Thus, in conjunction with experiments, time-
dependent Ginzburg-Landau theory provides insights into how
fluctuations of the amplitudes and phases govern the system
out of equilibrium.

One specific application of this theory is to CDW and SDW
ordering in the nickelates,'>~!7 materials which are structurally
similar to the cuprates and hence provide a useful model system
to study interactions between these two phases. In equilib-
rium, conventional CDWs may be driven by Fermi surface
nesting,'® by strong coupling to phonons, or from an inherent
instability towards phase separation driven by strong Coulomb
interactions. Most likely, the CDWs seen in the cuprates and
nickelates arise due to a combination of strong coupling via
both the Couloumb interaction and coupling to the lattice
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FIG. 1. (Color online) The experimental spin order Bragg inten-
sity peak (a) in equilibrium and (b) after the pump pulse has melted
the order. The horizontal axis 6, is parallel to the scattering plane,
while the vertical axis 6, is perpendicular to the scattering plane.

(c) shows how phase oscillations affect Bragg intensity, in analogy
with phonons.

when holes are doped into an antiferromagnetic (AFM) parent
compound: the system phase separates into stripes of AFM
domains and of greater hole density to decrease the energy
penalty from breaking AFM spin interactions.'*~>3 This charge
order is known to be strongly coupled to phonon modes.’*?
Strong coupling is indicated from the ratio between the CDW
gap at zero temperature, Acpw, and that at Tepw (the critical
temperature), whose measured values are 5—8 times larger than
the weak coupling value (3.52).%° Since the charge-stripe state
is known to interact with superconductivity in the cuprates,
understanding how charge and spin orders are coupled in
the nickelates may ultimately elucidate how coupling affects
the critical temperature for the superconducting-normal state
transition.

In particular, the striped nickelate La;75Srp,5NiO4 has
demonstrated interesting cooperative dynamics between
charge and spin order.?”-?® After photoexcitation by a pump
laser, the recovery of charge and spin order’s Bragg intensities
each exhibits two time scales. Naively, one might expect charge
and spin order to have different characteristic time scales,
since their intrinsic energy scales differ by at least an order
of magnitude.””' However, the faster time scales of charge
and spin order overlap. In addition, their slow time dynamics
differ by an order of magnitude, with the spin-order Bragg
diffraction intensity reaching a pseudometastable state within
the experimental window.

These experimental observations highlight the need for
further theoretical understanding. In this paper, we apply
the time-dependent Ginzburg-Landau theory to systems with
collinear, coupled charge and spin order. Section II explores
the equilibrium features of the model, including the phase
diagram. Section III discusses its behavior in the time domain
using Gross-Pitaevskii-type equations of motion. Section IV
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applies the model to the case of La; 75Sr( 25NiO4, demonstrat-
ing that it captures major features seen in the experiments
and leading to the conclusion that the amplitude determines
order parameter strength on fast time scales, whereas the
phase controls behavior on longer time scales in charge-stripe
ordered nickelates. Finally, Sec. V summarizes our main
findings with additional concluding remarks.

II. EQUILIBRIUM

The equilibrium behavior of a system with collinear stripe
order can be described by the Ginzburg-Landau free energy.
We start with a free energy for a spatially varying scalar field
(p) that describes charge order and a vector field (S) that
describes spin order:*

F(p,5,0,6) = 3Folpl + |pI* + 7|1 + |SI*
+ LS - 8)p* + Hel + K, (Vo) - (Vp)
+ K, (VIS - (VIS)), (1)
where 7, and 7 are temperature-dependent coefficients setting

the bare transition temperatures. Close to the transition
temperature, their form is given by:

T—-T,,
T,

where T, and Ty are the critical temperatures for charge and
spin order, respectively, o, and «, control the frequency of
vibrations if the system is perturbed, and A[(§ . 5’)/0* + H.c.]
is the lowest-order term that describes coupling between spin
and charge. Higher-order terms such as |§' |2p? that describe
coupling between charge and spin order can be dropped as
they do not lead to qualitatively different behavior. It will be
shown below that K, and K are irrelevant in equilibrium.
The free energy can be simplified by re-expressing the order
parameters in terms of their magnitudes and phases:

; @

Fps = 0p.s

p = lple! @7,
. 3)
S = 18]/ @7 p,

Here Q » and Qs are the momentum-space ordering vectors,
6 and ¢ are the phases, and m describes the preferred spin

alignment direction. The phases can be further expressed as a
sum of modes with different momenta:

b= 6,0,
q

(]3 = Z ¢qei¢}~F’
q

an expansion that becomes relevant when the system is excited
by a pump pulse, as is the case in the time-resolved pump-probe
experiments.'?

