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Two-channel orbital Kondo effect in a quantum dot with SO(n) symmetry
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A scenario for the formation of non-Fermi-liquid (NFL) Kondo effect (KE) with spin variable enumerating
Kondo channels is suggested and worked out. In a doubly occupied symmetric triple quantum dot within parallel
geometry, the NFL low-energy regime arises provided the device possesses both source-drain and left-right
parity. Kondo screening follows a multistage renormalization group mechanism: reduction of the energy scale is
accompanied by the change of the relevant symmetry group from SO(8) to SO(5). At low energy, three phases
compete: (1) an underscreening spin-triplet (conventional) KE, (2) a spin-singlet potential scattering, and (3) a
NFL phase where the roles of spin and orbital degrees of freedom are swapped.
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I. INTRODUCTION

The physics of the two-channel Kondo effect (2CKE)
that is marked by non-Fermi-liquid (NFL) behavior at low
temperatures has been with us for more than three decades.1

Complex quantum dots (CQDs) coupled to metallic leads via
several channels may be considered candidates for possible
realization of the multichannel KE. The simplest object of
this kind is a double quantum dot coupled to two source
and two lead electrodes.2–5 The generic SU(4) symmetry of
this device is realized by two spin-1/2 projections and two
orbital states of an electron in a double quantum dot. This
configuration paves the way to observation of the SU(4) Kondo
effect for fourfold degenerate ground state or at least for the
orbital SU(2) KE realized only by orbital degrees. It should be
noted that unavoidable interference between different channels
emerging in cotunneling process through a CQD makes the
SU(4) fixed point unstable.4 As a result of this interference
one of the two channels becomes dominant at low tempera-
tures, resulting in an SU(4) → SU(2) crossover (see Ref. 6
and references therein for experimental realization of these
effects in carbon nanotubes and multivalley silicon quantum
dots).

To realize the 2CKE for odd occupation in double quantum
dot structures, one more tunneling channel should be involved
in the electron tunneling processes. However, the NFL regime
is still elusive due to the same channel anisotropy emerging
from interchannel cotunneling processes. To remedy this insta-
bility, a suppression of interchannel cotunneling is attempted,
using the special design of the CQD. Apparently, the most
successful attempt is realized in double quantum dot (DQD),7

where the interference is suppressed by a Coulomb blockade.
Another design which allows one to (at least) approach the
elusive two-channel fixed point was suggested in Ref. 8, based
on a structure composed of a triple quantum dot (TQD) in
a serial geometry (Fig. 1, left). Here, the strong Coulomb
blockade in the central dot minimizes (but does not completely
eliminate) interchannel interference.

Yet another approach for achieving the NFL two-channel
Kondo regime is to swap the roles of charge and spin variables,
i.e., to treat orbital or charge fluctuations as pseudospin
variables causing Kondo screening, whereas spin projection

quantum numbers serve as different channels.9–13 The proposal
was based on the idea that the orbital degrees of freedom of
heavy spinless particles in a two-well or three-well potential
trap may be converted into pseudospin variables, and the latter
may play the part of the source of Kondo screening, while
the spin projections of conduction electrons enumerate the
screening channels. This idea was subject to criticism.14–16 In
these systems, pseudospin-flip is a generic tunneling process
with a characteristic (long) time ttun, unlike real spin-flip
processes, which are practically instantaneous. As a result
the ultraviolet cutoff for the Kondo effect is the energy
∼h̄/ttun. This energy is of the order of the distance to
the next excited level in a two-well potential. The latter
interval is much smaller than the energy scale εF for “light”
electrons. As a result the energy interval available for the
formation of the logarithmic singularity is too narrow and
the resulting Kondo temperature is very small: TK � �,
where � is the depth of the occupied level in the well
relative to εF . Thus, the strong-coupling regime remains in
fact unattainable as far as two-level systems in heavy particles
serve as pseudospin. Some theoretical counterarguments were
offered later,17 whereas features of NFL behavior were found
in the electrical resistivity of glassy ThAsSe single crystals.18

Thus, the question of whether 2CKE can be unambiguously
realized in two-level systems is still under discussion (see also
Ref. 19).

Natural and artificial nano-objects provide their own
mechanisms of two-channel Kondo tunneling assisted by
pseudospin excitations. One such mechanism was proposed
for a “quantum box” connected to a lead by a single-mode
point contact.20,21 In this case the relevant operator, which
logarithmically scales the crossover from the high-temperature
to the low-temperature region, is the capacitance C(T ) ∼
ln(T/TK ). In another model with SU(3) dynamical symmetry
the excited state with parity-degenerate rotational levels (m =
±1) may cross the m = 0 level due to interaction with a bath
and thus become the source of orbital KE with spin playing the
part of a tunneling channel.22 One more possibility of realizing
2CKE was discussed recently23 for a quantum dot coupled to
two helical edge states of a two-dimensional (2D) topological
insulator.
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FIG. 1. Axially symmetric triple quantum dot in planar (left) and
vertical (right) geometries.

