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Exotic Ising dynamics in a Bose-Hubbard model
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We explore the dynamical properties of a one-dimensional Bose-Hubbard model, where two bosonic species
interact via Feshbach resonance. We focus on the region in the phase diagram which is described by an effective,
low-energy ferromagnetic Ising model in both transverse and longitudinal fields. In this regime, we numerically
calculate the dynamical structure factor of the Bose-Hubbard model using the time-evolving block decimation
method. In the ferromagnetic phase, we observe both the continuum of excitations and the bound states in the
presence of a longitudinal field. Near the Ising critical point, we observe the celebrated E8 mass spectrum in the
excited states. We also point out possible measurements which could be used to detect these excitations in an
optical lattice experiment.
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The search for emergent excitations arising from strong
correlations has been very fruitful over the past few decades,
from fractional quasiparticles in the fractional quantum Hall
effect1 to effective magnetic monopoles in spin ice.2 The
one-dimensional (1D) transverse-field Ising model is an-
other famous case showing collective excitations.3 It is a
paradigmatic model for quantum phase transitions, hosting
a critical point with central charge c = 1/24. Zamolodichkov
showed that, upon perturbing such a critical theory with a
Z2 symmetry-breaking field, eight massive particles emerge
in the excitation spectrum.5 These particles are the hallmark
of an underlying E8 continuous symmetry, a very complex
symmetry group discovered in mathematics, which attracts
much interest in a wide community (see, e.g., Ref. 6). The ratio
between the masses of the two lightest particles predicted by
E8 symmetry has recently been observed by Coldea et al. in
neutron-scattering studies of the quantum magnet CoNb2O6.7

The quest for complex many-body phenomena and uncon-
ventional excitations has greatly benefited from advances in
ultracold atomic gases.8,10 By confining the atomic cloud to an
optical lattice, it is now possible to explore strongly interacting
lattice models with an unprecedented degree of control and
tunability.9 Important milestones include the observation of
the superfluid-to Mott-insulator transition in bosonic systems11

and the antiferromagnetic 1D Ising transition on a tilted
optical lattice.12 Due to their long coherence times and the
possibility of tuning the parameters of the system, cold atoms
in optical lattices also allow the study of nonequilibrium
dynamics13,14—which is usually very difficult in a condensed-
matter setting. A promising research area is the use of
multicomponent atomic mixtures as a route to effective
magnetic models (see, e.g., Refs. 15 and 16). More specifically,
recent theoretical work has proposed mixtures of atoms and
molecules near a Feshbach resonance17 in a Mott state as a
route to the 1D Ising model.18–20 Here, the Feshbach resonant
coupling between different species acts as a tunable handle on
quantum fluctuations.

In this paper, we study the low-energy dynamical properties
of a 1D Bose-Hubbard model describing two bosonic species
coupled by Feshbach resonance in the Mott insulating regime.
We obtain the low-energy spectrum of this model via an
appropriate dynamical structure factor. The characteristic

signatures of the broken-symmetry and disordered phases
are clearly observed. We reach an excellent agreement with
the excitation spectrum of the Ising model. Upon tuning the
bosonic system close to a perturbed c = 1/2 critical point, its
excitation spectrum reveals the signatures of E8 symmetry.

We consider the following pairing Bose-Hubbard Hamilto-
nian, previously studied in Refs. 18–27,

H =
∑

iα

εαniα −
∑

iα

tα(b†iαbi+1α + H.c.)

+
∑

iαα′

Uαα′

2
niα(niα′ − δαα′ ) + g

∑

i

(b†imbiabia + H.c.),

(1)

describing two species of bosons biα on a 1D lattice, where
niα = b

†
iαbiα . Atoms are labeled α = a, while molecules

are labeled α = m. Here εα are on-site potentials, tα are
hopping parameters between nearest-neighbor sites, and Uαα′

are on-site interactions. Two atoms form a molecule via
s-wave pairing, driven by Feshbach coupling g. The Feshbach
interaction breaks the independent conservation of the number
of atoms and molecules, but the total number NT ≡ ∑

i(nia +
2nim) is conserved. We work in the canonical ensemble, by
keeping the total density ρT = NT /L fixed.

