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Weyl semimetal is a phase of matter that provides a solid state realization of chiral Weyl fermions. Most of
its unique physics is a consequence of chiral anomaly, namely nonconservation of the number of particles of a
given chirality. Mathematically, this is expressed in the appearance of the so called θ term in the action of the
electromagnetic field, when the Weyl fermions are integrated out. Recently, however, it has been suggested that
the analogy between the chiral fermions of quantum field theory with unbounded linear dispersion, and their solid
state realization with a dispersion naturally bounded by the bandwidth and crystal momentum defined only within
the first Brillouin zone, holds only in a restricted sense, with parts of the θ term absent. Here we demonstrate that
this is not the case. We explicitly derive the θ term for a microscopic model of a Weyl semimetal by integrating
out fermions coupled to electromagnetic field, and show that the result has exactly the same form as in the case
of relativistic chiral fermions.
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I. INTRODUCTION

Weyl semimetal is a proposed phase of matter, which
may be thought of as a three-dimensional (3D) analog of
graphene.1–5 It is more than “3D graphene,” however, since
it possesses interesting topological properties, which are
directly tied to its three dimensionality and are not present in
graphene. These properties may be described as being distinct
consequences of a single underlying phenomenon, the chiral
anomaly.6–12 Chiral anomaly is a well-known phenomenon
in relativistic quantum field theory, which manifests in non-
conservation of the number of particles of a given chirality
in the presence of topologically nontrivial configurations
of the background gauge field, even when these numbers
are conserved classically.13–15 It is an intrinsically quantum
phenomenon with no classical analog and, along with other
kinds of quantum anomalies, plays an important role in the
modern understanding of topologically nontrivial phases of
matter.16–18

Mathematically, chiral anomaly and related phenomena
may be compactly expressed as an induced θ term in the
action of the electromagnetic field, when the chiral fermions
are integrated out:

S = e2

32π2

∫
dt d3r θ (r,t)εμναβFμνFαβ, (1)

where θ (r,t) is an “axion” field,19 Fμν = ∂μAν − ∂νAμ, and
we will use h̄ = c = 1 units henceforth. The spatial and
temporal dependence of the axion field defines a specific
realization of a topologically nontrivial phase of matter, which
can be related to chiral anomaly. For example, θ = π in the
case of 3D topological insulators.20,21 We have suggested
that electromagnetic response of a Weyl semimetal is also
described by an action of the form of Eq. (1), where the axion
field is given by9,12

θ (r,t) = 2b · r − 2b0t, (2)

where 2b is the separation between the Weyl nodes in
momentum space, while 2b0 is the separation between the
nodes in energy (we will specialize to the case of a Weyl

semimetal with only two nodes for simplicity; generalization to
any even number of nodes is straightforward). In Ref. 9 we have
explicitly derived this term for a generic low-energy model
of a Weyl semimetal with an unbounded linear dispersion
using Fujikawa’s method.22 This type of θ term has been
discussed before in the context of Lorentz-violating extensions
of quantum electrodynamics.23–26

It is useful to integrate by parts and rewrite Eq. (1) in the
following form:

S = − e2

8π2

∫
d3rdt ∂μθεμναβAν∂αAβ, (3)

which has the form of a “3D Chern-Simons” term. Varying
Eq. (3) with respect to the gauge field, we obtain topological
currents, which are the experimentally observable topological
responses of a Weyl semimetal:

jν = e2

2π2
bμεμναβ∂αAβ, μ = 1, 2, 3,

(4)

jν = − e2

2π2
b0ε

0ναβ∂αAβ.

The first of Eqs. (4) describes the anomalous Hall effect (AHE),
associated with the chiral Fermi arc surface states of the Weyl
semimetal, while the second describes the chiral magnetic
effect (CME), which is a current, driven by an applied magnetic
field.