II. MODEL

In this work we offer a relatively simple realization of
an overscreened orbital Kondo effect where the two-channel
regime is realized by two spin projections. The proposed
device is composed of a doubly occupied TQD in contact
with two terminals within parallel geometry.8 It is shown that
the present model is free of the shortcomings pointed out
in Refs. 14–16 because the role of higher excited levels is
completely different. Experimentally, this configuration may
be realized in a triangular arrangement of vertical dots24 (see
Fig. 1, right).

The starting point is the usual Anderson-like tunneling
Hamiltonian,

H = Hd + Hb + Hdb, (1)

where

Hd =
∑

λ=σ,�

Eλ|λ〉〈λ|, Hb =
∑
i=l,r

∑
kσ

∑
a=e,o

εkc
†
iakσ ciakσ ,

Htun =
√

2
∑
ikσ�

(σ̄V�c
†
iekσ |σ̄ 〉〈�| + H.c.). (2)

We consider the configuration possessing both left-right (l-
r) and source-drain (s-d) symmetry. The operators c

†
iakσ =

(c†iskσ ± c
†
idkσ )/

√
2 are even and odd combinations of source

and drain electron operators. The latter combinations do not
enter Htun.3,25 The TQD is doubly occupied in the ground state,
and only singly occupied states are involved in cotunneling
processes. The corresponding eigenstates of the isolated TQD
|λ〉 are denoted as |σ 〉 and |�〉 for the TQD occupied by N = 1
(spin doublets) and N = 2 (spin triplets and singlets) electrons,
respectively.

The low-energy spectrum E� of the isolated doubly
occupied TQD consists of two singlets ESi and two spin triplets
ET i [i = g,u for even and odd combinations of l (left) and r

(right) states]:

ESg
= ε̃ − 2W 2

�
− 2W 2

� + Q
− 4W 2

εc + Qc − Qic − ε
,

(3)

ETu
= ε̃ − 2W 2

�
, ESu

= ε̃ − 2W 2

� + Q
, ETg

= ε̃,

0
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FIG. 2. (Color online) Top: Energy levels in doubly occupied
TQD renormalized within a scaling procedure. Bottom: Logarithmic
energy scale for a crossover from SO(5) to a two-channel KE as a
function of scaling parameter η = ln D0/D.

with � = ε − εc − Qic (see Appendix A for a detailed calcula-
tion of these eigenstates and the corresponding eigenfunctions
|�〉 of the Hamiltonian Hd ).

Within the energy scale of the bandwidth D (exceeding the
width of this multiplet) the spectrum of the isolated TQD is
characterized by SO(8) dynamical symmetry. The dynamical
symmetry group characterizes the symmetry of the interlevel
transitions rather than the symmetry of the Hamiltonian. These
transitions involve not only the states belonging to the same
irreducible representation characterizing the symmetry of the
Hamiltonian but also the processes connecting nondegener-
ate states belonging to different group representations (see
Ref. 25 for a regular description of dynamical symmetries).
Mathematically, a dynamical symmetry group of any quantum-
mechanical system is a group such that all the states of
interest are contained in a single irreducible representation
of the group. In our case these states are two singlets and two
triplets involved in the scaling renormalization (Fig. 2). The
dynamical symmetry group is formed by linear combinations
of the operators Xλλ′ = |λ〉〈λ′| generating the spectrum of the
Hamiltonian Hd . Haldane renormalization25–28 implies that all
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FIG. 3. (Color online) Temperature dependence of tunneling
conductance (solid curve). Low-T orbital 2CKE and high-T 1CKE
spin SO(5) asymptotics are shown by the dashed curves. The input
parameters are specified in the text.
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the levels flow downwards with scaling invariants:

E∗
� = E�(D) − π−1	� ln(D/	�). (4)

Here 	� = πρ0|V�|2 is the tunneling rate for the state |�〉,
ln(D/D0) ≡ η is the scaling variable, and D0 is the conduction
bandwidth, −D0/2 � εk � D0/2. The renormalization rates
	�/π depend crucially on �, and the scaling trajectories
E�(D) intersect as in Fig. 2 due to the inequality 	Tg

> 	Su
>

	Tu
> 	Sg

(see Appendix A for details). Various scenarios
of the multistage Kondo effect are possible, including that
illustrated by the flow diagram of Fig. 2, where the level ESu

crosses the level ETu
before the level ETg

“overtakes” both
of them.29 There is a window of input parameters, where
the orbital KE emerges due to nearly degenerate orbital-
doublet/spin-singlet forming as a result of Haldane flow at
D ≈ D̄, where charge fluctuations are frozen. At this stage, an
application of the Schrieffer-Wolff (SW) transformation gen-
erates the effective spin Hamiltonian for N = 2 channels, and
further renormalization group (RG) transformation follows
Anderson’s poor-man scaling procedure for renormalization
of the exchange constants.30

