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Discrete-time quantum walks (DTQW) have topological phases that are richer than those of time-independent
lattice Hamiltonians. Even the basic symmetries, on which the standard classification of topological insulators
hinges, have not yet been properly defined for quantum walks. We introduce the key tool of time frames, i.e.,
we describe a DTQW by the ensemble of time-shifted unitary time-step operators belonging to the walk. This
gives us a way to consistently define chiral symmetry (CS) for DTQW’s. We show that CS can be ensured by
using an “inversion symmetric” pulse sequence. For one-dimensional DTQW’s with CS, we identify the bulk
Z × Z topological invariant that controls the number of topologically protected 0 and π energy edge states
at the interfaces between different domains, and give simple formulas for these invariants. We illustrate this
bulk-boundary correspondence for DTQW’s on the example of the “4-step quantum walk,” where tuning CS and
particle-hole symmetry realizes edge states in various symmetry classes.
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The realization that band insulators can have nontrivial
topological properties that determine the low-energy physics
at their boundary has been a rich source of new physics in the
last decade. The general theory of topological insulators and
superconductors1,2 classifies gapped Hamiltonians according
to their dimension and their symmetries.3 As very few real-life
materials are topological insulators, there is a strong push to
develop model systems, “artificial materials,” that simulate
topological phases.4 One of the promising approaches is to use
discrete-time quantum walks (DTQW),5–8 which can simulate
topological insulators from all symmetry classes in 1D and
2D.9–11

DTQW’s with particle-hole symmetry (PHS) go beyond
simulating topological insulating Hamiltonians: they have
topological phases with no counterpart in standard solid-state
setups. In 1D DTQW’s with PHS, edge states, “Majorana
modes” can have two protected quasienergies: ε = 0 or π

(time is measured in units of the time step and h̄ = 1).
Building on the results for periodically driven systems,12

one of us has defined the corresponding Z2 × Z2 topological
invariant.13 Both 0 and π energy Majorana edge states have
been experimentally observed in a quantum walk.14

The situation of chiral symmetry (CS) of DTQW’s is much
less clear. Even for the simplest one-dimensional DTQW, it
is disputed whether it even has CS9 or not.13 Although it
is expected that CS should imply a Z × Z bulk topological
invariant, this has not yet been found for DTQW’s. As opposed
to the case of PHS, there is also not much to draw on from
periodically driven systems. What DTQW’s have CS? How
can the bulk “winding number” be expressed for DTQW’s
with CS? These are the problems we tackle in this Rapid
Communication.

A DTQW concerns the dynamics of a particle, “walker,”
whose wave function is given by a vector, |�〉 =∑N

x=1

∑
s=−1,1 �(x,s)|x,s〉. Here, x = 1, . . . ,N is the discrete

position, and s = ±1 indexes the two orthogonal internal
states of the walker, the “coin eigenstates,” which we also
refer to as “spin.” The dynamics, instead of given by a

time-independent Hamiltonian, is realized using a periodic
sequence of alternating “step” and “coin rotation” operations.

The step operations are translations of the particle by
one lattice site depending on the value of the “coin,” the z

component of its spin. These are described by unitary operators
Ss , where s is either + or −, and

S± =
N∑

x=1

(|x ± 1〉〈x|⊗|±1〉〈±1| + |x〉〈x|⊗|∓1〉〈∓1|). (1)

For simplicity, we take periodic boundary conditions.
Between each two steps, a site-dependent local “coin

rotation” Rj on the walker’s internal state is performed. We
consider

Rj =
N∑

x=1

|x〉〈x| ⊗ R(χj (x),θj (x)), (2)

R(χ,θ ) =
(

cos θ − i sin θ sin χ −sin θ cos χ

sin θ cos χ cos θ + i sin θ sin χ

)
(3)

= exp[−iθ (cos(χ )σy + sin(χ )σz)]. (4)

This allows breaking PHS via the angle χ .9 Details of how
the local operations Rj are performed do not influence the
DTQW, all the information about them is summarized in the
corresponding unitaries Rj .

One period of the DTQW is defined by |�(t + 1)〉 =
U0|�(t)〉, for t ∈ Z. Here, the unitary time-step (Floquet)
operator is composed of 2M successive pulses,

U0 = SMRMSM−1RM−1 . . . S1R1. (5)

A period has to include an equal number of S+ and S− pulses,
otherwise the time-step operator has quasienergy winding,15

and cannot have gaps. Thus M is even. We take each pulse to
have a duration 1/2M , without losing generality.

