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Zeeman coupling and screening corrections to skyrmion excitations in graphene
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At half-filling of the fourfold degenerate Landau levels |n| � 1 in graphene, the ground states are spin-
polarized quantum Hall states that support spin skyrmion excitations for |n| = 1,2,3. Working in the Hartree-Fock
approximation, we compute the excitation energy of an unbound spin skyrmion-antiskyrmion excitation as a
function of the Zeeman coupling strength for these Landau levels. We find for both the bare and screened
Coulomb interactions that the spin skyrmion-antiskyrmion excitation energy is lower than the excitation energy
of an unbound spin-1/2 electron-hole pair in a finite range of Zeeman coupling in Landau levels |n| = 1,2,3. This
range decreases rapidly for increasing Landau level index and is extremely small for |n| = 3. For valley skyrmions,
which should be present at 1/4 and 3/4 fillings of the Landau levels |n| = 1,2,3, we show that screening
corrections are more important in the latter case. It follows that an unbound valley skyrmion-antiskyrmion
excitation has lower energy at 3/4 filling than at 1/4. We compare our results with recent experiments on spin
and valley skyrmion excitations in graphene.
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I. INTRODUCTION

The energy of the Landau levels in graphene in a transverse
magnetic field B = −B ẑ is given by

E0
s,n = sgn(n)

√
|n|

√
2h̄vF

�
− 1

2
sgμBB, (1)

where n = 0,±1,±2, . . . is the Landau level index, s = ±1
is the spin index, � = √

h̄c/eB is the magnetic length, vF is
the Fermi velocity, g = 2 is the Landé factor, and μB is the
Bohr magneton. Because the Zeeman energy is very small
in comparison with the kinetic energy, each Landau level is
usually considered as being fourfold degenerate when counting
spin and valley (K±) degrees of freedom. Experimentally,
this kinetic energy quantization leads to the anomalous Hall
sequence1

σxy = ±4e2

h

(
n + 1

2

)
(2)

in the Hall conductivity and so to quantum Hall plateaus at
filling factors ν = ±4 (n + 1

2 ).
In experiments2 on very high-quality graphene samples

fabricated on hexagonal boron nitride (hBN) substrates, it is
possible to resolve the quantum Hall plateaus at all integer
filling factors, i.e., σxy = me2/h with |m| � 0,3 and to see
an insulating state developing at filling factor ν = 0. These
experiments allow the study of the nature of the quantum
Hall ground states of the chiral two-dimensional electron gas
(C2DEG) as well as the nature of their charged excitations. In
Ref. 2, it was shown that the ground states are maximally spin
polarized at filling factors ν = −4,−8,−12, while the ground
state at ν = 0 is not. Moreover, the charged excitations were
found to be spin texture excitations at half-filling of Landau
levels n = −1,−2 in some range of Zeeman coupling. Valley
skyrmions were also detected and studied at filling factors
ν = −3,−5 where the ground state is valley polarized.

Theoretically, a calculation based on the nonlinear σ model
(NLσ model) that is valid at zero Zeeman coupling shows
that, in graphene, the transport gap should be due to spin

texture, i.e., spin skyrmion excitations4,5 at half-filling of
Landau levels |n| = 1,2,3 (see Ref. 6) and to valley skyrmions
at 1/4 and 3/4 filling of these same levels. Because there are no
symmetry-breaking terms associated with the two valleys (i.e.,
no equivalent Zeeman coupling), the NLσ model calculation
of Ref. 6 describes the valley skyrmions very well. In graphene,
spin skyrmions thus persist to higher Landau levels than
in a conventional semiconductor two-dimensional electron
gas (2DEG). Indeed, in a semiconductor 2DEG, skyrmions
are the lowest-energy charged excitations in n = 0 at filling
factor ν = 1 only (when the width of the quantum well is
neglected).7,8 In higher Landau levels, the transport gap is
due to unbound electron-hole pairs.9 The same conclusion
concerning skyrmions in graphene was reached using the
density matrix renormalization group (DMRG) method for
n = 0,1,2. For n = 3, the skyrmion-antiskyrmion (S-aS) pair
and electron-hole pair energies are very close and it was not
possible to stabilize a skyrmion solution with the DMRG
method.10 Exact diagonalization studies of valley skyrmions
have also been done in Ref. 11. Crystals of valley skyrmions
have been shown to be the ground state of the C2DEG around
quarter filling of the n = 0,1 Landau levels.12 A theoretical
study of the possible entanglement between the spin and
valley degrees of freedom in graphene, which could lead to
CP (Ref. 3) skyrmions, was done in Ref. 13. This work did not
include a calculation of the behavior of the transport gap with
Zeeman coupling however.

The energy functional of the NLσ model in broken-
symmetry quantum Hall ferromagnetic states contains a
gradient term that originates from the exchange part of the
Coulomb interaction. The topological solitons of this model
can be determined exactly.14 The gradient term being scale
invariant in two dimensions, the energy of these solutions is
independent of their size. When a finite Zeeman coupling is
considered, two more terms must be added to the NLσ model
energy functional: a Zeeman coupling, which favors small
skyrmions, and an electrostatic self-interaction energy, which
favors large skyrmions. These two terms compete together to
determine the optimal size and energy of a skyrmion as well
as its density profile and spin texture.
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In this paper, we study the energetics of spin skyrmions
in graphene in the half-filled Landau levels |n| = 1,2,3 and
valley skyrmions at 1/4 and 3/4 fillings where the ground
state is spin and valley polarized. For spin skyrmions, we
extend the calculation of the NLσ model, valid at zero
Zeeman coupling, to finite Zeeman coupling by using a
Green’s function approach. The equation of motion of the
Green’s function is derived in the Hartree-Fock approxima-
tion and in the symmetric gauge. This derivation leads to
a set of coupled self-consistent equations for the angular
momentum components of the skyrmion wave function that
must be solved numerically using an iterative procedure. Our
approach is equivalent to the canonical transformation method
used earlier in the study of skyrmion in a semiconductor
2DEG.15 Our method works well with finite-size skyrmions
but cannot deal with very large skyrmions, which are obtained
at small Zeeman coupling, since large skyrmions require a
large number of angular momentum components for their
description.

We compute the unbound S-aS pair energy, �S-aS, and
compare it with the energy to make an unbound electron-hole
(e-h) pair �e-h. The transport gap is determined by the lowest
of these two energies. We find that spin-texture excitations are
the lowest-energy excitations at half-filling in a small range
of Zeeman coupling for n = 1,2 and that this range decreases
rapidly with increasing Landau level index. According to the
NLσ model, spin skyrmions are the lowest-energy excitations
at zero Zeeman coupling also in n = 3. With the limitations
of our method, however, we cannot find spin skyrmions at
finite Zeeman coupling for n = 3. It follows that the Zeeman
coupling range where they are the lowest-energy excitations
must be very small.