Recently, however, this picture has been challenged in
Ref. 27, which claims that while the AHE does indeed occur
in Weyl semimetals, the CME, and the corresponding part of
the θ term in Eq. (1) is an artifact of the unbounded linear
dispersion (Dirac sea) of relativistic quantum field theory and
is thus absent in a solid-state realization of Weyl fermions,
with a natural finite cutoff for both momentum and energy.
This conclusion stands at odds with the idea of topological
origin of the chiral anomaly and related phenomena and thus
requires a very serious consideration. Here we demonstrate that
this conclusion is in fact incorrect. We explicitly derive the θ

term by integrating out fermions coupled to electromagnetic
field in a microscopic model of a Weyl semimetal, introduced
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by one of us in Ref. 4. We demonstrate explicitly that the θ

term has exactly the form of Eq. (1), if allowance is made
for the inherent spatial anisotropy of the microscopic model.
We also show that the origin of the discrepancy between our
results and the results of Ref. 27 is the difference in the
order of limits of zero frequency and zero wave vector when
calculating the response function, or transport coefficient,
describing the effect. Thus, while the calculation in Ref. 27
is formally correct, the conclusions, drawn from the result,
and its interpretation, are not.

The rest of the paper is organized as follows. In Sec. II
we provide a detailed derivation of the part of the θ term,
responsible for CME. We also discuss the reasons for the
apparent discrepancy between our results and the results of
Ref. 27. In Sec. III we derive the part of the θ term, responsible
for AHE. We finish with a brief summary of our results and
conclusions in Sec. IV.

II. DERIVATION OF THE θ TERM: CME PART

We start from the microscopic model of a Weyl semimetal
in a multilayer heterostructure, made of alternating layers of
topological insulator (TI) and normal insulator (NI) material
(Fig. 1), introduced in Ref. 4. The Hamiltonian is given by

H =
∫

d3r	†(r)[vF τ z(ẑ × σ ) · (−i∇ + eA)

+ �̂(Az) + bσ z + λτyσ z]	 (r), (5)

where vF is the Fermi velocity, characterizing the surface
states in TI layers, σ are electron spin operators, τ are
pseudospin operators, describing the which-surface degree of
freedom in each TI layer, and A is the vector potential of the
external electromagnetic field. �̂ is an operator, describing the
tunneling of electrons among neighboring layers in the growth
(z) direction of the heterostructure. Explicitly it is given by

�̂(Az) = �Sτ
xδi,j + �D

2
(τ+eieAizdδj,i+1

+ τ−e−ieAizdδj,i−1), (6)

where �S,D are matrix elements, characterizing electron
tunneling between the top and bottom surfaces of the same
and nearest-neighbor TI layers, and d is the period of the het-
erostructure. We have also assumed that the electromagnetic

B

TI

NI

FIG. 1. (Color online) Schematic picture of the specific realiza-
tion of a Weyl semimetal we consider: A multilayer heterostructure,
consisting of alternating layers of topological insulator (TI) and
normal insulator (NI), doped with magnetic impurities, which are
assumed to order ferromagnetically. An external magnetic field B is
applied along the growth direction of the heterostructure.

field is weak enough, so that modification of the tunneling
matrix elements by the field can be ignored and only the
Aharonov-Bohm phase, accumulated over many layers, is
non-negligible. The term, proportional to b, describes the
spin splitting due to magnetic impurities, which are assumed
to be ordered ferromagnetically. Finally, the last term in
Eq. (5) describes a spin-orbit (SO)-interaction term, induced
by broken inversion symmetry in the growth direction of the
multilayer. This was introduced by us in Ref. 8 and is needed
to create an energy difference between the Weyl nodes, which
leads to CME in the presence of an external magnetic field.

We now want to integrate out fermions and arrive at an
induced action for the electromagnetic field. For technical
reasons it is convenient to split the calculation into two parts.
In this section we will focus on evaluating the part of the θ

term, which is responsible for CME, while in the following
section we will evaluate the part responsible for AHE.