III. FROM SO(5) SPIN KONDO EFFECT TO
TWO-CHANNEL ORBITAL KONDO EFFECT

The full SO(8) spin Hamiltonian HSW is derived in
Ref. 27. From Fig. 2 we conclude that the poor-man scaling
procedure should take into account the evolution of dynamical
symmetry along the chain SO(8) → SO(5) → orbital SU(2).
To illustrate the key points of transformation from spin KE
to orbital KE, we consider the simplified picture, where only
one of the two triplets is taken into account; i.e., we write
the spin Hamiltonian pertaining to the part relevant to the KE
for the SO(5) multiplet composed of one triplet Tu and two
singlets, Su and Sg . When the two singlets |Su〉,|Sg〉 and the
triplet |Tu,μ〉 (where μ = 1,0,1̄ are the projections of the spin
S = 1 along a given axis) are almost degenerate, the effective
low-energy Hamiltonian can be written as a sum of spin and
orbital parts:

Heff = Hspin + Horb. (5)

The first term, Hspin, is generated at the first stage of the full
Haldane-Anderson scaling procedure. The second term, Horb,
arises only provided the two lowest states in the renormalized
Hamiltonian Hd are spin singlets (see below). Hspin contains 12
coupling constants (B3) (see Appendix B for this derivation);
however, only three of them are relevant, and the Kondo
temperature can be identified from the reduced effective
Hamiltonian

Hspin =
∑

μ

ĒTu
XTuμ,Tuμ +

∑
η=u,g

ĒSη
XSηSη + J1Su · suu

+ J2Ru · suu + J3
(
R(1)

ug · sgu + R(2)
gu · sug

)
. (6)

The coupling constants Ji (i = 1 − 3) are defined as

J1 = α2
T V 2

εF − ε
, J2 = −αuαT V 2

εF − ε
, J3 = −αgαT V 2

εF − ε
,

[see Eqs. (A5) for definition of the parameters α and β]. The
levels Ē� are renormalized in accordance with Eq. (4). The

group generators forming the o5 algebra are three vectors Su,
Ru, R̃ = R(1)

ug + R(2)
gu and the scalar A:

S+
u =

√
2(X1u0u + X0u1̄u ), Sz

u = X1u1u − X1̄u1̄u ,

R+
u =

√
2(X1uSu − XSu1̄u ), Rz

u = −(X0uSu + XSu0u ),
(7)

R̃+ =
√

2(X1uSg − XSg 1̄u ), R̃z = −(X0uSg + XSg0u ),

A = i(XSuSg − XSgSu ).

sηη′ are the components of local spin operators for even and
odd partial waves of the band electrons,

sηη′ = 1

2

∑
kk′

∑
σσ ′

c
†
ηkσ τ̂σσ ′cη′k′σ ′ , (8)

where τ̂σσ ′ are the components of the three Pauli matrices.
The total SO(5) multiplet of width �SO(5) determines the

corresponding single-channel Kondo temperature27

TK1 = D̄ exp

⎛
⎝− 2

j1 + j2 +
√

(j1 + j2)2 + 2j 2
3

⎞
⎠ , (9)

provided D̄ � TK1 � �SO(5). Here ji = ρ0Ji , where ρ0 is
the electron density of states on the Fermi level εF . This
temperature is, however, not universal: at the energy scale
D � �SO(5) the fine structure of the multiplet determines the
Kondo scattering.

A two-channel orbital Kondo effect (2COKE) is possible in
the situation shown in Fig. 2, where at D < D̄ the two singlet
levels Ēu,g , renormalized in accordance with Eq. (4), form an
“orbital” doublet separated by a gap �T S from the triplet ĒT u.
The conditions for such a level crossing are given by Eq. (C1)
in Appendix C. In this configuration, the SW-like Hamiltonian
can be written in terms of pseudospin Pauli matrices T and τ
as

Horb = −KhTz + K‖Tz

∑
σ

τz,σ

+K⊥
2

(
T + ∑

σ

τ−
σ + T − ∑

σ

τ+
σ

)

−K1Tz

∑
kk′σ

(c†e,kσ ce,k′σ + c
†
o,kσ co,k′σ ) − K2Î

∑
σ

τz,σ .