It is straightforward to modify our method to include screen-
ing of the Coulomb interaction. The Coulomb matrix elements
that enter the equation of motion for the Green’s functions
are evaluated using a dielectric function computed in the
random-phase approximation (RPA). For spin skyrmions, we
find that screening decreases substantially the transport gaps
�NLσM, �S-aS, and �e-h as well as the critical Zeeman coupling
for the transition between �S-aS and �e-h. Nevertheless, the
skyrmion scenario still prevails for n = 1,2 and for n = 3 in a
very small range of Zeeman coupling.

For valley skyrmions, there is no symmetry-breaking term
equivalent to the Zeeman coupling so that the transport gap
can be computed using the NLσM. Our results show that
screening corrections are more important at 3/4 filling than
at 1/4 so that the transport gap due to unbound valley S-aS
excitations is lower in the former case.

This paper is organized in the following way. In Sec. II,
we introduce the spinor noninteracting electronic states of
graphene in a magnetic field using the symmetric gauge.
Section III summarizes the Hartree-Fock approximation to
the electron-electron interaction and presents the assumptions
necessary to derive the two-level system that is the starting
point of our work. Section IV contains a description of the
quasiparticle (electron and hole) and skyrmion excitations.
The Green’s function formalism is discussed in Sec. V. The
numerical results are presented and discussed in Sec. VI for
the unscreened Coulomb interaction and in Sec. VII for the
screened interaction. We conclude in Sec. VIII.

II. TIGHT-BINDING HAMILTONIAN AND EIGENSTATES
OF THE NONINTERACTING CHIRAL 2DEG

Graphene has a honeycomb lattice structure that can be
described as an hexagonal Bravais lattice with a lattice constant
a0 = 2.46 Å and a basis of two carbon atoms A and B.1 Each
carbon atom contributes one electron to the two π bands.
These electrons form a C2DEG. In the sublattice basis (A,B),
the Hamiltonian in a transverse magnetic field B = −B ẑ and
in the continuum approximation (i.e., for small energy with
respect to the Dirac points) is given by

Hα = α

√
2h̄vF

�

(
0 a∓

a± 0

)
, (3)

where α = ± is the valley index for the two nonequivalent
valleys Kα = α(2/3,0)(2π/a0) in the Brillouin zone and
vF = √

3γ0a0/2h̄ is the Fermi velocity with γ0 = 3.12 eV
the hopping energy between nearest-neighbors carbon atoms.
The operators a+ = a†, a− = a are the ladder operators
for the one-dimensional harmonic oscillator. In Eq. (3), the
upper(lower) sign is for the α = +(−) valley.

The Landau level spectrum of Hα is given by

E0
s,n = sgn(n)

√
|n|

√
2h̄vF

�
− 1

2
s�Z. (4)

In Eq. (4), we have added a Zeeman coupling �Z = gμBB

to Hα . The Landau level index n = 0,±1,±2, . . . takes
both positive and negative values. In the absence of Zeeman
coupling, each Landau level is fourfold degenerate when
counting valley and spin degrees of freedom. In addition,
each Landau level has the macroscopic orbital degeneracy
Nϕ = S/2π�2, where S is the C2DEG area.

The eigenstates of Hα are spinors in the sublattice basis
(A,B). For n �= 0, these spinors are for the two valleys and for
a given spin orientation, given by

|n,m,α = +〉 = 1√
2

(
sgn(n) ||n| − 1,m〉

||n|,m〉

)
, (5)

|n,m,α = −〉 = 1√
2

(
||n|,m〉

−sgn(n)||n| − 1,m〉

)
, (6)

while for n = 0, the eigenspinors are given by

|0,m,α = +〉 =
(

0

|0,m〉

)
, (7)

|0,m,α = −〉 =
(

|0,m〉
0

)
. (8)

There is a direct correspondence between valley and sublattice
indices in Landau level n = 0.

The spinors in Eqs. (5)–(8) are written in the symmetric
gauge A = (By/2,−Bx/2), where the quantum number m =
0,1,2,3, . . . is associated with the angular momentum by the
relation

Lz|n,m〉 = (m − n)h̄|n,m〉. (9)

The states |n,m〉 are simply the eigenstates of a conven-
tional (nonchiral) 2DEG in a magnetic field. Because of the
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symmetry of the skyrmion charged excitations, the symmetric
gauge is the most convenient one.

In real space, the corresponding wave functions are given
by16

ϕn,m(r) ≡ 〈r|n,m〉

= Bn,mei(m−n)φ

(
r

�

)|m−n|
e
− r2

4�2 L
|m−n|
n+m

2 − |n−m|
2

(
r2

2�2

)
,

(10)

where φ is the angle between the vector r and the x axis, Lm
n (x)

is a generalized Laguerre polynomial and the normalization
constant is given by

Bn,m = Cn,m(−i)n√
2|m−n|+1π�2

√√√√(
n+m

2 − |n−m|
2

)
!(

n+m
2 + |n−m|

2

)
!

(11)

with Cn,m = 1 for m � n and Cn,m = (−1)m−n for m > n.

III. HARTREE-FOCK APPROXIMATION TO THE
INTERACTING CHIRAL 2DEG

In this paper, we consider the situation where the quartet of
states in Landau level n is partially filled and levels n′ < n are
completely filled. We make the approximation of considering
the filled levels as inert so that we can ignore them altogether.
We thus neglect Landau level mixing. It must be kept in mind,
however, that in graphene the difference in the kinetic energy
between the first two Landau levels EC = √

2h̄vF /� = 3. 67 ×
10−2

√
B eV = 426

√
B K is of the order of the Coulomb

interaction e2/κ� = 2.25 × 10−2
√

B eV = 261
√

B K (for
κ = 2.5, appropriate for graphene on hexagonal boron nitride,
and B in tesla) and Landau level mixing may be important.

The Zeeman energy �Z = gμBB = 1. 16 × 10−4B eV =
1.34B K.

We need to consider the Coulomb interaction between
electrons in level n, which is given in second quantization
by

V = 1

2

∑
α,β,s,s ′

∫
dr

∫
dr′
†

n,s,α(r)
†
n,s ′,β (r′)

×V (r − r′)
n,s ′,β (r′)
n,s,α(r), (12)

where the Coulomb potential V (r) = e2/κr with κ the dielec-
tric constant of the substrate holding the graphene layer. The
electron (spinor-)field operator is written as


n,s,α(r) =
∑
m

〈r|n,m,α〉cs,α,n,m, (13)

where cs,α,n,m annihilates an electron of spin s in valley α,

Landau level n, and orbital quantum number m. In Eq. (12),
the terms that do not conserve the valley index are very small
and have been neglected.17

To ensure the system’s neutrality, an interaction between
the C2DEG and a uniform positive background of density
nb = Ne/S, where Ne is the number of electrons in level n

must be added to V . That interaction is given by

Ve-b = −nbNe

∫
drV (r), (14)

where

Ne =
∑
α,s

∫
dr
†

n,s,α(r)
n,s,α(r). (15)

Making the usual Hartree-Fock pairing of the field operators
in Eq. (12), we get for the Hartree-Fock Hamiltonian:

HHF =
∑
s,α,m

E0
s,nc

†
s,α,n,mcs,α,n,m +

∑
s,s ′

∑
α,β

∑
m1...m4

V n
m1,m2,m3,m4

〈
c†s,α,n,m1

cs,α,n,m2

〉
c
†
s ′,β,n,m3

cs ′,β,n,m4

−
∑
s,s ′

∑
α,β

∑
m1...m4

V n
m1,m2,m3,m4

〈
c†s,α,n,m1

cs ′,β,n,m4

〉
c
†
s ′,β,n,m3

cs,α,n,m2 − νn

∑
s,α,m1,m2

V n
m1,m1,m2,m2

c†s,α,n,m2
cs,α,n,m2 , (16)

where the last term is the interaction with the positive background.
The interactions V n

m1,m2,m3,m4
in Eq. (16) are defined by

V n
m1,m2,m3,m4

= V 0,0,0,0
m1,m2,m3,m4

δn,0 + 1
4

[
V |n|,|n|,|n|,|n|

m1,m2,m3,m4
+ V |n|−1,|n|−1,|n|−1,|n|−1

m1,m2,m3,m4

]
�(|n|)

+ 1
4

[
V |n|,|n|,|n|−1,|n|−1

m1,m2,m3,m4
+ V |n|−1,|n|−1,|n|,|n|

m1,m2,m3,m4

]
�(|n|), (17)

where

V n1,n2,n3,n4
m1,m2,m3,m4

=
∫

drϕ∗
n1,m1

(r)ϕn2,m2 (r)
∫

dr′ e2

κ|r − r′|ϕ
∗
n3,m3

(r′)ϕn4,m4 (r′). (18)

The matrix elements that are needed in Eq. (17) are all of the form V
n,n,q,q
m1,m2,m3,m4 and can be evaluated numerically using the

following expression:

V n,n,q,q
m1,m2,m3,m4

=
(

e2

κ�

)√
Min(m1,m2)!

Max(m1,m2)!

√
Min(m3,m4)!

Max(m3,m4)!
δm1+m3,m2+m4

×
√

2
∫ ∞

0
dxe−2x2

x2|m1−m2|L0
n(x2)L0

q(x2)L|m1−m2|
Min(m1,m2)(x

2)L|m3−m4|
Min(m3,m4)(x

2). (19)
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The Hamiltonian of Eq. (16) is very general and allows the
calculation of skyrmion excitations with valley pseudospin
texture, spin texture, or even skyrmions with intertwined spin
and valley pseudospin textures. In this paper, we restrict
ourselves to situations where the quartet of state in Landau
level |n| > 0 is half-filled in which case the ground is spin
polarized and spin-skyrmions excitations are possible and to
1/4 or 3/4 fillings in which cases the ground state is valley
polarized and valley skyrmions are possible. Experiments
show that the ground states in n = 0 are more complex2 and
we will not consider this Landau level. Indeed, for ν = 0,

the ground state is probably not fully spin polarized and the
nature of the broken-symmetry ground state is still debated.18

At ν = −1, experiments suggest that excitations contain both
valley and spin flips.

At half-filling, the states with up spins in both valleys are
occupied. In a spin skyrmion excitation, an electron of spin s =
−1 is added to the ground state and causes a certain number of
spins s = +1 to flip to the s = −1 state in order to minimize
the Coulomb exchange energy between electrons. These spins
reversal can, in principle, occur in both valleys, but because
of the SU(2) valley symmetry of the Hamiltonian of Eq. (16),
it is equivalent to consider that they originate from one of the
valley only. When we do so, we assume that the other valley
plays no role and can be considered as inert. When considering
spin skyrmions only, we can thus restrict the Hilbert space in
Landau level n to one valley, say α = +1, and to two spin
orientations. In this way, we can work with a two- instead of
a four-level system. The same principle can be applied to the
ground state at 1/4 or 3/4 fillings. At 1/4 filling, for example,
state of up spins in valley K+ [or any linear combination of K+
and K−because of the SU(2) valley symmetry] are occupied.
If we assume that spin flips are not possible because of the
finite Zeeman coupling, then we have a two-level system with
K± and up spins and excitations are valley skyrmions. At 3/4
filling, we have a two-level system with states K± and down
spins.

From now on, we drop the Landau level indices (except in
the interaction V n) and write the Hartree-Fock Hamiltonian as

HHF =
∑
s,m

E0
s ρ

s,s
m,m + 1

2

∑
s,s ′

∑
m1...m4

V n
m1,m2,m3,m4

〈
ρs,s

m1,m2

〉
ρs ′,s ′

m3,m4

− 1

2

∑
s,s ′

∑
m1...m4

V n
m1,m2,m3,m4

〈
ρs,s ′

m1,m4

〉
ρs ′,s

m3,m2

− νn

∑
s,m1,m2

V n
m1,m1,m2,m2

〈
ρs,s

m2,m2

〉
+ 1

2
ν2

n

∑
m1,m2

V n
m1,m1,m2,m2

, (20)

where we have defined the operator

ρs,s ′
m1,m2

= c†s,m1
cs ′,m2 . (21)

The last term in Eq. (20) is the background’s electrostatic
interaction Vb-b = 1

2n2
b

∫
dr

∫
dr′V (r − r′), which must be

included in HHF in order to correctly take into account the
system’s neutrality when computing excitation energies.

The Hamiltonian HHF contains the s index and is written
with spin skyrmions in mind. We give all the subsequent

formulas for spin skyrmions. Valley skyrmions are easily
treated by replacing s with the valley index α in these formulas
and neglecting the Zeeman term in the excitations energy.

We remark that, for n = 0, the interactions V n
m1,m2,m3,m4

given by Eq. (17) are identical to that of a conventional
2DEG. If one assumes a spin-polarized ground state for n = 0,
the quasiparticle and spin-skyrmion excitation energies found
from Eq. (20) are identical to those of a nonchiral 2DEG’s,
which were computed in Refs. 4 and 15.

IV. QUASIPARTICLE AND SKYRMION EXCITATIONS

In the two-level system, the ground state is given by

|GS〉 =
∞∏
m

c
†
+,m|0〉, (22)

which implies that〈
ρ

s,s ′
m,m′

〉 = δm,m′δs,s ′δs,+. (23)

Its energy is given by

EGS = −1

2
NegμBB − 1

2

∑
m1,m2

V n
m1,m2,m2,m1

. (24)

A quasielectron excitation is obtained by adding one
electron of spin s = −1 and angular momentum m0 to the
ground state, i.e.,

|e〉 = c
†
−,m0

|GS〉, (25)

and has 〈
ρ

s,s ′
m,m′

〉 =
{

δs,s ′δm,m′ , if s = +1;

δm,m0δs,s ′δm,m′ , if s = −1.
(26)

The energy required to add one electron to the ground state is

�e = 1
2�Z (27)

and is independent of the value of m0.