The sign of the coupling term can be determined by

examining the order parameters in real space:*>

“

p(F) o |p|cos (Q, - F — 1),
SH)e ST o |Si cos (O - ),

where 7 is the relative phase between the two orders. Using
these expressions and minimizing the free energy shows that

&)
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if the coupling term is negative, a minimum occurs at n = 7,
whereas if the coupling term is positive, the minimum occurs at
n = 0. Since doping is known to induce phase-separation into
hole-rich stripes (where the CDW has its maximum) and anti-
ferromagnetically ordered stripes (where the SDW has its max-
imum) in the nickelates and other correlated transition-metal
oxides, the charge and spin order must have a relative 7 phase
shift.’> Thus the coupling term is negative and stronger cou-
pling between charge and spin order stabilizes the stripe phase.
The gradient term simplifies to:

(Vp*) - (Vp) = (VIoD* + 10210, + 117 Y 131716, .
q

(6)

and similarly for spin. Assuming that the magnitudes of the
order parameters are spatially invariant for systems of interest,
such as the nickelates,?’ the (V|p|)2 term vanishes, and the

@ rp/ )\2

PM
SDW

Normalized order parameter

Ts,o T, Tp,O’Tp
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FIG. 2. (Color online) (a) Equilibrium phase diagram determined
by r,/2* and r;/A%, with the first-order transitions indicated by
a dashed line and second-order transitions marked by solid lines.
(b) The phase diagram of charge order (CO) and spin order (SO)
versus temperature, demonstrating second-order phase transitions and
the stabilization of spin order via coupling to charge order, for repre-
sentative parameters. The uncoupled spin-order critical temperature
T, o is increased significantly when the order parameters are coupled.
However, T, does not change noticeably, indicating that charge
order is the more thermodynamically stable state. All order parameter
values are normalized to the value of CO at T = 0, with coupling.
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second term can be combined with the 7, term, such that
rp ="F,+ |ép|2. In equilibrium, intuition dictates that the
real-space phases are fixed and defined to be 0, making
the phase diagram invariant with respect to the final term.
These terms for both the charge and spin orders would in
principle impose an energy penalty on phase fluctuations,
which are neglected in equilibrium.

Finally the equilibrium free energy for the striped system
can be written as

F(pl.IS].0.¢) = Lr,lpl* + 1pl* + i1l S|

+ IS]* = 2A[S1%|pl. 7

In addition, it can be seen that the coupling term is only allowed
by symmetry when Q o= 2QM enforcing a 2 : 1 relationship
between the charge and spin momentum space vectors that is
indeed seen in materials such as the nickelates and cuprates.

Figure 2(a) shows a generic phase diagram for this free
energy, illustrating how r,, and r,, normalized by A2, determine
the phase of the system. There is a first-order transition (dashed
line) between the paramagnetic (PM) phase and SDW phase,
which extends over the second and third quadrants, as well
as parts of the first and fourth. The CDW phase exists in
the fourth quadrant and is separated from the SDW phase
by either a first-order transition (dashed line) or second-order
transition (solid line). The SDW phase exhibits charge ordering
in addition to spin ordering.3>3

Focusing on regions of the phase diagram where the
CDW-SDW transition is second order, Fig. 2(b) shows the
temperature dependence of the charge- and spin-order param-
eters for representative values of 7, and r,. Coupling the orders
significantly increases the spin-order critical temperature from
T;0 to Ty, as well as the value of the order parameter itself,
indicating that it becomes more stable. Meanwhile, neither the
critical temperature nor the order parameter of charge order
changes noticeably when the orders are coupled. This behavior
is consistent with charge order being more thermodynamically
stable, which is known to be the case in the nickelates.’*