We will assume, without loss of generality, that the electro-
magnetic field consists of a magnetic field in the z direction,
and a vector potential Az, whose time derivative gives the z

component of the electric field Ez = −∂tAz. We will allow for
a time and z-coordinate dependence of the vector potential Az

and of the field λ, but assume that the magnetic field is time
independent and uniform. This assumption is made only for
technical reasons, since it greatly simplifies all calculations.
We are ultimately interested in the case of λ being time
independent and uniform, but a time-dependent magnetic field.
We will argue later that, at least to leading order in λ and at
low frequencies, the response of the system is identical in both
cases. We could alternatively do the calculation below treating
the time dependence of the magnetic field quasiclassically and
assuming a time-independent λ from the start, but find the way
we take below to be a little more transparent.

It will be convenient to use the Landau level basis of the
inversion-symmetric multilayer for this part of the calculation,
i.e., the basis of the eigenstates of the following Hamiltonian:

H(kz) = vF τ z(ẑ × σ ) · (−i∇ + eA) + �̂(kz) + bσ z, (7)

where �̂(kz) = �Sτ
x + 1

2 (�Dτ+eikzd + H.c.) is the interlayer
tunneling operator, partially diagonalized by Fourier transform
with respect to the layer index and kz is the corresponding com-
ponent of the crystal momentum, defined in the first Brillouin
zone (BZ) (−π/d,π/d) of the multilayer superlattice. After
the canonical transformation σ± → τ zσ±, τ± → σ zτ±, the
Hamiltonian takes the form in which the spin and pseudospin
degrees of freedom decouple:

H(kz) = vF (ẑ × σ ) · (−i∇ + eA) + [b + �̂(kz)]σ
z. (8)

The tunneling operator can now be diagonalized separately
from the rest of the Hamiltonian, which gives

Ht (kz) = vF (ẑ × σ ) · (−i∇ + eA) + mt (kz)σ
z. (9)

Here t = ± labels the two distinct eigenvalues
of the tunneling operator t�(kz), where �(kz) =√

�2
S + �2

D + 2�S�D cos(kzd), and mt (kz) = b + t�(kz).
The corresponding eigenvectors of the tunneling operator are
given by

∣∣ut
kz

〉 = 1√
2

(
1,t

�S + �De−ikzd

�(kz)

)
. (10)
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The two-component spinor |ut
kz
〉 is a vector in the τ -pseudospin

space. To diagonalize the remaining Hamiltonian we pick the
Landau gauge A = xBŷ. It is then easily shown8 that the
eigenstates of Ht (kz) have the following form:

|n,ky,kz,s,t〉 = vst
nkz↑|n − 1,ky,↑〉 + vst

nkz↓|n,ky,↓〉. (11)

Here

〈r|n,ky,σ 〉 = φnky
(r)|σ 〉, (12)

and φn,ky
(r) are the Landau gauge orbital wave functions. s =

± labels the electronlike and holelike sets of Landau levels:

εnst (kz) = s

√
2ω2

Bn + m2
t (kz) = sεnt (kz), n � 1, (13)

and the corresponding eigenvectors |vst
n 〉 are given by

∣∣vst
nkz

〉 = 1√
2

(√
1 + mt (kz)

εnt (kz)
, − is

√
1 − mt (kz)

εnt (kz)

)
, (14)

where |vst
nkz

〉 is a vector in the σ -pseudospin space. The n = 0
Landau level is anomalous, as it is the only Landau level
that does not consist of two symmetric electron and holelike
partners. Its energy eigenvalues are given by

ε0t (kz) = −mt (kz) (15)

and ∣∣vt
0

〉 = (0,1). (16)

To simplify the notation we will introduce a composite index
a = (s,t) and a tensor product eigenvector:∣∣za

nkz

〉 = ∣∣va
nkz

〉 ⊗ ∣∣ua
kz

〉
. (17)

We now expand electron field operators in Eq. (5) in terms of
the complete set of states we have just constructed:

	†(rστ ) =
∑

n,ky ,kz

〈n,ky,kz,a|r,σ,τ 〉c†nkykza
, (18)

where summation over repeated a indices will be implicit
henceforth, and obtain imaginary time action for our system
in Matsubara frequency space in the following form:

S =
∑

n,ky ,kz,iω

G−1
nkya

(kz,iω)c†nkykza
(iω)cnkykza

(iω)

+
∑

n,ky ,kz,k′
z

∑
iω,iω′

δG−1
nkyaa′ (kz,k

′
z|iω − iω′)

× c
†
nkykza

(iω)cnkyk′
za

′(iω′), (19)

where

G−1
nkya

(kz,iω) = −iω − μ + εna(kz),

δG−1
nkyaa′ (kz,k

′
z|iω − iω′)

= 1√
Vβ

λ(kz − k′
z,iω − iω′)

〈
za
nkz

∣∣τ y
∣∣za′

nk′
z

〉
− 1√

Vβ
Az(kz − k′

z,iω − iω′)
〈
za
nkz

∣∣ĵz(k
′
z)

∣∣za′
nk′

z

〉
. (20)

The current operator ĵz is obtained by expanding Eq. (6) to
first order in Az:

ĵz(kz) = e�Ddσ z[τ x sin(kzd) + τ y cos(kzd)]. (21)

Integrating out fermions perturbatively in λ and Az we obtain
at second order the following imaginary time action for the
electromagnetic field:

S = 1

2
Tr

∑
iω,iω′

G(iω)δG−1(iω − iω′)G(iω′)δG−1(iω′ − iω).

(22)

The topological term, of interest to us, is proportional to the
product of λ and Az. Leaving only this term in the imaginary
time action, performing summation over the Landau level
orbital index ky and over the fermion Matsubara frequency,
we obtain

S = B
∑
q,i�

�(q,i�)Az(q,i�)λ(−q, − i�), (23)

where the response function �(q,i�) is given by

�(q,i�) = e

2πLz

∑
n,kz

nF [ξna′(kz)] − nF [ξna(kz + q)]

i� + ξna′(kz) − ξna(kz + q)

× 〈
za
nkz

∣∣ĵz(kz)
∣∣za′

nkz

〉〈
za′
nkz

∣∣τ y
∣∣za

nkz

〉
. (24)

Here nF is the Fermi-Dirac distribution function, ξna(kz) =
εna(kz) − μ, and the magnetic field B in Eq. (23) arises from
the Landau level orbital degeneracy as

LxLy

2π�2
B

= LxLyeB

2π
, (25)

�B = 1/
√

eB being the magnetic length. We have also ignored
the q dependence of the matrix elements in Eq. (24), which is
not important for small q.

At this point we will specialize to the case of an undoped
Weyl semimetal, i.e., set μ = 0. Then it is clear from Eq. (24)
that for Landau levels with n � 1, only terms with s 
= s ′
contribute due to the difference of Fermi factors in the
numerator. We are interested ultimately in the zero frequency
and zero wave vector limit of the response function �(q,i�).
As is often the case, the value of �(0,0) depends on the order
in which the zero frequency and zero wave vector limits are
taken. Below we will consider both possibilities separately
and discuss their physical meaning. We will argue that this
difference in the order of limits is precisely the origin of the
discrepancy between our results for CME and the results of
Ref. 27.

Before we proceed with explicit evaluation of the q → 0
and � → 0 limit, let us note a crucial property of the response
function �(q,�). If we take into account the following
symmetry properties of the matrix elements in Eq. (24):〈

v+t
nkz

∣∣v−t ′
nkz

〉 = −〈
v+t ′

nkz

∣∣v−t
nkz

〉
,

(26)〈
v+t

nkz

∣∣σ z
∣∣v−t ′

nkz

〉 = 〈
v+t ′

nkz

∣∣σ z
∣∣v−t

nkz

〉
,

it is easy to see that when the limit � → 0 is taken,
independently of the value of q, the n � 1 Landau levels in
fact do not contribute at all, mutually canceling due to Eq. (26).
It follows that �(q,i�) at small � is determined completely
by the contribution of the two n = 0 Landau levels, whose
energy eigenvalues and the corresponding eigenvectors are
independent of the magnetic field. This means that in the small
� limit �(q,i�) becomes independent of the magnetic field
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and the effective action in Eq. (23) then depends linearly on
both λ and B, independently of the magnitude of B. This
in turn implies that in the low-frequency limit the response
of the system to fluctuating field λ at fixed B is identical to
its response to fluctuating B at fixed λ (this is analogous to
Onsager’s reciprocity relations for transport coefficients):