The low-energy behavior of the Hamiltonian, Eq. (1), in
the Mott regime with ρT = 2 can be conveniently described
with the aid of an effective 1D quantum Ising model,18–20

which is also helpful in guiding us to the regions of interest.
The “effective spin” degrees of freedom are |⇑〉 ≡ |1; 0〉 and
|⇓〉 ≡ |0; 2〉 in the occupation basis |na; nm〉 [see Fig. 1(a)]. We
truncate the Hilbert space to a maximum of three atoms and one
molecule per site, which is already a good approximation to
canonical soft-core bosons for the large U/t limit considered
here.20 This choice allows the hopping of atoms, even if a pair
is already present on a site. The effective Ising model (up to an
additive constant) is obtained via a strong-coupling expansion
around the small-hopping limit,

H � −J
∑

i

Sz
i S

z
i+1 + h

∑

i

Sz
i + �

∑

i

Sx
i + O(t3). (2)
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FIG. 1. (Color online) (a) Mapping between the Bose-Hubbard
model Eq. (1) in the second Mott lobe and the Ising chain Eq. (2).
Two atoms (one molecule) map(s) to effective spin-down (spin-up).
A local excitation converts one molecule into two atoms, which
propagate via Feshbach coupling (transverse field �) and boson
hopping (Ising interaction J ). (b) Phase diagram of the full model
Eq. (1) for ta=5.04 × 10−2 (J=0.01) and constraints detailed in
the text, measured by the relative boson density. (c) Dynamical
structure factor of the full model for g=1.06 × 10−3 (�=0.3J ) and
�εm=1.5 × 10−4 and (d) for g=3.54 × 10−3 (� = J ). Dashed lines
are the dispersion minima of the Ising model for respective values of
�, while insets showS(k,ω) of the Ising model, with the characteristic
continuum of excitations (c) and quasi-particle dispersion (d).

The effective spin operators have a direct interpretation in
terms of bosons,

Sz
i = (nim − nia/2)/2 ≡ �ni/2, (3)

measures the imbalance in the density of bosons at site i, while

Sx
i = 1/(2

√
2)[b†imbiabia + b

†
iab

†
iabim] (4)

accounts for interspecies fluctuations. At a qualitative level,
the Ising exchange interaction J arises from the motion of
bosons, the longitudinal field h tunes an overall imbalance
between the two species, and the transverse field � controls
the fluctuations between the two species [cf. Fig. 1(a)].

We find the ground state of the full Hamiltonian, Eq. (1),
using a variant of the infinite density-matrix renormalization
group (iDMRG) method,28,29 yielding a matrix-product-state
representation of the ground-state wave function in the
thermodynamic limit. We find that matrix bond dimensions

χ � 30 are enough to describe the ground states studied,
with a truncation error up to 10−10. The time-evolving block
decimation (TEBD) method30,31 is then used to calculate a
dynamical structure factor function S(k,ω) of the bosonic
model, following the general strategy laid out in Refs. 32–35.
This function measures the response to fluctuations between
the two species, corresponding to the Sy operator in the Ising
language:

S
y

i = 1/(2
√

2i)[b†imbiabia − b
†
iab

†
iabim].

The two-point dynamical correlation function,

C(i,t) = 〈ψ0|Sy

i (t)Sy

0 (0)|ψ0〉, (5)

is calculated with a real-time evolution of the ground-state
matrix product state |ψ0〉 after Sy is applied to a given site,
and its Fourier transform yields S(k,ω). The sampled time is
extended by extrapolating C(i,t) with linear prediction.36 We
stop the simulation once the “light cone” of local correlations
gets close to the boundary of a fixed window size (typically
L ≈ 200), ensuring that our simulations do not suffer from
finite-size effects.35 Since the low-energy dynamics are set
by the effective model, the light cone and the entanglement
entropy grow very slowly with time. Hence, we are able
to reach extremely large times, up to tmax ≈ 104Uaa , while
keeping the truncation error down to � 1 × 10−7 by setting
χmax = 60. We have checked the convergence of our results
with the Trotter time step �t , settling on �t = 0.1–0.2.

The ground-state properties of the pairing Bose-Hubbard
model have been studied recently.18–20,24,25 While, previously,
emphasis was placed on the region of the phase diagram where
the effective model is the antiferromagnetic Ising chain, here
we focus on parameters yielding an effective ferromagnetic
model. In order to make contact with previous work, we impose
the constraints ta = 2tm, εa = 0, Uam = 2Uaa , and Uaa = 2;
thus the energy scale is set by the on-site interaction. The
parameters of the corresponding Ising Hamiltonian, Eq. (2),
are then found through the strong-coupling expansion20

J = 63t2
a

16
, (6)

h = −2 + 6t2
a + εm + �εm, (7)

� = 2g
√

2. (8)