For the quasihole state,

|h〉 = c+,m0 |GS〉 (28)

with〈
ρ

s,s ′
m,m′

〉 =
{

δs,s ′δm,m′ (1 − δm,m0 ), if s = +1,

0, if s = −1,
(29)

and the energy required to create this state is given by

�h = 1

2
�Z +

∑
m

V n
m,m0,m0,m

. (30)

If follows that the energy required to create an Hartree-Fock
electron-hole pair with both particles infinitely separated in
space is given by

�e-h = �e + �h = �Z +
∑
m

V n
m,m0,m0,m

. (31)

Numerically, the value of �e-h is independent of the choice of
m0. In fact∑

m

V n
m,m0,m0,m

=
(

e2

κ�

) ∫ ∞

0

dx

2π
|�n(x)|2, (32)
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with

�n(x) = δn,0e
−x2/4 + 1

2
�(|n|)e−x2/4

×
[
L0

|n|

(
x2

2

)
+ L0

|n|−1

(
x2

2

)]
. (33)

Following Ref. 15, the skyrmion state in Landau level n is
written as

|S〉 =
∞∏

p=0

(upc
†
+,p + vpc

†
−,p+1)c†−,0|0〉, (34)

with the constraint

|up|2 + |vp|2 = 1. (35)

This state has energy ES. The quasiparticle state |e〉 =
c
†
−,0|GS〉 corresponds to the limit up = 1 and vp = 0 for all

p′s, i.e., to a zero-size skyrmion. The skyrmion excitation
energy is given by

�S = ES − EGS. (36)

In the skyrmion state, one electron of spin down and
quantum state p = 0 is added to the C2DEG and, at the same
time, the state with spin up and quantum number p is combined
with a state with spin down and quantum number p + 1. The
difference in angular momentum between the two states is
�lz = +h̄ and such pairing produces a 2π counterclockwise
rotation of the spins in real space as shown in Fig. 5(a) below.
It is easy to show that the state |S〉 describes a spin texture with
a unit topological charge. The variational freedom in the wave
function of this state allows deviations of the spin texture from
that of the pure NLσ model. Far from the origin, this state is
locally identical to the ferromagnetic ground state and all spins
point in the “up” direction. Near the origin, the projection of
the total spin along the field direction becomes negative. The
total increase (decrease) in the electron charge near the origin
compared to the ferromagnetic ground state corresponds to
one added electron (hole) for the skyrmion (antiskyrmion).

The total number of reversed spins in the skyrmion state is
given by

K =
∑

p

|vp|2. (37)

In a similar way, the antiskyrmion state is given by

|aS〉 =
∞∏

p=1

(upc
†
+,p + vpc

†
−,p+1)|0〉 (38)

and the excitation energy for an antiskyrmion is

�aS = EaS − EGS. (39)

In this case, the difference in angular momentum is �lz = −h̄

and the rotation of the spins in real space is clockwise as shown
in Fig. 5(b). The total number of reversed spin in the state |aS〉
is again given by Eq. (37). At a given value of the Zeeman
coupling, K is the same for skyrmion and antiskyrmion. In
total, the number of down spins in a skyrmion-antiskyrmion
pair is given by 2K + 1 when counting the spin of the added
electron and hole and 2K gives the number of flipped spins.
In an electron-hole excitation, K = 0.

We remark that the skyrmion and antiskyrmion energies
are modified by the filled levels that we have neglected, but
the energy to create an unbound skyrmion-antiskyrmion pair
�S-aS = �aS + �S is not.

When the Zeeman coupling is zero, the excitation energy
of a large-scale spin texture is given by the nonlinear sigma
model (NLσM)

ENLσM = 1

2
ρs

∫
(∇m)2, (40)

where |m| = 1 is the spin field. In this SU(2)-invariant limit,
we know the exact spin stiffness which is given by

ρs = 1

16π

e2

κ�

∫ ∞

0
dxx2e− x2

2 (41)

in Landau level n = 0 and by

ρs = 1

16π

e2

κ�

∫
dxx2e− x2

2
1

4

[
L|n|

(
x2

2

)
+ L|n|−1

(
x2

2

)]2

(42)

in other Landau levels. It follows that the exact energy of a
single (large scale) skyrmion or antiskyrmion is given by4,14

ENLσM = 4πρs. (43)

Equation (43) is the energy needed to create a neutral spin
texture. The definition of this energy19 is different from the
skyrmion excitation energy we introduced above. However,
the energy to create an unbound S-aS pair is given by �NLσM =
8πρs and this energy coincides20 with �S-aS as given by
Eqs. (36) and (39).

The S-aS excitation gaps �NLσM for different values of n

have been computed by Kun Yang et al.6 for a 2DEG with Dirac
bands and compared with the corresponding gaps for a 2DEG
with parabolic bands. This comparison showed that �NLσM <

�e-h for Landau levels n = 0,1,2,3 so that the transport gap is
dominated by S-aS pairs at these filling factors.

In the NLσ model, the energy of a skyrmion is independent
of its size and K → ∞. When the Zeeman coupling is
considered, skyrmions are smaller and it becomes necessary to
consider the Hartree electrostatic energy as well. The Hartree
energy favors large scale skyrmions while the Zeeman cou-
pling favors small size skyrmions. The competition between
these energies lead to an optimal size for the skyrmion at a
given Zeeman coupling.

Figure 8 shows the transports gaps �e-h and �NLσM for
several Landau levels at �Z = 0. The transport gaps for the
chiral and nonchiral 2DEG’s are also listed in Table 1 of Ref. 6.

V. GREEN’S FUNCTION FORMALISM FOR SKYRMIONS

In the skyrmion and antiskyrmion states, the only nonzero
〈ρ〉′s are given by〈

ρs,s
p,p

〉
,〈ρ−,+

p±1,p〉,〈ρ+,−
p,p±1〉 �= 0, (44)

where the upper(lower) sign in the subscripts is for skyrmion
(antiskyrmion). To compute these average values, we define
the matrix of Matsubara Green’s functions

G±
p (τ ) =

(
G+,+

p,p (τ ) G
+,−
p,p±1(τ )

G
−,+
p±1,p(τ ) G

−,−
p±1,p±1(τ )

)
, (45)

115417-5
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with

G
s,s ′
p,p′ (τ ) = −〈Tτ cs,p(τ )c†s ′,p′ (0)〉, (46)

where Tτ is the imaginary time ordering operator. By defi-
nition, the 〈ρ〉′ s are related to the Green’s functions by the
relation

G±
p (τ = 0−) =

( 〈ρ+,+
p,p 〉 〈ρ−,+

p±1,p〉
〈ρ+,−

p,p±1〉 〈ρ−,−
p±1,p±1〉

)
. (47)

Note that we must take p = 0,1,2, . . . for a skyrmion and
p = 1,2,3, . . . for an antiskyrmion. To take into account the
added electron or hole, we must in addition set 〈ρ−,−

0,0 〉 = 1 for
the skyrmion and 〈ρ+,+

0,0 〉 = 0 for the antiskyrmion.
Using the Heisenberg equation of motion

h̄
∂

∂τ
(· · · ) = [K,(· · · )], (48)

with K = H − μNe, where μ is the chemical potential, we
get the following equation of motion for the Green’s function
G

s,s ′
p,p′ (τ ):

h̄
∂

∂τ
G

s,s ′
p,p′ (τ ) = −h̄δ(τ )δp,p′δs,s ′ − E0

s G
s,s ′
p,p′ (τ )

