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Weyl fermions and the anomalous Hall effect in metallic ferromagnets
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We reconsider the problem of the anomalous Hall effect in ferromagnetic StRuO3, incorporating insights from
the recently developed theory of Weyl semimetals. We demonstrate that STRuO; possesses a large number of
Weyl nodes, separated in momentum space, in its band structure. While the nodes normally do not coincide
with the Fermi energy, unless the material is doped, we show that even the nodes inside the Fermi sea have
a significant effect on the physical properties of the material. In particular, we show that the common belief
that (the nonquantized part of) the intrinsic anomalous Hall conductivity of a ferromagnetic metal is entirely a
Fermi-surface property, is incorrect: there generally exists a contribution to the anomalous Hall conductivity that
arises from topological Fermi-arc surface states, associated with the Weyl nodes, which is of the same order of

magnitude as the Fermi-surface contribution.
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I. INTRODUCTION

Understanding topological properties of the electronic
structure of materials and their experimentally observable
consequences has become one of the most important themes of
the modern condensed-matter physics, gradually replacing the
traditional focus on the properties, determined by symmetry.
This shift has become particularly obvious in recent years,
after the discovery of topological insulators.! An interesting
new development in this field is the realization that to possess
topologically nontrivial properties a material does not have
to be an insulator, which significantly expands the range of
potential realizations of such materials.>”” In particular, it is
now understood that nondegenerate accidental band crossings,
named Weyl nodes in Ref. 3, which occur generically in
any three-dimensional material with a broken time-reversal or
inversion symmetry, have topologically nontrivial properties.
These crossings act as “magnetic monopoles” in momentum
space and the corresponding quantized topological charge
gives the band-crossing points stability to perturbations.

An alternative view of the Weyl nodes, which applies
specifically to ferromagnetic materials, in which the nodes
appear due to broken time-reversal symmetry, is based on
regarding the three-dimensional (3D) band structure as a set
of two-dimensional (2D) band structures, parametrized by the
crystal momentum component k,, where the z axis is taken
to be along the magnetization direction. Weyl nodes in this
picture correspond to gap-closing quantum phase transitions,
at which Chern numbers of the 2D bands change pairwise by
plus and minus the topological charge of the corresponding
node. In other words, a Weyl node can be viewed as a
quantum Hall transition point in momentum space. One
interesting consequence, that immediately follows from this, is
the existence of chiral Fermi-arc surface states, corresponding
to pairs of bands with nonzero Chern numbers, where the
Fermi arc connects projections of the Weyl nodes with opposite
topological charge on the sample surface Brillouin zone
(BZ).3»

As we show in this paper, this viewpoint is particularly
useful in discussing the role of the Weyl nodes in intrinsic
anomalous Hall effect (AHE) in metallic ferromagnets. AHE in
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ferromagnets is an old problem,? the interest in which has been
revived recently with the realization that topological properties
of the electronic structure likely play a very important role in
it.>~'® In particular, here we demonstrate that Weyl nodes, and
the associated topological Fermi-arc surface states, contribute
significantly to the intrinsic anomalous Hall conductivity of
ferromagnetic metals, which implies that the anomalous Hall
conductivity in ferromagnets cannot be viewed as a Fermi-
surface property.

II. TIGHT-BINDING MODEL OF SrRuO;

While our results likely apply to most metallic ferromag-
nets, we choose SrRuO; as the specific material we focus on.
The main reason for this choice is a relative simplicity of its
relevant electronic structure near the Fermi energy, which to a
good approximation consists of six bands, corresponding to the
three 15, Ru d orbitals,'” which are 2/3-filled in the undoped
material. We also assume undistorted cubic perovskite crystal
structure for STRuO3, which should be a good approximation,
especially since we are interested in topological properties
of the band structure, insensitive to minor variations of the
parameters.