III. TIME EVOLUTION

The time evolution of the charge- and spin-order parameters
can be determined from Gross-Pitaevskii-type equations of
motion® derived from the Lagrangian of the system The
order parameters kinetic energy is written as p + 8% =
161> + |82 + |p|26% + | S|?$?, and the Lagrangian is found by
subtracting the free energy F from the kinetic energy. When
the system is driven out of equilibrium, the phase fluctuations
play a role in the dynamics, so the free energy in Eq. (7)
must be modified. Depending on its energy, the pump excites
certain phase modes. For example, if an optical pump laser is
used, only low-momentum phase modes are excited, and their
behavior can be described by an effective phason for charge
order (9) and spin order (¢). The coupling term then becomes
—21|51%|p| cos (2¢p — 6). In addition, the final term from the
gradient [see Eq. (6)] is included as Ky|p|*0> + K¢|S|2¢2,
where the factor of | |* has been absorbed into the coefficients.
(In cases where the amplitudes are perturbed only slightly
from equilibrium, these terms can be further approximated as
Ky0% + K, %)
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To account for energy loss, the Euler-Lagrange equations
of motion are supplemented with phenomenological damping
terms proportional to the first derivatives of the order parame-
ters. Incorporating these effects, the behavior of the system is
described by the equations of motion:

lpl = 1016 = r,lpl = 2|0
+ A|S|* cos (2 — 0) — 2K |pl6° — v, 0],
NEINUAEE AN ESINE
+211S]1p] cos (2¢ — 6) — 2K4|S16* — yslS,
6 = 2XSP|p|sin (29 — 6) — 2Ky|p|*0 — y40,
¢ = —4x|SP|plsin (2¢ — 0) — 2K4|SI°¢ — ypd.  (8)

Solving these four coupled differential equations determines
the time dependence of the order parameters.

Examining the amplitude fluctuations alone elucidates
their effect on the stability of the order. The dynamics of
the amplitude—via the amplitudons—are governed by the
equations:

lpl = —3r,lpl = 2101 + ISP = y,lpl,

. . ©))
|S] = —37,1SI = 2SI 4 2AISllp] = ysIS].

When the uncoupled and undamped order parameters are
perturbed slightly, |p| and |S| will oscillate with frequencies
proportional to \/m for charge order and /]r,][ for spin order.
Coupling the two orders will increase the amplitude oscillation
frequency of both, although similar to the equilibrium case,
charge order is more robust than spin order against amplitude
fluctuations.

If the regime of interest involves longer time scales, with
the return to equilibrium dominated by lattice coupling or
spin-orbit effects, the second-order derivatives in the equations
of motion can be dropped to focus on decay at longer times.
In this regime, small perturbations from equilibrium decay
according to the equations of motion:

0= —1r,lpl +AISI> = y,lpl,

] , (10)
0 = —3rs|SI +22ISllpl — ysISI.

In the uncoupled case, A = 0 and the exact decay time scales
are found (analytically) to be 7, = y,/|r,| and 7, = y;/|rs]
for charge and spin order, respectively.

When the assumption of small perturbations is relaxed, the
cubic terms are restored to the equations of motion, but the
uncoupled case can still be solved analytically. If the pump
pulse initially suppresses the charge order magnitude by an
amount Ap (not necessarily small), the order recovers with a
rate of

. _%(ln[l—Ap/e}_lln[l—(1—Ap/e)2]>
TN 1—Ap 2 1—(1—-2Ap)2 |)°
(11)

where e is the Euler constant. Similarly for spin order, when
the magnitude is suppressed by AS,

2ys< |:1—AS/e:| 1 [1—(1—AS/e)2D
Tg = — n|l——|--In| ———— .
|7 1 —AS 2 1 —(1—AS)?

12)
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The amplitude recovery time scales are proportional to the
damping strength y,, and inversely proportional to the
stability of the order |r, |. This shows that the more robust
the order, the faster the amplitudons decay, so that the system
returns more quickly to equilibrium.

The role of phasons in the recovery process can also be
studied using Eq. (8), where the second derivative terms
are again dropped to focus on recovery at longer times. As
discussed in Sec. II, the phase that enters into the Ginzburg-
Landau theory is an effective quantity that encompasses the
low-energy phase modes excited by the optical pump laser.
The phason dispersion is gapless whereas that of amplitudons
is gapped, so the low-energy phase modes considered here
always have a lower energy® and hence govern behavior
on longer time scales than the amplitudons. Phason recovery
also will be slower than spin-order amplitude recovery, since
coupling of spin order to the more robust charge order
decreases the spin-order amplitude time scale.