−
∑
s ′′

∑
m

V n
m,m,p,p

〈
ρs ′′,s ′′

m,m

〉
G

s,s ′
p,p′ (τ )

+
∑
m

V n
m,p,p,m

〈
ρs,s

m,m

〉
G

s,s ′
p,p′ (τ )

+
∑
m

V n
m±1,p±1,p,m〈ρ−,+

m±1,m〉G−,s ′
p±1,p′ (τ )δs,+

+
∑
m

V n
m,p∓1,p,m±1〈ρ+,−

m,m+1〉G+,s ′
p∓1,p′ (τ )δs,−

+
∑
m

V n
m,m,p,pG

s,s ′
p,p′ (τ ). (49)

This equation can be written in an obvious matrix form as[
(iωn + μ)I − 1

h̄
F±

p

]
G±

p (iωn) = I, (50)

where I is the 2 × 2 units matrix. The components of the 2 × 2
matrices F±

p are given by (with 〈ρm,m〉 ≡ ∑
s〈ρs,s

m,m〉)
(F±

p )1,1 = E0
+ +

∑
m

V n
m,m,p,p[〈ρm,m〉 − 1]

−
∑
m

V n
m,p,p,m〈ρ+,+

m,m〉, (51)

(F±
p )2,2 = E0

− +
∑
m

V n
m,m,p±1,p±1[〈ρm,m〉 − 1]

−
∑
m

V n
m,p±1,p±1,m〈ρ−,−

m,m〉, (52)

(F±
p )1,2 = −

∑
m

V n
m±1,p±1,p,m〈ρ−,+

m±1,m〉, (53)

(F±
p )2,1 = −

∑
m

V n
m,p,p±1,m±1〈ρ+,−

m,m±1〉, (54)

where the summations extend over all values of m in the
diagonal elements of F±

p and from m = 0(m = 1) to infinity
for skyrmions (antiskyrmions) in the off-diagonal elements.

The matrices F± are Hermitian and can be diagonalized by
a unitary transformation

F±
p = U±

p D±
p (U±

p )†, (55)

with D±
p the diagonal matrix of the eigenvalues (d±

p )k of F±
p .

If follows that

[G±
p (iωn)]i,j =

∑
k

(U±
p )i,k[(U±

p )]†k,j

iωn + μ − (d±
p )k

(56)

and

[G±
p (τ = 0−)]i,j = (U±

p )i,n[(U±
p )†]n,j , (57)

with n = 1 when (d±
p )1 < (d±

p )2 and n = 2 otherwise.
The Hartree-Fock self-consistent equation (50) is solved

numerically using an iterative scheme until self-consistency is
achieved for the 〈ρ〉′s. The excitation energies for skyrmion
(upper sign) and antiskyrmion (lower sign) are then computed
using (the Zeeman term is absent for valley skyrmions)

�S-aS = 〈H±〉 − EGS

= −1

2
gμBB

∑
s,m

s
[〈
ρs,s

m,m

〉 − δs,+
]

+ 1

2

∑
m,p

V n
m,m,p,p[(〈ρm,m〉 − 2)〈ρp,p〉 + 1]

− 1

2

∑
s

∑
m,p

V n
m,p,p,m

[〈
ρs,s

m,m

〉〈
ρs,s

p,p

〉 − δs,+
]

− 1

2

∑
m,p

V n
m,p,p±1,m±1〈ρ+,−

m,m±1〉〈ρ−,+
p±1,p〉

− 1

2

∑
m,p

V n
m±1,p±1,p,m〈ρ−,+

m±1,m〉〈ρ+,−
p,p±1〉. (58)

The excitation energy combines the Zeeman cost of the flipped
spins, the Coulomb self-interaction of the excess charge and
the exchange energy cost associated the rotation of the spins
with respect to the ferromagnetic ground state.

The change in the electronic density and spin pattern in real
space can easily be obtained from the 〈ρ〉′s by using

δn(r) =
∑
m

�n
m(r)[〈ρ+,+

m,m〉 + 〈ρ−,−
m,m〉 − 1], (59)

and

δSx(r) = h̄

2

∑
m

[
ϒn

m,±(r)〈ρ+,−
m,m±1〉 + c.c.

]
, (60)

δSy(r) = h̄

2i

∑
m

[
ϒn

m,±(r)〈ρ+,−
m,m±1〉 − c.c.

]
, (61)

δSz(r) = h̄

2

∑
m

�n
m(r)[〈ρ+,+

m,m〉 − 〈ρ−,−
m,m〉 − 1], (62)

with the definitions

�0
m(r) = |ϕ0,m(r)|2, (63)

ϒ0
m,±(r) = ϕ∗

0,m(r)ϕ0,m±1(r), (64)
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and

�|n|>0
m (r) = 1

2 [|ϕ|n|,m(r)|2 + |ϕ|n|−1,m(r)|2], (65)

ϒ
|n|>0
m,± (r) = 1

2ϕ∗
|n|,m(r)ϕ|n|,m±1(r)

+ 1
2ϕ∗

|n|−1,m(r)ϕ|n|−1,m±1(r). (66)

Again, the summations over m in δSx and δSy run from
m = 0(m = 1) to infinity for skyrmions (antiskyrmions).

VI. NUMERICAL RESULTS FOR THE
EXCITATION ENERGIES

The Green’s function approach just described is well suited
to compute the energy of a finite-size skyrmion but there is a
practical difficulty with it. In practice, we are forced to truncate
the set of single-particle angular momenta that we include in
the description of both the ferromagnetic ground state and the
charged excitations at a finite value mmax. Since the single-
particle orbital with angular momentum m is localized near
a ring with radius

√
(2m + 1)�, this is equivalent to working

with a finite-size electron disk of radius R ≈ √
2mmax�. The

skyrmion excitation energy �S will be given accurately by our
method if the tail of the disturbance associated with the charged
excitation does not extend to the edge of the disk. When the
Zeeman coupling g̃ ≡ �Z/(e2/κ�) decreases below a certain
value, the skyrmion size becomes large and this condition is
not satisfied.

The Landau level wave functions obey the identity

mmax=∞∑
m=0

|ϕn,m(r)|2 = 1

2π�2
. (67)

If mmax = 160, Eq. (67) is satisfied numerically for rmax/� �
15, while for mmax = 1000, it is satisfied for r/� � 35. In our
numerical calculations, we set mmax = 1000. It follows that the
charged excitation that we compute must be well contained in
a disk a radius rmax/� � 35 for our calculation to be reliable.

Figure 1 shows the energy ES of one skyrmion and the
corresponding number of reversed spins K as a function of
the Zeeman coupling g̃ for different values of the maximum
angular momentum mmax up to 2000 (in all our numerical
calculations, we use κ = 2.5 for the dielectric constant of the
substrate.) A good convergence of ES and K is obtained for
g̃ � 0.001 with mmax = 1000. Due to the variational nature
of the Hartree-Fock calculation, the energies approach their
asymptotic value much more rapidly with increasing mmax

than estimates of the optimal value of N↓. The values of �S at
small Zeeman coupling are thus more reliable than those of K.