S = λ
∑
q,i�

�(q,i�)Az(q,i�)B(−q, − i�), (27)

which is precisely what we are interested in. To double check
the correctness of this argument we have explicitly recalculated
the θ term by a different method, namely by treating the
magnetic field perturbatively, expanding the effective action
to third order, and evaluating the coefficient of the term,
proportional to the product of λ, Az, and ∂xAy , and obtained
identical results. The same result is also obtained by yet another
method, already mentioned above, i.e., by treating the time
dependence of the magnetic field quasiclassically.

Let us now proceed to explicitly evaluate �(0,0), which
determines the low-frequency and long-wavelength response
of our system. Let us first look at the situation when we send
q to zero before sending � to zero. Explicitly evaluating the
matrix elements in Eq. (24), we obtain

�(0,0) = −e�Dd

2π�2
B

∫ π/d

−π/d

dkz

2π
nF [b − �(kz)]

× �S�D sin2(kzd) + �2(kz) cos(kzd)

�3(kz)
. (28)

The function nF [b − �(kz)], assuming zero temperature,
restricts the integral over kz to the interval where b < �(kz),
i.e., the part of the 1D BZ outside of the interval between the
Weyl nodes, which assuming both �S and �D are positive for
concreteness, occur at points π/d ± k0, where8

k0 = 1

d
arccos

(
�2

S + �2
D − b2

2�S�D

)
. (29)

Using the identity∫ π/d

−π/d

dkz

2π

�S�D sin2(kzd) + �2(kz) cos(kzd)

�3(kz)

= − 1

d2�S�D

∫ π/d

−π/d

dkz

2π

d2�(kz)

dk2
z

= 0, (30)

we can, however, rewrite the integral over kz in Eq. (28) in a
more intuitive form, as an integral over the interval between
the Weyl nodes:

�(0,0) = −e�Dd

2π�2
B

∫ π/d+k0

π/d−k0

dkz

2π

× �S�D sin2(kzd) + �2(kz) cos(kzd)

�3(kz)
. (31)

Evaluating the integral over kz explicitly, we finally obtain

λ�(0,0) = −e2�ε

4π2
, (32)

where

�ε = λ

�Sb

√
[(�S + �D)2 − b2][b2 − (�S − �D)2] (33)

is the energy difference between the Weyl nodes, induced by
the field λ, as was shown in Ref. 8. Thus, after Wick’s rotation
τ → it , �ε → −i�ε, we finally obtain the following result
for the electromagnetic field action:

S = −e2�ε

4π2

∫
d3rdt Az(r,t)B(r,t), (34)

which has the same form as Eq. (3). Functional derivative of
Eq. (34) with respect to Az gives the current that flows in
response to magnetic field, i.e., the CME:

jz = −e2�ε

4π2
B. (35)

This demonstrates that CME is not an artifact of a low-
energy model of a Weyl semimetal with an unbounded linear
dispersion and exists in a microscopic model just as well. This
is in agreement with the viewpoint that chiral anomaly has
topological origin, independent of details of the dispersion.

Why was a zero result obtained for CME in Ref. 27? As
already mentioned above, this is an issue of the order of
limits when calculating �(0,0). Let us now set � to zero
before taking the limit q → 0. In this case, in addition to the
contribution to �(0,0), given by Eq. (31), which arises due
to transitions between the t = + and t = − lowest (n = 0)
Landau levels, there is an extra contribution due to the
intra-Landau-level processes within the t = − Landau level,
which crosses the Fermi energy at the location of the Weyl
nodes. This extra contribution is given by

�̃(0,0) = e

2πLz

∑
kz

dnF (ε)

dε

∣∣∣∣
ε=−m−(kz)

× 〈
z−

0kz

∣∣ĵz(kz)
∣∣z−

0kz

〉〈
z−

0kz

∣∣τ y
∣∣z−

0kz

〉
, (36)

and is easily shown to be equal to Eq. (31) in magnitude, but
opposite in sign, which means that in this case �(0,0) vanishes.
Thus, not unexpectedly, the final result for �(0,0) depends on
the order in which the q → 0 and � → 0 limits are taken:

lim
�→0

lim
q→0

λ�(q,�) = −e2�ε

4π2
,

(37)
lim
q→0

lim
�→0

λ�(q,�) = 0.