We start from a six-orbital tight-binding model for
SrRuOj3, which can be written down based on symmetry
considerations.'® The momentum space Hamiltonian has the
following form:

H = Z [Eﬁgaabsaa’ + f]gbsaa’ + l.)\fabctéa’] dllao*dkba/’
k

(1)
where summation over repeated orbital and spin indices is
implicit. The first term in Eq. (1) corresponds to spin-split
unhybridized #,,-orbital band dispersions:

6" = —21[cos(ky) + cos(k,)] — 2, cos(ky) — mTZ,,
™ = —2t1[cos(ky) + cos(k:)] — 21 cos(ky) — mT;

oo’

3=xy

€k —2t1[cos(ky) + cos(ky)] — 21, cos(k,) — mT}

o
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where #; and #, are the in-plane and out-of-plane orbital hop-
ping matrix elements, m is the rigid momentum-independent
exchange spin splitting, which is nonzero in the ferromagnetic
phase, and crystal momentum is measured in units of the cubic
structure lattice constant. The second term corresponds to
interorbital spin-independent hopping, which is induced by
hybridization between the oxygen p orbitals and ruthenium d
orbitals:

b — —4 f sin(k,) sin(kp). 3)

Finally, the third term corresponds to spin-orbit (SO) in-
teractions, projected onto the #,, orbital manifold, where
A denotes the strength of the SO interactions, €c is the
fully antisymmetric tensor, and t!>3 is the triplet of Pauli
matrices. We should point out here that we will not attempt
any quantitative comparison with experiments in this paper and
treat parameters in Eq. (1) with some freedom. What we are
after in this work is qualitative features of the band structure
and their role in the AHE, and we expect our results to apply
quite generally to metallic ferromagnets, not just to StfRuOj.

In the absence of the SO interactions, the eigenstates of H
exhibit multiple band crossings, which arise due to the spin
splitting. One might think that once the SO interactions are
turned on, these band crossings will be eliminated and replaced
by gaps of magnitude, proportional to the SO interaction
strength A for small 1.!® Recent work on Weyl semimetals,
however, has demonstrated that this is not the case: nondegen-
erate band crossings in three dimensions possess topological
stability and cannot be eliminated by small perturbations.
We find that a large number of band crossings in SrRuOj;
survive even in the presence of the SO interactions and have
a very significant qualitative effect on the anomalous Hall
conductivity, as will be shown below.

III. INTRINSIC ANOMALOUS HALL EFFECT
AND WEYL NODES: GENERAL DISCUSSION

As is well known, intrinsic anomalous Hall conductivity
can be calculated as an integral of the Berry curvature over all
the occupied states:'®

e’ d’k
Oxy = % ;/ mnF(Enk)Q;zkv (4)

where n r(¢€) is the Fermi-Dirac distribution function, €, is the
band dispersion, and £, is the Berry curvature vector, which
is a curl of the Berry connection A,x = i (nk|V|nk), and may
be thought of as an analog of magnetic field in momentum
space. One way to understand the important role, played by
the Weyl nodes in the intrinsic AHE, is to realize that these
nodes act as magnetic-monopole-like sources of the Berry
curvature field, which is divergenceless in the absence of such
sources. For our purposes, however, it will be more useful to
adopt a different viewpoint. Namely, since the magnetization
m along the z axis introduces a preferred direction and reduces
the cubic symmetry down to tetragonal, we can separate the
3D momentum space integration in Eq. (4) into a 1D integral
over k; and a 2D integral over k| = (k,,ky):

T dk
Gy = / ) 5)

21

PHYSICAL REVIEW B 88, 125110 (2013)

where
2D €2 dzkj_ Z
04y (k) = . En mnF[Enki(kz)]anl(kz)' (6)

We may then regard o2 (k.) as the Hall conductivity of a set
of 2D systems, parametrized by k.. This representation of o,
turns out to be extremely useful, as we show below.

As was first pointed out by Haldane,'* we can use Stokes
theorem and rewrite o7 in the following way:

82
GLOEE=>Y § i At @)

where the integral is along the 1D Fermi surface of a 2D
system, corresponding to a given k,. This suggests that the
intrinsic anomalous Hall conductivity may be thought of as a
Fermi-surface property, like all other transport properties of
metals.'* However, there is a subtlety in this argument. The
Stokes theorem applies only when the corresponding band has
a zero Chern number.'*?° The Chern number is an obstruction
to the Stokes theorem?” and the correct form of Eq. (7) is

2 2/
2D _ e e
ok = 5 Z 7§ k- Ak + 5 Z Cak), ®)
where
I ”
C,ky) = Z/‘Cﬁklﬂ;ﬂu(kz), )

is the Chern number of the two-dimensional band n at
momentum k, and the sum over n in the second term in
Eq. (8) is restricted to completely filled 2D bands only, which
is indicated by the prime. To make Eq. (8) well defined we
may regard the first BZ as an open square rather than a torus,
so that when a band is completely filled, the line integral in
the first term becomes an integral over the BZ boundary and
gives the corresponding Chern number. Gauge ambiguity in
the first term may be eliminated by comparing Eq. (8) with the
explicitly gauge-invariant result, obtained from Eq. (6).