(10)

Here

T + = XSgSu , T − = XSuSg ,

Tz = XSgSg − XSuSu

2
, Î = XSgSg + XSuSu,

(11)
τ+
σ =

∑
kk′

c
†
e,kσ co,k′σ , τ−

σ =
∑
kk′

c
†
o,kσ ce,k′σ ,

τz,σ = 1

2

(∑
kk′

c
†
e,kσ ce,k′σ −

∑
kk′

c
†
o,kσ co,k′σ

)
,

(see Appendix C for the definition of coupling parameters).
The first term in the Hamiltonian (10) is an analog of the Zee-
man term in the conventional KE. Its origin is the avoided level
crossing ĒSu − Ēsg = Kh arising in the course of Haldane
renormalization due to weak interchannel hybridization in the
leads.27 The spin-flip processes are absent in the singlet states.
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As a result the spin degeneracy is symmetry protected and
thereby we arrive at a desirable situation, where spin projection
quantum number plays the role of a channel index and the two
(orbital) channels are identical. This is the orbital 2CKE in
an effective magnetic field Kh/2.31 The channel isotropy is
protected by spin-rotation symmetry of the singlet state.

The second stage of the RG procedure, which starts at the
energy ∼D̄ � �T S , includes interchannel Kondo cotunneling
∼K‖,K⊥, and indirect virtual processes via excited triplet
state |Tu〉 “inherited” from the first stage of the RG procedure
derived from the Hamiltonian (6). The full system of scaling
equations is reduced to the following system encoding the
orbital KE and including the parameters relevant for the scale
T ∗ characterizing the two-channel regime:

dκ‖σ
d ln D

= −κ2
⊥σ − 2κhκ2σ − j̄ 2

2

2

+ κ‖σ
4

[
3
(
κ2

‖↑ + κ2
‖↓ + 2κ2

h

+ 4κ2
2↑ + 4κ2

2↓
) + κ2

⊥↑ + κ2
⊥↓

]
,

dκ⊥σ

d ln D
= −κ‖σ κ⊥σ − 3j̄ 2

2

4
+ κ⊥σ

4

[
3
(
κ2

‖↑ + κ2
‖↓ + 2κ2

h

+ 4κ2
2↑ + 4κ2

2↓
) + κ2

⊥↑ + κ2
⊥↓

]
,

dκ2σ

d ln D
= −κhκ‖σ

2
+ κ2σ

4

[
3
(
κ2

‖↑ + κ2
‖↓ + 2κ2

h

+ 4κ2
2↑ + 4κ2

2↓
) + κ2

⊥↑ + κ2
⊥↓

]
, (12)

with κi = ρ0Ki (i = ‖,⊥,h,1,2), and σ =↑ , ↓ are the chan-
nel indices. Here the third-order terms on the right-hand side
(RHS) are retained in accordance with the general theory of
two-channel KE.1 The energy scale T ∗ is enhanced due to
contribution from the enhanced parameter j̄2. The coordinates
of the corresponding fixed point are

κ‖↑ = κ‖↓ =
1 +

√
1 + 2

[
j̄ 2

2 − 10κ2
h

]
4

≈ 1

2
+ j̄ 2

2

4
− 5

2
κ2

h,

κ⊥↑ = κ⊥↓ =
√

κ2
‖↑ − κ2

h − 0.5j̄ 2
2 , κ2↑ = κ2↓ = κh

2
. (13)

For the case Kh = 0 (i.e., no Sg-Su intermixing) the fixed
point (13) transforms to

κ‖↑ = κ‖↓ = κ⊥↑ = κ⊥↓ = 1
2 , κ1↑ = κ1↓ = κ2↑ = κ2↓ = 0.

(14)

To get the Kondo temperature one should solve Eqs. (12),
neglecting the third-order terms:

dκ‖σ
d ln D

= −κ2
⊥σ − 2κhκ2σ ,

dκ⊥σ

d ln D
= −κ‖σ κ⊥σ ,

(15)
dκ1σ

d ln D
= 0,

dκ2σ

d ln D
= −κhκ‖σ

2
.

The second and fourth of Eqs. (15) give

κ2σ = κ
(0)
2σ + κh

2
ln

(
κ⊥σ

κ
(0)
⊥σ

)
. (16)

Using Eq. (16) in the first of Eqs. (15) we get

dκ‖σ
d ln D

= −κ2
⊥σ − 2κhκ

(0)
2σ − κ2

h ln

(
κ⊥σ

κ
(0)
⊥σ

)
. (17)

Equation (17) and the second of Eqs. (15) give

κ2
‖σ = κ2

⊥σ + C2 + 4κhκ
(0)
2σ ln

(
κ⊥σ

κ
(0)
⊥σ

)
+ κ2

h ln2

(
κ⊥σ

κ
(0)
⊥σ

)
, (18)

with C =
√

(κ (0)
‖σ )2 − (κ (0)

⊥σ )2. Using Eq. (18) in Eq. (17) and
neglecting the terms proportional to κ2

h we get the Kondo
temperature,

TKσ = D̄ exp

{
− 1

2A
ln

(
κ‖σ + A

κ‖σ − A

)}
, (19)

where A =
√

C2 − 2κhκ
(0)
2σ . Taking into account that A

κ‖σ
� 1,

Eq. (19) can be written as

TKσ ≈ D̄ exp

{
− 1

2κ‖σ

}
. (20)