To simulate time-resolved x-ray diffraction experiments
that probe the behavior of systems with collinear charge
and spin order, the amplitude and phase order parameters
must be related to the Bragg intensity. In analogy with
the Bragg peaks from a crystalline lattice, the Bragg peaks
of the charge- and spin-order superlattices are proportional
to the squared amplitude and a Debye-Waller-like factor from
the effective phase.'”> Just as incoherent motion of atoms
about their equilibrium lattice positions leads to a reduction of
the measured intensity, so fluctuations of the phase decrease
the charge- and spin-order Bragg intensity. Incorporating this
effect, the normalized Bragg intensities can be written in terms
of the order parameters as:

ISP _p

=—c¢

S

|:0|2 _p?
Ico = —¢7, Iso

: (13)
0

where pg and Sy are the equilibrium values.

A final effect on the measured Bragg intensity of spin order
only can come from the experimental scattering geometry. Due
to spin order’s vector nature, its intensity can be modified by
the factor:®’

G = |(€in X €ouw) - %, (14)

where €;, gives the polarization of the incoming probe pulses,
€out gives the polarization of the diffracted light, and 1 is the
direction of spin order. In pump-probe experiments, the pump
pulse perturbs the system and rotates the spins away from
their equilibrium orientation, changing G and affecting the
measured intensity. Since this effect occurs for vector-order
parameters only, charge order is unaffected, but the expression
for spin-order Bragg intensity should be modified to:

Iso = —e G (15)

where relevant. The time scale for G is related to the spin-order
vector reorientation and hence to spin-orbit coupling.

As an interesting note, the pump pulse can in principle
rotate the spins to a new orientation such that G is either less
or greater than it was in equilibrium. In the former case, the
spin-order Bragg intensity will be suppressed, and it will attain
ametastable value less than the equilibrium value. On the other
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hand, in the latter case, an enhancement of spin-order Bragg
intensity should be observed, and it will recover to a metastable
value greater than its equilibrium value. However, experiments
typically optimize the geometry to maximize the equilibrium
Bragg intensity, so it is unlikely to see the enhanced metastable
state.

IV. APPLICATION TO STRIPED NICKELATE

The time-dependent Ginzburg-Landau model of a charge-
and spin-striped system can be applied to the nickelate
La; 75S1925NiOy4, with experimental considerations guiding
the choice of parameters. Optical conductivity experiments
have measured a charge transfer energy on the order of 1 eV
and a charge gap of 200 meV,>3* whereas inelastic neutron
scattering experiments have found a spin superexchange en-
ergy of 10-30 meV and a spin gap of 20 meV.?! Together, these
results suggest that charge order has an intrinsic energy scale
that is at least an order of magnitude greater than that of spin.

Using these considerations, we set r, ~ 10r, (r, = —105
and ry = —10). These values guarantee that the phase tran-
sitions are second order, as is known in the nickelates.'*
In addition, it elucidates the behavior of the system when
charge order’s energy scale is an order of magnitude stronger
than spin’s in the absence of coupling. As discussed already,
the phase fluctuations have low energy compared to the
charge-order amplitudons, motivating the choice of Ky =
Ky = 0.15 ~ |rs]/100.

Since strong electron-lattice effects are important to form-
ing the striped state in the nickelates,®*" charge and spin
order dissipate energy via the lattice, as captured by the
damping terms in the equations of motion. Charge order
couples directly to the lattice though the Coulomb interaction,
whereas spins couple only indirectly,*! so charge order has
a stronger relaxation pathway and y, > y,. The low-energy
phase fluctuations have a correspondingly long time scale, so
phase recovery is chosen to take at least an order of magnitude
longer than amplitude recovery in the uncoupled case. The
damping factors are selected such that yy = yy ~ 10y, (v, =
150, ys = 50, y» = yp = 1000). With these parameters, the
uncoupled amplitude decay time scale for charge order is a
few times that of spin order, highlighting the effect of coupling
on the time scales.