What is the physical meaning of these two distinct orders of
limits in calculating �(0,0)? When q is taken to zero first,
one is calculating the low-frequency limit of response to a
time-dependent external field, in our case magnetic field along
the z direction. This response is finite and represents CME,
described by Eq. (35). If one takes � to zero first, however, one
is calculating a thermodynamic property, in our case change
of the ground state energy of the system in the presence of an
additional static vector potential in the z direction:

jz = 1

V

∂E(Az)

∂Az

= 0. (38)

This could be nonzero in, for example, a current-carrying
state of a superconductor, which possesses phase rigidity,
but vanishes identically in our case. Thus the issue is the
correct interpretation of what CME actually is. Our calculation
demonstrates that it cannot be thought of as persistent ground
state current in the presence of a static magnetic field
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(we incorrectly called the CME current “persistent current”
in Refs. 8 and 9), but should rather be thought of as a dc limit
of response to a time-dependent magnetic field.

III. DERIVATION OF THE θ TERM: AHE PART

While there is at present no doubt that the AHE, associated
with the Weyl nodes, does exist, we will still provide a deriva-
tion of the corresponding part of the θ term in Eq. (1), if only
for completeness purposes. This is done most conveniently in
the crystal momentum basis, rather than the Landau level basis,
used in the previous section. We start from the Hamiltonian
Eq. (9), but in the absence of magnetic field, in which case all
components of the crystal momentum are conserved:

Ht (k) = vF (ẑ × σ ) · k + mt (kz)σ
z. (39)

Its eigenstate energies and the corresponding eigenvectors are
given by

εst (k) = s

√
v2

F

(
k2
x + k2

y

) + m2
t (kz) = sεt (k) (40)

and

∣∣vst
k

〉 = 1√
2

[√
1 + s

mt (kz)

εt (k)
,−isk̂+

√
1 − s

mt (kz)

εt (k)

]
. (41)

Introducing the combined spin and pseudospin eigenvectors
|zst

k 〉 = |vst
k 〉 ⊗ |ut

kz
〉 we can write the imaginary time action

of the electrons coupled to electromagnetic field in the form,
analogous to Eq. (19) in the previous section:

S =
∑
k,iω

G−1
st (k,iω)c†stk(iω)cstk +

∑
k,k′,iω,iω′

δG−1
st,s ′t ′

× (k,k′|iω − iω′)c†stk(iω)cs ′t ′k′(iω′), (42)

where summation over the s,t indices has been made implicit
and

G−1
st (k,iω) = −iω + ξstk,

δG−1
st,s ′t ′(k,k′|iω − iω′)

= evF√
Vβ

〈
zst

k

∣∣σx
∣∣zs ′t ′

k′
〉
Ay(k − k′,iω − iω′)

+ ie√
Vβ

〈
zst

k

∣∣zs ′t ′
k′

〉
A0(k − k′,iω − iω′), (43)

where we have employed Landau gauge for the vector potential
A = xBŷ and have also included the temporal component of
the gauge field A0. Integrating out fermions, we again obtain,
at second order in the gauge fields, an effective action for the
electromagnetic field of the form of Eq. (22). As before, we
are interested only in the topological part of this action, which
is proportional to the product of A0 and Ay and is given by

S = ie2vF

V

∑
k,q,i�

nF (ξs ′t ′k) − nF (ξstk+q)

i� + ξs ′t ′k − ξstk+q

〈
zst

k+q

∣∣zs ′t ′
k

〉
× 〈

zs ′t ′
k

∣∣σx
∣∣zst

k+q

〉
A0(q,i�)Ay(−q, − i�). (44)