We can also shift the starting time of the period by T , giving
the dynamics as |�(t + 1 + T )〉 = UT |�(t + T )〉, for any t ∈
Z. We refer to this shift, illustrated in Fig. 1 as going into the
“time frame” T . The starting time T has to be during a rotation,
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FIG. 1. (Color online) A DTQW is defined by a periodic sequence
of pulses: site-dependent spin rotations Rj , Eq. (2), and spin-
dependent translations S+ and S−, Eq. (1). The unitary time-step
operator U0 corresponds to a complete period, as in Eq. (5). The same
quantum walk can also be described in different “time frames,” i.e.,
by time-shifted time-step operators UT as in Eq. (6). Two examples
are shown, with U ′ defined by T = 1/16 and U ′′ by T = 9/16.

since performing only part of a shift operation would leave the
walker between sites, and its description would necessitate an
increased Hilbert space. This restricts T to T = (l − 1)/M +
y/(2M), for 1 � l < M , and 0 � y < 1. The Floquet operator
in the time frame T reads

UT = R
y

M+lSM+l−1RM+l−1 . . . Sl+1Rl+1SlR
1−y

l , (6)

where we define R
y

j ≡ ∑
x |x〉〈x| ⊗ R(χj (x),y θj (x)). Note

that UT is a unitary transform of U0.
A DTQW can be seen as a stroboscopic simulator of an

effective Hamiltonian Heff,T . The effective Hamiltonian is
associated to the Floquet operator by

UT ≡ e−iHeff,T . (7)

The effective Hamiltonian is uniquely defined by this equation
if we restrict its eigenvalues, the quasienergies, to an “energy
Brillouin zone,” −π < ε � π . This is completely analogous
to the restriction of the quasimomentum to the first Brillouin
zone.

Previous work on CS in DTQWs has focused on a
single time frame, whether Heff,0 has CS, and identifying the
associated topological invariant. Our crucial insight is that it
is important to widen the scope: a DTQW has CS, if there is
a time frame where its effective Hamiltonian has CS, in other
words, if a time T and a unitary operator � acting on the coin
space can be found, with �2 = 1, that �UT � = U−1

T .
A sufficient condition for a DTQW to have CS represented

by � = σx is that the sequence of operations defining the walk
has an “inversion point.” By this, we mean that there is an l,
with which for every j :

Rl−j = Rl+j , (8)

Sl−j = S+ ↔ Sl+j+1 = S−. (9)

We choose � = σx for two reasons. First,

σxS−σx = S−1
+ , (10)

whereby also σxS+σx = S−1
− . Second, since the local unitaries

are rotations Rj about axes that have no x component,

σxR(χ,θ )σx = R(χ,θ )−1 = R(χ, − θ ). (11)

Consider the sequences of M operations just after and just
before the middle of the “inversion point,”

F = R
1/2
l+M/2Sl−1+M/2Rl−1+M/2 . . . Rl+1SlR

1/2
l , (12)

G = R
1/2
l Sl−1Rl−1 . . . Rl+1−M/2Sl−M/2R

1/2
l−M/2. (13)

These give us two Floquet operators for the walk:

U ′ = FG, U ′′ = GF, (14)

as shown in Fig. 1. Using relations (10) and (11), we have
that time reversal can be done during a period, �F�G = 1,
whereby G = �F−1�. From this it is straightforward to show
that both U ′ and U ′′ are chiral symmetric. Thus, “inversion
symmetry” of the DTQW sequence in the sense of Eq. (9)
gives two inequivalent “CS time frames:” time frames where
the effective Hamiltonian of the DTQW has CS.

CS allows a definition of sublattices, via the projection op-
erators 	A = (1 + �)/2, 	B = (1 − �)/2. Eigenstates of H ′

eff
with quasienergy ε 
= 0,π can be chosen to have equal support
on both sublattices. Stationary states with quasienergies 0 or
π , however, can be chosen to be on a single sublattice in a time
frame with a CS Floquet operator, U ′ (their wave functions in
this time frame are eigenstates of �).

We now proceed to derive the bulk-boundary correspon-
dence for DTQW with CS. We consider an inhomogeneous
DTQW with CS, consisting of a translationally invariant “L”
bulk at 1 � x � d and an “R” bulk at d � x � N . There are
(smooth or sharp) boundaries between the two bulks around
x ≈ d and 1. In the time frame where the Floquet operator U ′
has CS, the two bulks have effective Hamiltonians H ′

eff,L and
H ′

eff,R . We assume both bulk Hamiltonians have gaps around
ε = 0 and π . Therefore, if stationary states with quasienergies
ε = 0 or π exist, they must have wave functions confined to the
edges, exponentially decaying towards the bulks. The number
of edge states at the edge around x ≈ d on sublattice A (B) is
m′

A (m′
B). These can further be written as

m′
A = m′

A,0 + m′
A,π , m′

B = m′
B,0 + m′

B,π , (15)

where the second index stands for the energy. We are looking
for the topological invariants of the bulk parts of the walk,
νL,ε, and νR,ε, where ε = 0,π , whose differences give us the
number of topologically protected edge states separately for
each energy,