The model can be tested for different strengths of the
pump pulse that melts the order. For weak pump fluence, the
initial conditions are perturbed slightly from equilibrium to
be [p(0)] = 0.8p9 and |S(0)| = 0.9Sy, where py and Sy are
the equilibrium values. The ratio of the phases is assumed to
remain close to the 2 : 1 equilibrium ratio [0(0) = 0.45 rad
and ¢(0) = 0.2 rad]. Stronger pump fluence should disrupt the
stripe phase to a greater degree, so the initial amplitudes are
chosen to be suppressed more (|p(0)| = 0.6p9 and |S(0)| =
0.7Sp). The ratio of phases is chosen as 6(0) = 0.9 rad
and ¢(0) = 0.2 rad, differing from the equilibrium ratio
by a factor of two to test the effect of significant phase
disorganization. Finally, in order to simulate the temporal
experimental resolution, the calculated Bragg intensity time
traces are convolved with a Gaussian with a standard deviation
of 1.69 arbitrary time units (value chosen to agree qualitatively
with experiment).
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FIG. 3. (Color online) The normalized squared amplitude time
traces for charge order in the coupled (solid blue line) and uncoupled
(dashed blue line) cases, and for spin order in the coupled (solid
red line) and uncoupled (dashed red line) cases. The inset shows the
initial recovery time scales (in arbitrary units) for different coupling
strengths, with A normalized such that A = 1 is strong coupling.

The time scales associated with amplitude recovery can be
extracted by fitting the calculated Bragg intensity curves with
an exponential. As discussed already, a priori the noninter-
acting time scales are expected to be intrinsically different.
In the uncoupled model (A = 0), unless the parameters are
very carefully tuned, the recovery time scales are different,
as illustrated in Fig. 3 (inset). However, as soon as the order
parameters are coupled, any nonzero value of the coupling
constant A will begin to bring the time scales together. As the
coupling strength is increased, the time scales approach each
other more closely until the two orders lock to each other.
Importantly, once locked, they do not separate again with
a further increase in coupling. Figure 3 also shows that the
amplitudes rapidly recover to their equilibrium values within
the time window studied, implying that the phases govern
the longer time recovery, which is expected from physical
arguments as discussed above.

This phase relaxation is shown in the inset of Fig. 4 for the
strong pump fluence case (the weak pump fluence case behaves
similarly). Due to the coupling term in the free energy that is
proportional to cos (2¢p — ), finite coupling quickly locks the
phases together such that 2¢p — 6 = 2mn, with integer n. The
n = 0 case is most likely, since n > 1 requires larger effective
phases and hence higher-energy phason modes. This behavior
can be seen in the time evolution of the effective charge and
spin orders: although the ratio of initial phases is very different
from its equilibrium ratio, coupling quickly locks the charge
and spin ordersintoa 2 : 1 relationship, after which they slowly
relax back to equilibrium together.

However, since this locking process occurs on a shorter
time scale than that of the spin metastability, phase recovery
alone cannot account for the suppression of the Bragg intensity
observed in experiments. Hence spin order’s orientation must
affect the measured intensity on long time scales. The spin-
orbit coupling in the nickelates is weak,** so its effect is to pick
an easy axis, indicating the smallness of the associated energy
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FIG. 4. (Color online) The calculated Bragg intensity time traces
for charge order (blue), vector spin order (red), and scalar spin order
(green), illustrating the effect of the geometric scattering factor on
spin metastability. The inset shows that the phases of charge and spin
order lock together rapidly in a 2 : 1 ratio before relaxing slowly
to equilibrium together, demonstrating the need for physics beyond
phase evolution to describe the spin metastability.

scale and hence the slowness of the corresponding time scale,
which is the longest in the system. This effect from spin order’s
vectorial nature strongly affects recovery of the Bragg intensity
via the experimental scattering geometry factor G. Because the
spin-order reorientation is the longest time scale in the system,
it can be assumed to remain constant during times of interest. A
weak pump pulse alters spin-order direction less than a strong
pump pulse, so we take G = 0.94 in the former case and G =
0.85 in the latter. The calculated Bragg intensities of charge and
spin order for vector and scalar spin order demonstrate that spin
reorientation is what gives rise to the spin metastability (see
Fig. 4). (The model shows qualitatively similar behavior for
other values of the geometrical scattering factor; these specific
values were chosen to give qualitatively similar results as the
experiment.) We stress that the inclusion of this term has no
effect on the amplitude and phase dynamics; its only effect is
on the Bragg intensity.