If Weyl nodes were not present in the band structure, all the
Chern numbers C,,(k,) would not in fact depend on k., and it
is normally assumed that they are zero, since a very large spin
splitting would be needed to create a band with a constant
nonzero C,(k;), implying a contribution to the total Hall
conductivity from this band, quantized in units of e>G /27 h,
where G = 2 is the smallest reciprocal-lattice vector. Thus
one may conclude that the anomalous Hall conductivity is
entirely a Fermi-surface property.'* This, however, is incorrect,
since C, (k) are not independent of k_ in the presence of Weyl
nodes, and they are in general present in any ferromagnet, even
when the magnetization is small. Indeed, as discussed above,
a Weyl node may be thought of as a gap-closing transition
point for the 2D band structure, parametrized by k,. At the
transition point, the Chern numbers of the two bands, that
touch at the Weyl node, change by + the topological charge
of the node.>® The corresponding contribution to the total 3D
Hall conductivity is then not quantized in units of G, but is
still not a Fermi-surface property: it instead corresponds to the
Fermi-arc surface states, associated with pairs of Weyl nodes
with opposite topological charge.
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FIG. 1. (Color online) Band dispersion for #,/t, = —0.2, f/t; =

0.2,A/t; =0.4,m/t; = 1, plotted along high-symmetry directions

using tetragonal lattice system notation. There are multiple band

crossings between different bands. Some of the crossings are in fact
away from high-symmetry directions and cannot be seen in this plot.

IV. INTRINSIC ANOMALOUS HALL EFFECT
AND WEYL NODES: SrRuO;

Let us now see how the above picture is realized in STRuOs.
The six-band tight-binding Hamiltonian of SrRuOs, Eq. (1),
is easily diagonalized numerically. The band structure, plotted
along high-symmetry directions in the first BZ in the standard
way, is shown in Fig. 1. Some of the Weyl nodes are in
fact clearly visible in Fig. 1. In general, however, finding
all the nodes, along with their topological charges, is quite
a difficult task. What makes it significantly easier is the
relation between the Weyl nodes and the change of the Chern
number as a function of k., discussed above. To evaluate the
Chern numbers, we use a discrete lattice version of Eq. 9),%!
corresponding to the discrete values of the crystal momentum
in a finite sample with periodic boundary conditions. Namely
we calculate the lattice Berry connection fields as

Ay, = (nkInk + o), (10)

where p are the nearest-neighbor vectors of the square
momentum-space lattice with a fixed k.. The Chern number is
then evaluated as

1
Colks) = 5= 3 TmIn (AL A e 5 A s, AR, 5)-
k

Y

An example of the resulting plot of C, (k) is shown in Fig. 2.
Every discrete jump of the Chern number by an integer is
due to the presence of Weyl nodes in the plane in 3D BZ,
corresponding to the given value of k,. The magnitude of
the jump is equal to the total topological charge of Weyl
nodes in a given plane. The information obtained from these
plots, plus symmetry considerations, confirmed by an explicit
examination of the band dispersions, allow us to identify all the
Weyl nodes in the band structure of StRuO3, as shown in Fig. 2.
We find a total of 22 pairs of nodes with opposite topological
charges in the first BZ. Two of those pairs, separated along
the (ky.k,) = (0,0) and (k,,k,) = (7r,7) lines, correspond to
double-Weyl nodes with topological charges £2. These are
stabilized by the cubic symmetry of the undistorted perovskite
structure and will be split each into two pairs of ordinary
Weyl nodes with a single unit of topological charge when
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FIG. 2. (Color online) (a) Chern number for the second lowest
band as a function of k, for the same parameter values as in Fig. 1.
The Chern number experiences multiple integer-valued jumps as a
function of k, in the first BZ. The jumps are the evidence of the
existence of Weyl nodes. (b) Locations of all Weyl nodes in the
band structure of SrRuO;. Only one quarter of the first Brillouin
zone is shown. The remaining points are obtained by successive /2
rotations around the z axis. Dots are linear (charge one) Weyl nodes,
while crosses denote quadratic (charge two) Weyl nodes. The solid
(connecting pairs of nodes with opposite topological charge) and
dashed lines are guides to the eye.