At this point we again specialize to the case of an undoped Weyl
semimetal with μ = 0. In this case we must have s 
= s ′, since
the s = s ′ contributions in Eq. (44) vanish due to the difference
of Fermi-Dirac distribution functions in the numerator. We

then set � = 0 in the denominator and assume, for simplicity,
that the only spatial dependence of the gauge fields comes
from the Landau gauge choice, which implies that q = qx̂ (we
will comment on the order of limits issue below). We now note
that, among all the distinct factors in Eq. (44), 〈z+t

k+q|z−t
k 〉 → 0,

when q → 0, while all others remain finite in this limit. Thus,
to leading nontrivial order in q, we can expand 〈z+t

k+q|z−t
k 〉

to first order in q, while setting q → 0 everywhere else. We
obtain〈

z+t
k+q

∣∣z−t
k

〉 ≈ − vF q

2εt (k)
√

k2
x + k2

y

[
iky + mt (kz)kx

εt (k)

]
. (45)

Substituting this into Eq. (44), we obtain, after straightforward
algebra

S = e2v2
F

2V

∑
k,q,i�,t

mt (kz)

ε3
t (k)

A0(q,i�)qAy(−q, − i�). (46)

Note that the quantity

�z
tk = v2

F mt (kz)

2ε3
t (k)

, (47)

which appears in Eq. (46), has the meaning of the z component
of the Berry curvature of the two filled bands. Performing the
integrals over kx,ky we obtain

S = ie2

4π

∑
q,i�,t

∫ π/d

−π/d

dkz

2π
sign[mt (kz)]A0(q,i�)

× (−iq)Ay(−q, − i�). (48)

The sign[mt (kz)] function in Eq. (48) expresses the fact that
the Berry flux along the z direction changes sign at the location
of the Weyl nodes, which are monopole sources of the Berry
curvature. Integration over kz, which simply gives the distance
in momentum space between the Weyl nodes, and Wick’s
rotation to real time τ → it , finally gives

S = −e2k0

2π2

∫
d3rdt A0(r,t)∂xAy(r,t), (49)

which has exactly the form of Eq. (3). Functional derivative of
S with respect to Ay gives the Hall current in response to the
electric field:

jy = −e2k0

2π2
∂xA0 = −e2k0

2π2
Ex, (50)

which gives the correct expression for the anomalous Hall con-
ductivity of a Weyl semimetal.4 Note that in this calculation,
the issue of the order of limits, which was important in the
calculation of CME, never arises. The reason for this is that
while CME is associated with bulk extended states, AHE is
due to the Fermi arc surface states, arising from completely
filled bulk states, which makes the order of limits irrelevant.

IV. CONCLUSIONS

The goal of this paper was to demonstrate explicitly that
the θ term topological response of Weyl semimetals, described
by Eq. (1), is indeed “topological,” in the sense that it does
not depend on details of the band structure. Our previous
derivation of the θ term was criticized in Ref. 27 as being
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based on a generic low-energy model of a Weyl semimetal
with an unbounded linear dispersion. We have shown here that
exactly the same result is obtained in a specific microscopic
model of a Weyl semimetal, with no cutoff and regularization
issues ever arising. Our calculations have also clarified the
physical meaning of CME—one of the phenomena associated
with the θ term in Weyl semimetals. We have shown that
CME should not be thought of as persistent current in
response to static magnetic field, but rather as a dc limit of
response to a time-dependent magnetic field. Our work, along
with related recent work on this subject,11,12 demonstrates
unambiguously that Weyl semimetals provide the realization

of “axion electrodynamics.”19 An interesting extension of
the above calculation is to include the effect of electron-
electron interactions, in particular investigating the interplay
of chiral anomaly (which by itself is presumably insensitive to
interactions) with low-energy and long-wavelength collective
modes of a Weyl semimetal. This will be reported elsewhere.
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