In this way we arrived at the two-channel Hamiltonian with
pseudospin operator as a source of Kondo screening and spin
indices enumerating screening channels. The Zeeman operator
is relevant for the 2CKE, and its influence on the scaling
behavior in the nearest vicinity of the quantum critical point
may be described within a conformal field framework.31 A
peculiar feature of the orbital 2CKE described here is the mul-
tistage renormalization of the parameters of the bare Anderson
Hamiltonian followed by an appropriate modification of the
dynamical symmetry shared by the spectrum of the doubly
occupied TQD as displayed in Fig. 2.

The present scenario of orbital 2CKE implies peculiar
behavior of various observables, such as the temperature
dependence of the tunneling conductance, G(T ) (Fig. 3). It
is essentially distinct from the analogous behavior of G(T )
in the “conventional” spin 2CKE. First, in the weak-coupling
regime T � �SO(5),27 Kondo cotunneling in the orbital 2CKE
occurs according to the single-channel scenario. Two-channel
overscreening occurs only at the strong-coupling regime T �
�SO(5), where the crossover to the NFL phase takes place.
Second, in the orbital 2CKE, the Kondo temperatures in the
weak- and strong-coupling regimes are essentially different
parameters, whereas in the spin 2CKE the two scales are nearly
the same, T ∗ = αTK2, where α � 1 (see, e.g., Refs. 7,31,
and 32). Therefore, the two asymptotic regimes for G(T ) are

G(T )/G0 ∼
{

ln−2(T/TK1), T � TK1,

1
2 + √

T/T ∗, T � T ∗.
(21)

This equation predicts the crossover from conventional
1CK behavior of tunneling conductance at high temperatures,
to NFL criticality characterized by

√
T behavior31 at low

temperatures.
Numerical estimates of the RG parameters using input

values of the energy intervals �Tg,Su
= 0.03, �Su,Tu

= 0.015,
and �Tu,Sg

= 0.056 (all in units of D0) show that the Haldane
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Sg and Su are ground state
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FIG. 4. (Color online) Functions F1(�) and F1(�) defining the
width of a window for orbital 2CKE [see text and Eq. (C1) for more
details].

RG transformation stops at D̄/D0 = 0.053 [the dependence
D̄(�) is neglected in this estimate]. As is known,26,27 the
Kondo temperature for CQD displaying SO(n) symmetry is
nonuniversal and depends on the width of the corresponding
multiplet. In our estimate TK1(�SO(5)) = 0.0054D0. On the
other hand, the two-channel Kondo temperature TK1 found
from Eqs. (12) without third-order terms on the RHS is TK2 =
0.018D0 � TK1. The reasons for such strong enhancement
are (i) the inequality TK1(�SO(5)) � TK1(0),27 and (ii) the
contribution of the enhanced parameter j̄2 to the first two
equations in the system (12): in accordance with our numerical
calculations, j̄2/j2 ≈ 1.5; hence, T ∗/TK1 � 1.

This result may be compared with the situation arising
in doubly occupied DQD in the serial geometry without
source-drain symmetry, where the difference between the
high-energy and low-energy scales is related to the crossover
from single-channel KE to 2CKE due to asymmetry between
the source-dot and drain-dot coupling.33 The crossover mech-
anism 1CKE → 2CKE is different in that case (two-stage
Kondo screening of two spins S(s,d) attached to two electrodes
with essentially differing Kondo scales TKs � TKd

34). The
1CKE is characterized by the scale TKs , and the 2CKE regime
arises at essentially lower temperature T2K � TKs due to
overscreening of the remaining spin 1/2 by the remaining
electrons in the source and drain leads. Comparing the two
mechanisms, we see that, unlike in Ref. 33, our mechanism
leads to enhancement of the Kondo scale in the crossover
1CKE → 2CKE.

Experimentally, the mutual disposition of singlet and triplet
levels E� (3) should be tunable by varying the gate voltages
which control the dot parameters such as �, Qc, and Q in order
to drive a TQD into the window defined by inequalities (C1).
Since these parameters enter the corresponding equations
in many ways, it is difficult to point out their optimum
combination. Figure 4 shows that the ground state of TQD
is formed by two singlets in a wide enough range of the values
of parameter � (marked by a vertical dashed line) at realistic
values of other model parameters.

IV. CONCLUDING REMARKS

We demonstrate in this paper that the transformation of
the conventional high-temperature single-channel spin-Kondo
effect into an unconventional low-temperature two-channel
orbital Kondo effect, where spin enumerates the screening

channels, is possible in doubly occupied parallel TQD. The
mechanism of this transformation is related to the singlet-
triplet level crossing (Fig. 2). The necessary precondition
for such a crossover is the presence of at least two spin
singlets in the low-energy spectrum of CQD. In the case of
TQD with N = 2 the low-energy spectrum is formed by an
SO(8) two-triplet/two-singlet multiplet. The minimal dynam-
ical symmetry group possessing the demanded properties is
SO(5). The theory is developed for the latter case, but the
generalization for higher n is straightforward.