the orthorhombic distortion, typically present in real STRuOj3
material, is taken into account.?? The rest of the nodes have
topological charge +1. Of those, four pairs are located on
the same lines as the double-Weyl nodes, four pairs are on
the (k,,ky) = (0,7),(7,0) lines, eight pairs are located in the
k. = *£k, planes, and four pairs are located in the k, = 7 and
ky = 7 planes. The nodes are generally not at the same energy,
unless required by symmetry.

We can now explicitly identify two distinct contributions
to the total anomalous Hall conductivity of SrRuOs: the
contribution arising from the Femi-arc surface states and
the contribution, associated with the bulk Fermi surface. We
evaluate the surface-state part of the Hall conductivity by
summing the Chern-number contributions of all completely
filled 2D bands at every k_:°

2 T dk 4
o5 = % / 7 2 Cnla), (12)
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FIG. 3. (Color online) Total anomalous Hall conductivity oy,
(solid line) and the edge-state contribution to the conductivity crf;ige
(dashed line) as a function of Fermi energy € for m/#; = 1 (a), and
magnetization m for €z /t; = 0 (b). oy, is in units of €2/ h (the lattice
constant is set to unity).

The bulk Fermi-surface contribution is then the difference
between the total Hall conductivity, given by Eq. (4), and
the surface-state contribution, Eq. (12). The total anomalous
Hall conductivity is evaluated by summing the lattice Berry
curvature, Eq. (11), over all states below the Fermi energy.
The results are shown in Fig. 3. It is seen that oy, is a highly
nonmonotonic function of both the Fermi energy (which can
be varied to some degree by doping) and the magnetization.
The peaks and dips in the dependence of o, on € correspond
to the Fermi level passing through the Weyl nodes. It can also
be seen that the Fermi-arc surface-state contribution is always
of the same order as the Fermi surface contribution and cannot
be regarded as an insignificant correction. An example of a
chiral surface-state dispersion, calculated for a sample with
open boundaries, is shown in Fig. 4.

Equation (12) appears to suggest that all Weyl nodes
below the Fermi energy contribute to the anomalous Hall
conductivity. This, however, is not correct. As discussed above,
Weyl nodes may be thought of as points of quantum Hall
transitions in momentum space, at which the corresponding
2D bands experience equal in magnitude but opposite in sign
change of the Chern number. This means, in particular, that
when both 2D bands in the pair, joined by a pair of Weyl nodes,
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FIG. 4. Example of a calculated chiral surface-state dispersion in
the k, = 0 plane for a sample with open boundaries, perpendicular to
the y axis. The intensity of gray is proportional to the degree of surface
localization of the corresponding state, measured by the inverse
participation ratio of its wave function. The parameter values are the
same as in Fig. 1. Two pairs of chiral surface states, corresponding to
the double-Weyl nodes, separated along the (k.,k,) = (0,0) line, is
clearly visible. Each pair of chiral surface states is localized on one
of the sample surfaces.

are filled, the total contribution of this pair of nodes to the
anomalous Hall conductivity is zero.

V. CONCLUSIONS

In conclusion, we have identified the role, played by
nondegenerate band-touching nodes (Weyl nodes) in the
intrinsic AHE in ferromagnetic metals. We have shown that,
in general, even the nonquantized part of the anomalous Hall
conductivity is not a Fermi-liquid property, in the sense that
a significant part of it arises from the Femi-arc surface states,
associated with pairs of Weyl nodes of opposite chirality,
and not with bulk states on the Fermi surface. It is clear
from our analysis that any generic model of intrinsic AHE
in ferromagnetic metals must incorporate Weyl nodes and the
currently used models are lacking in this regard.

It would be very interesting to try to observe chiral edge
states in SrRuO; experimentally. One possibility would be to
use the ARPES technique, whose usefulness in this regard
has been clearly demonstrated in the study of topological
insulators.! Another interesting possibility is the scanning
superconducting quantum interference device susceptometry,
which can directly image the edge currents.>’
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