We choose a representative value of ta = 5.04 × 10−2 (J =
0.01), which avoids a slowdown in the dynamics at lower
values of ta . Equation (7) predicts that the effective longitu-
dinal field h is canceled by tuning εm = 1.9848. However,
even after this, we observe in our simulations the effects of
the presence of an effective longitudinal field, which arises
from contributions in perturbation theory in small ta beyond
the second-order expansion considered in Ref. 20. Rather than
extending this calculation to higher order, we add an extra
perturbation, �εm, to the molecular potential in Eq. (7) to
compensate for this “stray” longitudinal field. In general, this
term depends on the values of ta and g chosen. Probably, this
is also a more realistic way of achieving the same result in an
experimental setting, since it just involves further fine-tuning
of εm, instead of balancing a version of Eq. (7) with more,
higher order, terms.
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The resulting phase diagram, where the Feshbach coupling
g is the only free parameter and the order parameter is
�n ≡2Sz, is shown in Fig. 1(b) for �εm = 0. For low
values of g an ordered phase based on the product state
with one molecule localized per site, |⇑〉, is found. The
stray longitudinal field described above biases the system
towards this state, rather than the “atomic” ordered state based
on two atoms localized per site, |⇓〉. All of the physical
behavior described here still holds in the case where the
on-site potentials have been tuned to favor the atomic ground
state. By increasing the value of g the system goes through a
crossover into a disordered phase. This crossover is revealed
by the nondiverging peak of the correlation length near g =
2 × 10−3 (� ≈ J/2), indicating that the Ising critical point is
nearby.

The low-energy excitation spectrum is revealed by the
transverse dynamical structure factor function S(k,ω). The
energy scales observed here are set by the effective Ising
parameters and are hence rather low with ω ≈ 0.01. This is
well below the Mott gap Uaa , above which single-particle
excitations appear. We start with the “molecular” ground
state where the Sy excitation in Eq. (5) dissociates one
molecule into two atoms at site i, i.e., flips |⇑〉 → |⇓〉.
Evolution in time creates a domain of atoms, which is a bound
state of two domain walls propagating in opposite directions.
In the absence of a longitudinal field, the domain walls are
deconfined as the two ground states are perfectly degenerate.
This is achieved by setting g = 1.06 × 10−3 (� = 0.3J ) and
fine-tuning the on-site potential �εm = 1.5 × 10−4. The dy-
namical structure factor function, shown in Fig. 1(c), displays
a broad continuum of excitations around k = 0, sharpening
closer to the Brillouin zone edge at k = π . The agreement with
the pure Ising model is very good, as shown by the matching
of the onset of the continuum in the Bose-Hubbard model
with the energy of the lowest excitation (dashed line), of the
transverse-field Ising chain with � = 0.3J . The Ising S(k,ω)
is also shown in the inset (see Refs. 3 and 32).

In the Ising model, a finite longitudinal field confines the
domain walls, destroying the continuum of excitations, except
for resonances at specific momenta and energies, which can
be seen as massive “meson” bound states.37 An effective
longitudinal field has the same effect here, breaking up the
continuum observed in Fig. 1(c) (not shown).

The dynamical structure factor in the disordered phase
for large g is shown in Fig. 1(d) for a representative value
g = 3.54 × 10−3 (� = J ). A well-defined quasiparticle with a
quadratic dispersion is visible, which can be identified with the
single spin-flip excitation of the Ising chain in the disordered
phase (see dashed line, inset).

The most impressive feature of the Ising model is the
E8 symmetry,3 which is revealed when it is tuned to the
critical point � = J/2 with a longitudinal field |h| � |�|
applied. This is described by the perturbation of a c = 1/2
conformal field theory, which is still integrable and leads to
exactly eight massive bound states, whose mass ratios are
known analytically.5 The mass ratio between the two lightest
particles is the golden ratio (1 +

√
5)/2 = 1.618(. . .) and has

been experimentally observed in CoNb2O6.7 However, heavier
excitations are difficult to measure there, since they are located
within the continuum. Furthermore, it is not possible to modify
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FIG. 2. (Color online) Signatures of E8 symmetry in a Bose-
Hubbard model. (a) Cut at k = 0 of the dynamical structure factor for
g = 1.80 × 10−3 (� ≈ J/2) and �εm = −5 × 10−4. (b) Dynamical
structure factor for the same parameters as in (a), resolved in full
momentum space. (c) Relative masses of excitations to that of the
lightest one, as a function of Feshbach coupling g, for fixed �εm =
−1 × 10−3. Horizontal lines show the values analytically predicted
from the Lie algebra E8 from Ref. 5, displayed in (a).

this by tuning the longitudinal field, which is fixed by the
interchain coupling.