Figure 2 shows the behavior of the gaps �e-h and �S-aS with
Zeeman coupling g̃ for Landau levels n = 1,2,3. The value of
the gap �NLσM is also indicated for each Landau level. The
upward vertical arrows are placed at values of g̃ corresponding
to the total magnetic fields B = 15,25,30 T with B⊥ = 15
T. This allows a comparison of our results with Fig. 2(e)
of Ref. 2 where the activation gap measured in a tilted-field
experiment is plotted as a function of the total magnetic field
for n = −1,−2 . (Note that the theoretical activation energies
depend only on |n|.) In such experiments, the magnetic length
is actually defined by � = √

h̄c/eB⊥ and B⊥ is kept fixed while
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S
ky

rm
io

n
en

er
gy

/(
e2

/κ
l)

K

0.005 0.01
-0.25

-0.20

-0.15

-0.10

-0.05

0

50

100

150
mmax=200
mmax=500
mmax=1000
mmax=2000

FIG. 1. (Color online) Energy of one skyrmion ES and the
corresponding number of reversed spins, K, as a function of the
Zeeman coupling for different values of the maximum angular
momentum used in the computation.

the magnetic field is tilted. This is equivalent to changing g̃

and keeping the filling factor fixed.
In Fig. 2, the gap �e-h decreases with increasing Landau

level index reflecting the decrease of the exchange energy with
n in Eq. (31). On the contrary, �NLσM and �S-aS both increase
with n in the small Zeeman range where skyrmions exist for
n = 1 and n = 2 (the region near the down arrow in the figure).
If the n = 2 skyrmion were to persist to larger values of g̃, the
�S-aS gap would actually decrease with n at large g̃ but this
does not happen in our calculation.

ΔZ / (e2/κl)

E
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y
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(e
2 /κ
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30T25T15T

ΔNLσM (n=2)

FIG. 2. (Color online) Excitation energy of a skyrmion-
antiskyrmion pair �SK-ASK and an electron-hole pair �e-h as a function
of the Zeeman coupling �Z/(e2/κ�) for Landau levels n = 1,2,3. The
horizontal arrows indicate the value of the skyrmion-antiskyrmion
gap �NLσM calculated in the nonlinear σ model. The upward vertical
arrows are positioned at the value of g̃ corresponding to total magnetic
fields B = 15,25,30 T when B⊥ = 15 T. The downward arrow points
to the value of g̃c for n = 2.
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FIG. 3. (Color online) Number of down spins N↓ = 2K + 1 in a
skyrmion-antiskyrmion pair as a function of the Zeeman coupling
�Z/(e2/κ�) for Landau level n = 1 with and without screening
corrections. The arrows are placed that the values of g̃ where the total
magnetic fields B = 15,25,30 T when the perpendicular component
B⊥ = 15 T. The dashed line indicates N↓ = 1, the electron-hole limit.

The maximal value, g̃c, of the Zeeman coupling for which
�S-aS < �e-h decreases dramatically with Landau level level
index as shown in Fig. 2. For example, the value of g̃c ≈ 0.0026
for n = 2 is one order of magnitude lower than that for n = 1.

This makes skyrmions difficult to calculate in higher Landau
levels. Interestingly, we find that for n = 2, �S-aS goes over
�e-h for g � g̃c (̃gc is indicated by a downward arrow in
Fig. 2) instead of reaching �e-h smoothly as is the case for
n = 1. At the crossing point g̃c for n = 2, the number of down
spins, N↓ in the S-aS pair (see Fig. 3) is ≈25, a large value. A
similar jump in the number of down spins at the transition from
S-aS pair to electron-hole pair was predicted theoretically for
skyrmions in a conventional 2DEG when the finite width of the
well was taken into account and at filling factor ν = 3.8 This
jumps suggests that the spin polarization of the C2DEG could
change abruptly at g̃c. This first order transition has been seen
experimentally in a conventional 2DEG at ν = 1 (Ref. 21)
and also in a conventional bilayer 2DEG at ν = 1 when the
electrons occupy only one of the two layers.22 Our calculation
shows that it can also happen in graphene.

The number of down spins N↓ > 1 for a S-aS pair while
N↓ = 1 for an electron hole pair. Figure 3 shows that the
rapid increase in energy of �S-aS with g̃ is associated with
a rapid decrease in N↓. The number of down spins varies
roughly linearly with g̃ in between B⊥ = 15 and 30 T but
not at smaller values of the Zeeman coupling. At B⊥ = 15 T,
N↓ ≈ 6 for n = 1 corresponding to K = 2.5 reversed spins per
skyrmion. Figure 3 shows that, for the same Zeeman coupling,
K is smaller for a n = 2 than for a n = 1 skyrmion.

Figure 4 shows δn(r), the change in the density of
the C2DEG with respect to the ferromagnetic ground state
density nGS(r) = 1/2π�2 when a skyrmion is added to the
ground state. [Because of the electron-hole symmetry of the
Hamiltonian near half-filling, δnS(r)= −δnaS(r).] We can

r/l

2
πl

2 δn
(r

)

0 2 4 6 8 100.0

0.1

0.2

0.3

FIG. 4. (Color online) Profile of the induced density δn(r) when
a skyrmion is added to the ground state in Landau level n = 1 for
several values of the Zeeman coupling �Z/(e2/κ�). The profiles for
the screened skyrmion in n = 1 and the unscreened skyrmion in n = 2
are also shown.

define the size or radius of a skyrmion, rsky, by the condition
δn(r = rsky)/δn(r = 0) = 1/2. Figure 4 shows that the size
of the skyrmions shrinks with increasing Zeeman coupling
and also with increasing Landau level index at fixed Zeeman
coupling. For g̃ = 0.002, the skyrmion size for n = 1 is
rsky/� ≈ 2 and the tail of the δn(r) is well within the maximal
radius rmax/� = 35 discussed above.

We remark that, strictly speaking, a skyrmion is defined as
a solution of the NLσM so that the spin texture excitations that
we obtain at finite Zeeman coupling are not exactly skyrmions.
Figure 5 below shows that the spin texture in these excitations,
however, is qualitatively that of a skyrmion (or antiskyrmion)
but a numerical evaluation of their topological charge given by
the Pontryagin index Q = 1

8π

∫
drεabcεij Sa∂iSb∂jSc (where

S is a unit spin field) does not give Q = ±1. When the
Zeeman coupling g̃ → 0, however, we do find that Q → ±1
as expected. The skyrmion (antiskyrmion) wave functions of
Eqs. (34) and (38) correspond to one added (or removed)
electron from the ground state and, indeed, a numerical
integration of the induced density plotted in Fig. 4 gives q =∫

drδn(r) = −e for all cases shown in this figure.
For n = 3, the crossing point g̃c occurs at a value of

g̃ � 0.0002 where N↓ is very large, suggesting that the
skyrmion size at that Zeeman coupling is already beyond
the limit of reliability of our approach. Since the NLσM
result indicates that skyrmions are the lowest-energy charged
excitations for n = 3, we can conclude that, if they persist to
finite Zeeman coupling, it is certainly in a very narrow range
of g̃, approximately an order of magnitude smaller than for
n = 2.