νL,ε − νR,ε = m′
A,ε − m′

B,ε. (16)

The first step towards the topological invariants is the
standard winding number ν ′3 associated to the bulk effective
Hamiltonian H ′

eff, in the time frame where the Floquet operator
is U ′. This is obtained from the bulk, translational invariant
part of the Floquet operator, diagonal in momentum space:
U ′ = ∑

k |k〉〈k| ⊗ U ′(k), and U ′(k) = e−iHeff(k). Instead of
the effective Hamiltonian, it is convenient to calculate with
H ′(k) = sin[Heff(k)]. This has the same CS and the same
winding number as Heff(k) (and as its flattened version
Q = sgn[Heff(k)]3), but can be obtained much more efficiently
via H ′(k) = [U ′(k)† − U ′(k)]/(2i). In a basis where � =
diag(1, . . . ,1,−1, . . . ,−1) is a diagonal matrix with an equal
number of +1 and −1 elements, the matrix of H ′(k) is block
off diagonal because of CS. We name its upper right block
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h′(k). The winding number ν ′ reads

ν ′ = 1

2πi

∫ π

−π

dk
d

dk
ln det h′(k). (17)

The winding number ν ′ is related to the difference of the
bulk polarizations on the two sublattices in bulk. Therefore
it cannot differentiate between 0 and π energy edge states,
and can only be used to obtain the sum of all topologically
protected edge states around x ≈ d:

ν ′
L − ν ′

R = m′
A,0 + m′

A,π − m′
B,0 − m′

B,π . (18)

However, there is the other CS time frame, U ′′, where we have

ν ′′
L − ν ′′

R = m′′
A,0 + m′′

A,π − m′′
B,0 − m′′

B,π . (19)

We need to combine the information from the two CS time
frames to obtain the topological invariants.

We can obtain a simple connection between the two
CS time frames by considering an edge state. In the time
frame of U ′ = FG, the edge state has a wave function �,
entirely on sublattice A (or B), i.e., �� = (−1)g�, with
g = 0 (or 1). In other time frames, where UT has no CS,
the energy of the edge state has to remain the same, but
its wave function can extend over both sublattices. In the
other CS time frame U ′′ = GF , however, its wave function,
� = G�, again has to to be entirely on a single sublattice.
This can be A (or B), whereby �� = (−1)f �, with f = 0
(or 1). Consider GF� = G�G−1�� = G�G−1(−1)f � =
G�(−1)f � = (−1)g+f G� = (−1)g+f �. This shows that 0
(π ) energy edge states are on the same (opposite) sublattice in
the two CS time frames. This can be summarized as

m′′
A = m′

A,0 + m′
B,π ; m′′

B = m′
B,0 + m′

A,π . (20)

To obtain the number of protected edge states at zero and π

energies separately, we substitute Eq. (20) into Eqs. (18), (15),
and (19), and rearrange to obtain

m′
A,0 − m′

B,0 = ν ′
L + ν ′′

L

2
− ν ′

R + ν ′′
R

2
, (21)

m′
A,π − m′

B,π = ν ′
L − ν ′′

L

2
− ν ′

R − ν ′′
R

2
. (22)

We compare this with Eq. (16), and read off the bulk
topological invariants (ν0,νπ ) as

(ν0,νπ ) =
(

ν ′ + ν ′′

2
,
ν ′ − ν ′′

2

)
. (23)

This, the bulk-edge correspondence for DTQW’s with CS, is
the main result of this Rapid Communication.

Having derived a general formula for the topological
invariant of 1D DTQWs with CS, we now discuss an example
where the differences between CS and PHS come into play.
To arrive to the example, first consider the “split-step walk” of
Kitagawa et al.,9 given by U0 = S+R(0,φ)S−R(0,θ1). There,
both PHS and CS are present, and we find that the νε are
one-to-one functions of the invariants Qε induced by PHS:13

νε = 1/2 − Qε, for both ε = 0,π . (An interesting special case
is the simple quantum walk, obtained by setting φ = 0.) We
can break PHS by using nonzero angles χ . To be able to break
CS, we consider a longer period of pulses, a “4-step DTQW,”

FIG. 2. (Color online) Parameter space of the 4-step DTQW with
PHS ensured by χj = 0, CS ensured by θ2 = θ4, and θ1 set to 0.
The DTQW has effective Hamiltonians with gaps around both ε = 0
and ε = π , except at the gapless points where gaps close at ε = 0
(solid lines) or ε = π (dashed lines). Single lines indicate that the gap
closes at a single k, at either k = 0 or k = π . Double lines indicate
double gap closings, at k = ±π/2. For each gapped domain, the
corresponding pair of winding numbers {ν ′,ν ′′} as well as the pair of
topological invariants (ν0,νπ ), cf. Eq. (23), are shown. Letters “C”,
“D,” and “E” indicate sets of parameters used for the inhomogeneous
quantum walk, with rotation as in Eq. (25).

given by

U0 = S+R4S+R3S−R2S−R1. (24)

This walk has no CS if R2 
= R4, but has CS if R2 = R4,
with F = R

1/2
3 S−R2S−R

1/2
1 and G = R

1/2
1 S+R4S+R

1/2
3 .