We now tune the parameters in our bosonic model to this in-
teresting region. The excitation spectrum of the system close to
the perturbed Ising critical point, with g = 1.80 × 10−3 (� =
0.51J ) and �εm = −5 × 10−4 (|h| ≈ |�|/10), is revealed by
examining the dynamical structure factor function in Figs. 2(a)
and 2(b). At least five different excitations are clearly identified
above the continuum, which we can associate with the first four
particles of the E8 theory and the bound-state pair m1 + m2.
In Fig. 2(c) we present a sweep in Feshbach coupling near this
point, while keeping the molecular potential perturbation fixed
at �εm = −1 × 10−3 for better convergence of the results.
The mass ratios calculated in this region are very close to the
analytically predicted ones (horizontal lines), crossing them
for a value of g ≈ 1.83 × 10−3 (� ≈ 0.52J ). The observation
of this highly nontrivial sequence in the energy spectrum
is clear evidence for the emergence of E8 symmetry in
a Bose-Hubbard model. This small renormalization of the
critical value of � probably arises from contributions in higher
order from perturbation theory. The different mass ratios
increase roughly linearly with g. The heaviest particles become
progressively more difficult to observe with increasing g, since
their spectral weight decreases. The ratios obtained do not
change significantly when the molecular potential perturbation
is doubled to �εm = −2 × 10−3, staying within error bars of
the data points in Fig. 2(c). The stability of the results for such
a high ratio of fields, |h|/|�| ≈ 1/2, matches that observed in
the Ising chain.32

Recent developments in Bragg spectroscopy applied to
cold atoms allow the study of the full excitation spectrum,
resolved in momentum and energy, even in the presence of
an optical lattice.38,39 A complementary, and simpler, scheme
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FIG. 3. (Color online) Time evolution of the relative boson
density after a local quench dissociates two molecules into one
atom on the molecular state for g = 1.06 × 10−3. (a) Upon tuning
�εm = 1.5 × 10−4, the effective longitudinal field is suppressed and
the domain of atoms grows unbounded with time. (b) Upon tuning
�εm = −1 × 10−3, a longitudinal field is induced. The growth of
the domain is thwarted and it quickly collapses, resulting in the
confinement of the excitation.

for observing some of the behavior described here is also
desirable. Motivated by recent experimental40 and theoretical
work,41,42 we now look at the propagation of a single excitation
in space and time. We prepare the system in the molecular
ground state for g = 1.06 × 10−3, apply the Sy dissociation
excitation at a site i0, and track the evolution in time of the
relative local density �n at a site i.

The effective longitudinal field has been tuned to h = 0
by setting �εm = 1.5 × 10−4 in Fig. 3(a). At a qualitative
level, �ni drops suddenly when a domain wall reaches site i,
signaling the dissociation of the molecule at that site (�n> 0)
into two atoms (�n < 0). Since there is no effective longi-
tudinal field to confine the domain walls, the �n<0 domain
persists in the long-time limit, and it grows with more sites
being progressively flipped, leading to the continuum of
excitations in the dynamical structure factor shown in Fig. 1(c).
The behavior in the presence of an effective longitudinal field,
�εm = −1 × 10−3, is shown in Fig. 3(b). The domain of
atoms still grows up to a few sites away from i0. However,
the induced confining potential inhibits the propagation of
the domain walls and the domain quickly collapses. The sites
which were excited eventually return to a state with �n ≈ 1

in the long-time limit, which is different from the original
molecular ground state.

Systems of hundreds of cold atoms confined to 1D optical
lattices have been extensively explored in the last decade,8,17

including heteronuclear bosonic mixtures43,44 which can be
described by Bose-Hubbard models similar to Eq. (1) (see,
e.g., Ref. 45). The key requirements to observe the behavior
described here are the formation of a symmetry-breaking
insulating phase and the presence of fluctuations able to
destroy it. The presence of a trap potential should not affect
much the results, as long as the central insulating domain
with ρT = 2 is large enough. In order to ensure an insulating
phase, the ratios tα/Uαα , which depend on the lattice depth and
the intraspecies scattering length, should be � 0.1. Biasing
the on-site potentials εα controls the effective longitudinal
field h and, therefore, the stability of the particles and their
spectral weight relative to the continuum. The Feshbach
coupling g is itself an effective term depending, among others,
on the background scattering length and the width of the
resonance.17,23 The effective Ising interaction J in Eq. (2)
is controlled by the ratios between the different U values,
including Uam, which is the term freely adjustable in Feshbach
resonance experiments by the detuning of the magnetic field
away from the resonance value.17,45 In this way the �/J and
h/J ratios could be controlled, allowing a sweep near the
critical point as in Fig. 3(c), in order to find the optimal set of
parameters corresponding to E8 symmetry.

In conclusion, we have shown that the low-energy exci-
tations of a 1D Bose-Hubbard pairing model can faithfully
simulate the dynamical properties of the quantum Ising chain.
We find the characteristic Ising features in the low-energy
spectrum, such as the incoherent continuum, quadratic quasi-
particles, and, above all, massive excitations emerging from
E8 symmetry. Recent developments in manipulating systems
described by models such as Eq. (1), and in accessing the low-
energy excitation spectrum, open up the fascinating possibility
of realizing this behavior in a cold-atom experiment.
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S. Ejima, H. Fehske, J. A. Kjäll, A. M. Turner, and M. Zaletel
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