A specific feature of dynamical symmetry which is crucial
for 1CK → 2CK crossover is the dependence of this type
of symmetry on the actual energy scale. It is seen from the
phase diagram of Fig. 2 that in the ultraviolet high-energy
limit SO(5) dynamical symmetry is realized when the highest
triplet Tg is integrated out. The ground state in this limit
is singlet, so only the usual Kondo scattering in the weak-
coupling regime due to singlet/triplet excitations is possible.
A dramatic change of the Kondo mechanism occurs because
in the low-energy limit the ground state becomes quasi doubly
degenerate due to Su/Tu level crossing. Then the roles of spin
and charge degrees of freedom in Kondo scattering swap, and
the 2CK effect is realized in a strong-coupling limit. Thus,
the dynamical symmetry crossover SO(5) → SU(2) is not a
simple reduction of the number of relevant degrees of freedom
but a reconstruction of the ground state in the course of scaling
renormalization.

A remarkable feature of this mechanism is the effect of
enhancement of the 2CK Kondo temperature in comparison
with that for the 1CK regime. This effect is robust because the
former “inherits” the Kondo cloud from the latter. Enhance-
ment of the Kondo temperature accompanying the symmetry
reduction SO(5) → SU(2) contrasts with the general trend
of reduction of TK with decreasing number of relevant
degrees of freedom, known, e.g., for the SU(4) → SU(2)
crossover.3,4,35

Several remarks about experimental aspects of the predicted
phenomenon are in order. We have already mentioned that the
most promising device for realization of the proposed 2CKE
regime within the present scenario is an axially symmetric
vertical TQD.24 This technology allows one to fabricate
symmetric or at least nearly symmetric isosceles TQD. A
small deviation from the perfect isosceles geometry is not
detrimental for observation of the orbital 2CKE. The main
effect of violating the left-right symmetry is expressed by
the inequality εl �= εr . Inserting the corresponding corrections
into Eqs. (3), we find that this deviation causes additional
shifts of the levels ESu

and ESg
, which eventually implies

the increment of the effective “magnetic field” Kh in the
Hamiltonian Horb (10). Since magnetic field is a relevant
parameter for NFL criticality,31 this increase does not prevent
observation of 2CKE as soon as the inequalities (C1) are valid.
In particular, the field dependence of conductance [G(T ,Kh) −
G(T ,0)]/G0 is given by a complicated scaling function derived
in Ref. 36. The quantum critical point 2CKE-1CKE may also
be achieved using the mutual disposition of the pairs ETu,g

and
ESu,g

(Fig. 2) governed by the Coulomb blockade energies as
control parameters. With reasonable effort, the experimental
techniques reported in Ref. 24 can be modified and employed
to test the present prediction.
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APPENDIX A: EIGENSTATES OF DOUBLY OCCUPIED
SYMMETRIC TQD

The Hamiltonian of the isolated isosceles TQD is

Hd =
∑

a=l,r,c

∑
σ

εad
†
aσ daσ +

∑
a

Qana↑na↓

+
∑
i=l,r

Qicni↑nc↓ + W
∑
iσ

(d†
cσ diσ + H.c.). (A1)

Here εa are the energy-level positions in the central (c) and
side (l,r) wells of TQD; Qa and Qic are intradot and interdot
Coulomb blockade parameters, respectively; and W is the
tunneling integral between the central and side wells. We
are interested in the completely symmetric case, εl = εr ≡ ε,

Ql = Qr ≡ Q � Qc, and Qlc = Qrc ≡ Qic.
The Hamiltonian (A1) can be diagonalized by using the

basis of two-electron wave functions

|si〉 = 1√
2

(d+
i↑d+

c↓ − d+
i↓d+

c↑)|0〉, |ti ,1〉 = d+
i↑d+

c↑|0〉,

|ti ,0〉 = 1√
2

(d+
i↑d+

c↓ + d+
i↓d+

c↑)|0〉, |ti ,1̄〉 = d+
i↓d+

c↓|0〉,

|exi〉 = d+
i↑d+

i↓|0〉, |exc〉 = d+
c↑d+

c↓|0〉, (A2)

|exlr〉 = 1√
2

(d+
l↑d+

r↓ − d+
l↓d+

r↑)|0〉, ∣∣ext
lr ,1

〉 = d+
l↑d+

r↑|0〉,

∣∣ext
lr ,0

〉 = 1√
2

(d+
l↑d+

r↓ + d+
l↓d+

r↑)|0〉, ∣∣ext
lr ,1̄

〉 = d+
l↓d+

r↓|0〉.