The spin texture S‖(r) for a skyrmion and an antiskyrmion
excitations in n = 1 at g̃ = 0.011 is plotted in Fig. 5 with
the component Sz(r) given by the superimposed density plot.
The in-plane component of the spin makes a 2π counterclock-
wise (skyrmion) or clockwise (antiskyrmion) rotation around
the center of the topological charge. Finally, the magnitude of
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FIG. 5. (Color online) Spin texture in the x-y plane for a
(a) skyrmion and (b) an antiskyrmion in Landau level n = 1 at
Zeeman coupling �Z/(e2/κ�) = 0.011. The density plot shows Sz(r)
in units of h̄/(2π�2).

the gap �S-aS ≈ e2/κ�. For B⊥ = 15 T, e2/κ� = 1011 K and
so �S-aS ≈ 910 K at B = 30 T for n = 1.

Our results can be compared with those of Ref. 2 [see
Fig. 2(e) of this paper] where the transport gap was measured
at total magnetic fields B = 15,25,30 T with the perpendicular
magnetic field B⊥ = 15 T kept fixed. In this experiment, the
electronic density was varied in order to study the spin-texture
excitations at filling factors ν = −4,−8,−12 corresponding
to half-filling of Landau levels n = −1,−2,−3. At B =
15,25,30 T, according to our calculations, the transport gap
is given by �

(n=1)
S-aS in n = 1 and by �

(n=2)
e-h ,�

(n=3)
e-h in n = 2 and

3 with the ordering �
(n=1)
S-aS > �

(n=2)
e-h > �

(n=3)
e-h . This ordering is

consistent with the experimental result except for n = 2. In this
case, the experiment measures a small number of spin flips, i.e.,
N↓ ≈ 1.4 suggesting that �

(n=2)
S-aS < �

(n=2)
e-h . We cannot explain

this difference with our model of skyrmion excitations.
Another difference between the experimental and theo-

retical results is the size of the transport gap. For example,

the experimental value of �
(n=1)
S-aS ≈ 75 K at B = 30 T,

while we find �S-aS ≈ 910 K, a much larger value. Several
effects may affect our results such as disorder, Landau level
mixing,7 and screening. In a conventional 2DEG, taking into
account the quantum well width8 is known to decrease the
excitation energy but this effect is not present in graphene.
In the remainder of this paper, we study the corrections
due to screening since they are easy to include in our
calculation and they lead to a substantial decrease of the
gap. We leave disorder and Landau mixing effects to further
work. Valley skyrmions were also studied at filling factors
ν = −3,−5 in Ref. 2. We comment on them in the next
section.

In closing this section, we remark that we have shown
and commented here our results for the excitation energy of
a skyrmion-antiskyrmion pair. Nevertheless, we have verified
that whenever this energy is smaller than the corresponding
electron-hole pair energy, the skyrmion (antiskyrmion) energy
is smaller than the electron (hole) energy.

VII. SCREENING CORRECTIONS TO THE
EXCITATION GAPS

To include screening, we follow the approach of Ref. 23
where it was shown that when the Landau levels other
than the partially filled level are integrated out, the low-
frequency dynamics of the 2DEG is described by the electrons
belonging to the partially filled Landau level but the interaction
between these electrons (and with the positive charge of the
background) is renormalized due to the polarizability of all
the other Landau levels. In the Hartree-Fock approximation,
this renormalization amounts to screen both the Hartree and
Fock interactions.24 The bare Coulomb interaction V (q) =
2πe2/κq must then be replaced by V (q) = 2πe2/ε(q)κq,
where ε(q) is the static dielectric function calculated in
the random-phase approximation (RPA). Such procedure
was used, for example, in the study of inhomogeneous
states such as bubble and stripe phases in quantum Hall
systems.25

We follow this procedure by using the screened Coulomb
interaction in the matrix elements of the Coulomb interac-
tion in Eq. (18). The matrix elements are recalculated by
inserting the dielectric function, i.e., ( e2

κ�
)
∫ ∞

0 dxe−2x2
(· · · ) →

( e2

κ�
)
∫ ∞

0 dx e−2x2

ε(x) (· · · ), where x = q�/
√

2 in Eq. (19). The
dielectric function is evaluated in the random-phase approxi-
mation and is given by

ε(q) = 1 − 2πe2

q
χ0,R(q,ω = 0), (68)

where χ0,R(q,ω) is the retarded density response function
computed for a noninteracting C2DEG in a magnetic field.
More precisely,

ε(q) = 1 + e2/κ�

h̄ω∗
c

1

q�

∑
α,s

∑
n,n′

|�n,n′(q)|2

× νn,α,s − νn′,α,s

sgn(n′)
√|n′| − sgn(n)

√|n| , (69)
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where νn,α,s is the filling factor of Landau level n with valley
index α and spin s and the function

�n,n′(q) = 1

2
�(|n|)�(|n′|)

× [F|n|,|n′|(q) + sgn(n)sgn(n′)F|n|−1,|n′|−1(q)]

+ 1√
2

[δn,0�(|n′|) + δn′,0�(|n|)]F|n|,|n′|(q)

+ δn,0δn′,0F0,0(q), (70)

with

Fn,n′ (q) =
(

n′!
n!

)1/2[ (qy + iqx)�√
2

]n−n′

Ln−n′
n′

(
q2�2

2

)
e−q2��2/4,

(71)

for n � n′. For n < n′, Fn,n′ (q) = [Fn′,n(−q)]∗. We have
defined the effective cyclotron energy h̄ω∗

c = √
2h̄vF /� so that

e2/κ�

h̄ω∗
c

= 1√
2κ

α∗, (72)

where α∗ = e2/h̄vF is the effective fine structure constant
for graphene. The dielectric function at integer filling ν of
electrons is equal to the dielectric function at integer filling ν

of holes. We write this as εν = ε−ν .

The dielectric function ε(q) of the C2DEG has been
evaluated previously.26 We show our results obtained at
different filling factors in Fig. 6. In our calculation, we include
Landau levels m ∈ [−800,800] in the summations in Eq. (69).
The dielectric function ε(q) = 1 at q = 0 and q → ∞. It is
maximal around q� ≈ 1 and increases with increasing filling
factors. In particular, screening is larger at 3/4 filling of a given
Landau level than at 1/4 filling as shown in Fig. 6 for |n| = 2.

In a conventional 2DEG, the dielectric function is given by

ε(q) = 1 + 2

(
e2/κ�

h̄ωc

)
1

q�

∑
s

∑
n,n′

|Fn,n′ (q)|2 νn,s − νn′,s

n′ − n
,

(73)
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FIG. 6. (Color online) Static dielectric function computed in the
random-phase approximation at different filling factors |ν| (indicated
by the number below each curve) in Landau levels |n| = 0,1,2,3.
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FIG. 7. (Color online) Excitation energy of a Hartree-Fock
electron-hole pair �

(S)
e-h and a skyrmion-antiskyrmion pair �

(S)
S-aS with

screening corrections for Landau levels n = 1 (lower x axis) and
n = 2 (upper x axis) and n = 3 (lower x axis) at half-filling. The
arrow points to the excitation energy of skyrmion-antiskyrmion pair
obtained by NLσ model with a screened stiffness.

where n,n′ = 0,1,2, . . . . Since (e2/κ�)/h̄ωc ∼ 1/
√

B,

screening is less important at large magnetic fields in a
conventional 2DEG than in graphene.