The 4-step walk also has the advantage that the effective
Hamiltonian will have longer range hoppings, and thus we
can expect higher values of the winding numbers. This is
entirely analogous to adding a third nearest-neighbor hopping
term to the SSH model.

The topological invariants in a section of the phase space
of the 4-step DTQW with both CS and PHS (Cartan class
BDI3) are shown in Fig. 2. Here, we set all χj = 0 to ensure
PHS, θ2 = θ4 to ensure CS, and set θ1 = 0 for simplicity. We
restrict θ2 to −π/2 < θ2 < π/2 since adding π to both θ2

and θ4 just brings two factors of −1 that cancel out in both
time frames with CS. Generic values of θ2 = θ4 and θ3 give
effective Hamiltonians with gaps around both ε = 0 and ε = π .
Examples for these are the points C(θ2 = π/20,θ3 = π/4), D

(θ2 = 0,θ3 = −π/4), and E(θ2 = π/4,θ3 = π/4).
To see the effects of breaking the symmetries on edge states,

we consider two inhomogeneous systems, consisting of two
domains of 40 sites each, with sharp boundaries in between.
The inhomogeneous rotations read

Rj =
40∑

x=1

|x〉〈x| ⊗ Rj,X +
80∑

x=41

|x〉〈x| ⊗ Rj,C, (25)

where X = D or X = E, and C refer to the parameter sets of
defined in the previous paragraph and indicated in Fig. 2.

We break PHS (realizing Cartan class AIII) in a controlled
way by introducing a nonzero χ3 in the bulk 0 < x < 41.
As long as the bulk gaps are still open, breaking PHS does
not change the edge state energies, as shown in Figs. 3(A1)
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FIG. 3. (Color online) Spectra of an inhomogeneous “4-step
walk” on N = 60 sites as defined by Eqs. (24) and (25), with two
domains: D and C (top row), and E and C (bottom row). (Left) We
break PHS via χ3 for x < 41 on (A1) and (B1). As long as the bulk
gaps are still open, the edge state energies do not change as they are
still protected by CS. (Middle) (A2) and (B2): we break CS by setting
θ2 → θ2 + θ , θ4 → θ4 − θ for n < 31. This lifts the degeneracy
of edge states on the same edge pairwise. At the interface between E
and C, the unpaired edge state remains (B2). (Right) (A3) and (B3): as
both PHS and CS are broken, no topologically protected edge states
remain. In (B3), the unpaired edge states at both edges are displaced
in energy.

and 3(B1). The edge-state energies are still protected by CS,
and can only move from their original values if the bulk gap
closes (at χ3 = π/2 for the D-C boundary). We break CS
(realizing Cartan class D), by changing θ2 − θ4 in the “L”
bulk. A pair of edge states on the same edge at the same
energy can now break apart, becoming PHS partners of each
other. This can be seen in Fig. 3(A2) at both 0 and π energy.
However, a single edge state, as the one between bulks B

and C, is still protected by PHS when CS is broken, as seen in
Fig. 3(B2). Finally, to check that no extra hidden symmetries
remain, we break both CS and PHS (realizing Cartan class A).
In that case, the edge-state energies are not protected anymore,
cf Figs. 3(A3) and 3(B3). This shows that our description of
the relevant symmetries of the DTQW was indeed exhaustive.

To summarize, we gave a definition of CS for DTQWs and
derived the corresponding bulk topological invariants, using
the fact that the walk is defined by a sequence of operations,
rather than just by its unitary time-step operator. The “time-
shifting” approach presented here based on finding the “CS
time frames” should generalize to periodically driven quantum
systems.15–19 In such setups, PHS has been shown to lead to
two types of “Floquet Majorana fermions,”12 which should
have clear signals in transport20 and can also be useful for
quantum information processing.21 Theoretical proposals have
already seen several such states at a single edge if the driving
also ensures CS.22 The bulk topological invariant controlling
the number of these edge states is as yet unknown, but it could
be derived using the approach of this Rapid Communication.

Although two-dimensional DTQWs have already been
realized in experiments,23 their topological invariants are
largely unexplored. In two dimensions, edge states can exist
in the absence of symmetries; the related bulk-boundary cor-
respondence for periodically driven systems has only recently
been found.24 The approach of identifying the “symmetric
time frames” could be a key idea for the description of
other symmetry classes for both periodically driven quantum
systems and DTQWs.
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