In this basis, the Hamiltonian (A1) is decomposed into
triplet and singlet matrices,

Ht =

⎛
⎜⎝

ε̃ 0 W

0 ε̃ −W

W −W 2ε

⎞
⎟⎠ ,

Hs =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε̃ 0 W
√

2W 0
√

2W

0 ε̃ W 0
√

2W
√

2W

W W 2ε 0 0 0√
2W 0 0 2ε + Q 0 0

0
√

2W 0 0 2ε + Q 0√
2W

√
2W 0 0 0 2εc + Qc

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A3)

where ε̃ = εc + ε + Qic.
The low-energy multiplet of two-electron states found by

means of diagonalization of the matrices (A3) is given by
Eqs. (3). The eigenfunctions corresponding to the energies (3)

are

|Sg〉 = αg

|sl〉 + |sr〉√
2

− β1|exlr〉−β2
|exl〉 + |exr〉√

2
− β3|exc〉,

|Tu〉 = αT |tl〉 − |tr〉√
2

− β1

∣∣exT
lr

〉
, (A4)

|Su〉 = αu

|sl〉 − |sr〉√
2

− β2
|exl〉 − |exr〉√

2
, |Tg〉 = |tl〉 + |tr〉√

2
,

where

β1 =
√

2W/�, β2 =
√

2W/(� + Q),

β3 =
√

2W/(εc + Qc − Qic − ε),
(A5)

αg =
√

1 − β2
1 − β2

2 − β2
3 ,

αT =
√

1 − β2
1 , αu =

√
1 − β2

2 .

Thus, the lowest state of the isolated TQD is ESg
. It is seen

from (3) that the singlet and triplet states alternate: ESg
<

ETu
< ESu

< ETg
. The effective RG procedure renormalizing

the eigenvalues of a quantum dot once it is attached the
leads28 has been generalized for multilevel TQD in Ref. 27. In
accordance with this procedure, the levels E� move downward
as a function of the scaling parameter η = ln(D/D0) with
different slopes ∝	�. The tunneling rates 	� for even and
odd states (A4) obey the following hierarchy: 	Tg

> 	Su
>

	Tu
> 	Sg

. This means that multiple level crossing is possible
in the course of RG evolution. Besides, the pairs ETu,g

and
ESu,g

are subject to level repulsion provided the left and right
tunneling channels are not completely independent.

The flow evolution of each level stops at E� ≈ D̄. The
value D̄ is specific for each of the four levels. At this point
the SW transformation leads to the Kondo Hamiltonian, and
the Kondo stage of the RG procedure starts in accordance
with the poor-man scaling procedure.30 The phase diagram
is quite complicated, because the two singlet and two triplet
levels can intersect in several ways depending on the values
of the model parameters W , ε̃, �, Q, Qc, and Qic. Among
these scenarios are (i) S = 1 Kondo regime corresponding
to the scenario where Tg is the ground state, and the flow
pattern of dynamical symmetries with the RG procedure is
SO(8) → SO(5) → SO(4) → SO(3) (cf. the case of TQD
with N = 4 studied in Ref. 27), (ii) the absence of KE
corresponding to the scenario where Sg is the ground state,
and (iii) an orbital KE with almost degenerate Sg,Su ground
state. Here we focus on two competing phases, namely SO(5)
configuration, which involves two singlet states and one triplet
state, and orbital SU(2) configuration, where two singlets form
a (quasi)degenerate pair and the triplet state is involved as a
relatively soft excitation above this doublet.

APPENDIX B: SO(5) SYMMETRY

The effective Hamiltonians acting in the Fock space
Tu,Sg,Su possess the SO(5) symmetry. Ten group generators
of the o5 algebra can be combined, in particular in three vectors
and one scalar.25 In our case these are the vectors Su,Ru

and the the vector intermixing g and u states, namely, R̃ =
R(1)

ug + R(2)
gu (7). All these operators are defined via Hubbard
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operators connecting different states of the octet,

S+
u =

√
2(X1u0u + X0u1̄u ), S−

u = (S+
u )†,

Sz
u = X1u1u − X1̄u1̄u ,

R+
u =

√
2(X1uSu − XSu1̄u ), R−

u = (R+
u )†,

Rz
u = −(X0uSu + XSu0u ), (B1)

R(1)+
ug =

√
2X1uSg , R(1)−

ug = (
R(1)+

ug

)†
,

R(1)z
ug = −X0uSg ,

R(2)+
gu = −

√
2XSg 1̄u , R(2)−

gu = (
R(2)+

gu

)†
,

R(2)z
gu = −XSg0u ,

and the scalar operators A interchanging g,u variables of the
degenerate singlets:

A = i(XSuSg − XSgSu ). (B2)