Finally, all these considerations can be incorporated to
show simulated Bragg intensity time evolution in the cases
of weak and strong pump fluence. Figure 5 demonstrates the
qualitative similarity of the simulated time traces [Fig. 5(a)] for
both sets of initial conditions (when coupling between charge
order and spin order is finite) to the experimental time traces
[Fig. 5(b)]. As discussed already, coupling between charge and
spin order locks their faster, initial recovery dynamics together.
This overlap can be seen from Fig. 5(a), but a two-time fit is
also performed on the simulated Bragg intensity time traces to
extract the time scales. For the weak pump-pulse case, these
are plotted in the inset to show the effect of increasing coupling
strength. On longer times, the recovery of both orders slows
down as the phase recovers, and spin order reaches a metastable
state due to the long time scale of spin reorientation.

At a glance, there appears to be five distinct time scales
in the system: two for the order parameters’ amplitudes, two
for the effective phases, and one for the vector reorientation
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FIG. 5. (Color online) Bragg intensity time traces for charge
(blue) and spin (red) order calculated from theory for two different
pump strengths (a) compared to experiment (b). The experimental
data for spin order were taken with an excitation density of 38 J/cm?,
whereas the excitation density for the charge-order measurements was
29 J/cm?. The inset in (a) shows the locking of the initial recovery
time scales in the weak pump-pulse case as coupling between the
orders increases.

of spin order. However, coupling between charge and spin
order locks together the amplitude dynamics, and also the
phase dynamics, reducing the number of time scales to the
three seen in experiment. Thus, the time-dependent Ginzburg-
Landau model describes the full temporal dynamics of the
pump-probe experiment and elucidates the role of amplitude
and phase fluctuations, as well as of spin reorientation, in the
IECOVery process.

As a note, the qualitative behavior of the model is relatively
insensitive to parameter choice (as long as they satisfy the
conditions of thermal equilibrium). For example, decreasing
r, and r, each by a factor of 10 will change the initial
recovery time scales for both the charge- and spin-order Bragg
intensities, but they remain locked to each other as long as
coupling strength is finite. Changing the ratio of amplitude
damping factors by 10 and increasing the coupling strength
leads to similar conclusions. In addition, varying the phase
damping factors alters the rate at which the Bragg intensities
recover at longer times, but does not affect the locking of
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the initial recovery. This robustness demonstrates that the
observation of finite coupling driving the amplitude recovery
time scales together is not specific to a particular parameter
set, but rather is a general property of this model.

V. CONCLUSIONS

The time-dependent Ginzburg-Landau model qualitatively
captures the time evolution of coupled, collinear charge- and
spin-order parameters in response to a pump pulse that melts
the equilibrium stripe order. With the appropriate choice of
parameters, it shows that on short time scales, the stability
of the order parameters is determined by the amplitude
fluctuations, whereas on longer time scales, phase fluctuations
dominate. Interestingly, despite being melted by the pump
pulse, the charge- and spin-order parameter dynamics do not
decouple even out of equilibrium: instead, they are governed by
the joined time scales determined by the choice of parameters.

This result is surprising, given the significant difference in
characteristic energy scales and hence the intuitively expected
time scales between charge and spin. It can be reconciled by
studying the effect of coupling between the order parameters,
which exists even out of equilibrium and is what locks the
recovery dynamics together. Because coupling acts on a
macroscopic scale to intertwine the time scales, it does not
affect the intrinsic microscopic energy scales.

Additionally, the model incorporates the effect of scattering
geometry on the measured Bragg diffraction intensity, showing
that on long time scales, spin-order recovery is dominated by
a slow spin reorientation process that can mask the spin phase
time scale and lead to the observed spin metastability. Thus
finite coupling between charge and spin order explains the
reduction of five distinct expected time scales (two for the
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amplitude recovery, two for phase recovery, and one for spin
reorientation) to the three observed in experiment.

The time-resolved pump-probe experiments have demon-
strated the need for a new way of thinking about collective
many-body dynamics. In systems such as the strongly corre-
lated transition-metal oxides, studying the charge, spin, orbital,
and lattice degrees of freedom separately is insufficient to
capture their behavior. Instead, strong interactions between
the different degrees of freedom necessitate treating them
on equal footing in the theoretical framework, and studying
the dynamics of coupled orders rather than individual ones.
Though we have applied it specifically to La; 75Srg,5NiOy,
the phenomenological Ginzburg-Landau model provides a
general way of understanding the effect of strong coupling
in striped, collinear systems. In fact, with the appropriate
definition of order parameters, the approach can be generalized
to describe the time dynamics of systems with any coupled,
symmetry-broken states, such as density waves, two-band
superconductivity, and two-component superfluidity.
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