The exchange part of the effective SO(5) Hamiltonian
arising as a result of the two-stage Haldane-Anderson scaling
procedure28,30 has the form

Hspin = J1Su · su + J2Ru · su + J3
(
R(1)

ug · sgu + R(2)
gu · sug

)
+ J4Su · sg + J5R̃ · su

+ J6(R1g · sug + R2g · sgu) + J7Su · (sgu + sug)

+ J8
(
R(1)

ug · sug + R(2)
gu · sgu

)
+ J9Ru · sg + J10R̃ · sg + J11Ru · (sgu + sug)

+ J12(R1g · sgu + R2g · sug), (B3)

where

R+
1g = −

√
2XSg 1̄g , R−

1g =
√

2XSg1g , R1gz = −XSg0g ,
(B4)

R+
2 = (R̃−

1 )†, R−
2 = (R̃+

1 )†, R2z = R̃
†
1z.

The spin operators for the electrons in the leads are introduced
by the obvious relations

sg = 1

2

∑
kk′

∑
σσ ′

c
†
gkσ τ̂σσ ′cgk′σ ′ ,

su = 1

2

∑
kk′

∑
σσ ′

c
†
ukσ τ̂σσ ′cuk′σ ′ , (B5)

sgu = 1

2

∑
kk′

∑
σσ ′

c
†
gkσ τ̂σσ ′cuk′σ ′ , sug = (sgu)†.

Here the first three effective exchange constants are

J1(ε) = α2
T V 2

εF − ε
, J2(ε) = −αuαT V 2

εF − ε
, J3(ε) = −αgαT V 2

εF − ε
,

(B6)

and the remaining coupling parameters arise at the second
stage of the RG procedure, which starts with the initial
conditions

J1(D̄) = J1, J2(D̄) = J2,
(B7)

J3(D̄) = J3, Ji(D̄) = 0 (i = 4 − 12).

The RG flow equations for these 12 coupling constants are
derived in Ref. 27. Analysis of these equations shows that
only the three first vertices (B6) are relevant, and one may use
the reduced Hamiltonian (6) for calculation of the fixed-point
solution, which corresponds to the Kondo temperature

TK2 = D̄

⎛
⎝1 − 2

√
2mlr

j1 + j2 +
√

(j1 + j2)2 + 2j 2
3

⎞
⎠

1√
2mlr

,

(B8)

where ji = ρ0Ji (i = 1, . . . ,12), d = ρ0D, and mlr = ρ0M̄lr .

This expression transforms to Eq. (9) at mlr → 0.

APPENDIX C: ORBITAL KE

The singlets Sg and Su become the lowest renormalized
states in the SW limit, i.e., ĒSg

= ĒSu
− 2Kh < ĒTg

,ĒTu
,

when

F1 < 0, F2 > 0,

F1 = 2W 2β2
2

β2
1 + β2

3

(
1

�
+ 2

εc + Qc − Qic − ε

)
− 2W 2

� + Q
+ Kh,

F2 = 2W 2Q

�(� + Q)

− 2W 2
(
β2

1 − β2
2

)
β2

1 + β2
3

(
1

�
+ 2

εc + Qc − Qic − ε

)
− Kh.

(C1)

Here Kh/2 = M̄lr is the indirect tunneling amplitude between
the side dots via the central dot and the leads arising in the
course of renormalization27 [see also Eq. (C3)].

In this case the two-channel orbital Kondo effect can be
realized. The corresponding cotunneling Hamiltonian has the
form

Horb = M̄lr (Xuu − Xgg)

+ α2
g

2

V 2

εF − ε

∑
kk′σ

XSgSg c
†
e,kσ ce,k′σ

+ α2
u

2

V 2

εF − ε

∑
kk′σ

XSuSuc
†
o,kσ co,k′σ

+ αgαu

2

V 2

εF − ε

∑
kk′σ

(XSgSuc
†
o,kσ ce,k′σ +XSuSg c

†
e,kσ co,k′σ ),

(C2)

with c(e,o),kσ = 1√
2
(cl,kσ ± cr,kσ ), and avoided crossing of the

singlet states is taken into account. The Hamiltonian (C2) can
be rewritten in terms of pseudospin Pauli matrices T and τ . It
acquires a form given by Eq. (10) with the following coupling
constants:

Kh = 2M̄lr , K‖ = α2
g + α2

u

2

V 2

εF − ε
, K⊥ = αgαuV

2

εF − ε
,

(C3)

K1 = K2 = α2
g − α2

u

4

V 2

εF − ε
.
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The anisotropic Hamiltonian (10) describes the two-channel
orbital Kondo effect in an effective “magnetic field” Kh. The
coupling constant Kh remains unrenormalized (because all the

terms ∼τ 2
z contribute to K1), but it affects the renormalization

of the other coupling constants. The scaling equations have the
form of Eqs. (12).
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