We have recomputed the energy of a Hartree-Fock electron-
hole pair, �

(S)
e-h, a S-aS pair, �

(S)
S-aS, as well as the NLσ model

result �
(S)
NLσM using the screened matrix elements. We use the

superscript (S) indicates the screened gaps. The gaps �
(S)
e-h and

�
(S)
NLσM are given by

�
(S)
e-h = gμBB +

(
e2

κ�

) ∫ ∞

0

dx

2π

|�n(x)|2
ε(x)

, (74)

[with �n(x) defined in Eq. (33)] and

�
(S)
NLσM = 8πρ(S)

s , (75)

with
∫

dxx2(· · · ) replaced by
∫

dx x2

ε(x) (· · · ) in the definition
of the spin stiffness in Eqs. (41) and (42). We remark that, as
in the unscreened case, the gap �

(S)
e-h does not depend on the

angular momentum of the added electron or hole.
Figure 7 shows the energy gaps when screening is taken

into account for Landau levels n = 1,2,3 in the half-filled
case. The energy of all three gaps is reduced substantially in
comparison with the unscreened results. The value of g̃c is
also further reduced with respect to its unscreened value. The
data points for n = 2 are not very reliable as they are obtained
at very small Zeeman coupling where skyrmions are large;
they, however, provide an upper limit for g̃c. The transport gap
is due to skyrmions for n = 2 in the screened case but only
at very small Zeeman coupling. For Landau level n = 3, the
Zeeman range of coupling where the transport gap is due to
skyrmions is further reduced with respect to the n = 2 case.

Figure 8 shows the evolution of the NLσM and electron-
hole transport gaps with Landau level index at half-filling and
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FIG. 8. (Color online) Evolution of the NLσM and electron-hole
transport gaps at zero Zeeman coupling with Landau levels n = 1,2,3.

The full lines are only a guide to the eyes. The inset shows the ratios
�e-h/ �

(S)
e-h and �NLσM/�

(S)
NLσM with Landau level index.

zero Zeeman coupling. The behavior of the ratios �e-h/ �
(S)
e-h

and �NLσM/ �
(S)
NLσM with Landau level index is shown in the

inset. The screening corrections saturate at large n more rapidly
for skyrmions than for electron-hole pairs. As with �NLσM, the
gap �

(S)
NLσM increases with Landau level index but much less

rapidly than in the unscreened case.
For completeness, the calculation of the pair energy in both

the screened and unscreened cases for Landau level n = 0 is
shown in Fig. 9 and the corresponding number of down spins
is shown in Fig. 10. As we remarked above, the exact nature of
the ground state for n = 0 in graphene is still controversial and
is probably not spin polarized. Nevertheless, our calculation
for n = 0 is valid for a S-aS pair energy in a conventional
2DEG.
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FIG. 9. (Color online) Excitation energy of a Hartree-Fock
electron-hole pair and a spin skyrmion-antiskyrmion pair with and
without screening corrections for Landau level n = 0.
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FIG. 10. (Color online) Number of reversed spins N↓ = 2K + 1
in a spin skyrmion-antiskyrmion pair in Landau level n = 0 as a
function of the Zeeman coupling for the screened and unscreened
Coulomb interaction. The dashed line indicates K = 0.

At 1/4 and 3/4 fillings of the Landau levels |n| � 1, the
ground state is valley and spin polarized. Both polarizations
are not maximal, however. At sufficiently large Zeeman
coupling, spin flips are prohibited and the lowest-energy
charged excitations must be valley skyrmions6 with up spins
at 1/4 filling and down spins at 3/4. Because there is no
symmetry breaking term for the valley pseudospin, the NLσ

model can be used to compute the S-aS excitation energy. In
the absence of screening, the gap �NLσM for valley skyrmion
at 1/4 and 3/4 fillings is identical to that at half-filling shown
in Fig. 8. As Fig. 6 indicates, however, screening is more
important at 3/4 filling than at 1/4 so that we expect the
transport gap to be smaller in the former case. Figure 11
shows that this is indeed the case in all Landau levels n.

This conclusion agrees with the experimental results. Although
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FIG. 11. (Color online) Excitation energy of a valley skyrmion-
antiskyrmion pair for different filling factors with and without
screening corrections. The dashed lines are only a guide to the eyes.
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WENCHEN LUO AND R. CÔTÉ PHYSICAL REVIEW B 88, 115417 (2013)

there is a large sample variability in the magnitude of the
transport gap due to the different disorders, the gaps measured
at ν = −5 are systematically smaller than those measured at
ν = −3 (see Fig. 4 of Ref. 2) by a factor ≈1.3, which is close to
that measured experimentally. The measurements show only
a minimal dependence of the gaps with the perpendicular
magnetic field so that our assumption of no spin flip is
justified.

VIII. CONCLUSION

We have computed numerically the electron-hole and spin
skyrmion-antiskyrmion transport gaps in Landau levels n = 1
to 3 in graphene as a function of the Zeeman coupling strength.
Our calculation used a microscopic wave function for the
spin-texture excitations and the energy was computed in the
Hartree-Fock approximation. By keeping a large number of
orbital momenta (up to mmax = 1000) in the calculation, we
were able to obtain the transport gap at very small value of the
Zeeman coupling g̃ ≈ 0.001.

Previous calculations at zero Zeeman coupling using the
nonlinear σ model6 already indicated that the transport gap
is due to spin texture excitations in graphene at half-filling of
the Landau levels n = 1,2,3 (Landau level n = 0 is not spin
polarized at half-filling) and to valley skyrmions at 1/4 and
3/4 fillings. By comparison, skyrmions are the lowest-energy
charged excitations in conventional 2DEG only in Landau
level n = 0. Our calculations confirm the NLσM results and
indicate that the spin texture excitations persist for n = 1 up

to g̃c ≈ 0.05 or 0.011 when screening corrections are included
and up to g̃c ≈ 0.0026 for n = 2 in the absence of screening.
In the screened case for n = 2 and in both cases for n = 3,

the critical value of g̃c is very small and a reliable numerical
result is difficult to obtain. Skyrmions are the lowest-energy
excitations in theses cases only in a very small range of Zeeman
coupling.

For valley skyrmions, there is no symmetry-breaking term
equivalent to the Zeeman coupling so that the transport gap
can be computed using the NLσM if spin flips are prohibited
by a finite Zeeman coupling. Our results show that screening
corrections are more important at 3/4 filling than at 1/4
so that the transport gap due to unbound valley skyrmion-
antiskyrmion excitations is smaller in the former case.

Although screening corrections reduce substantially the
size of the transport gap, the theoretical value is still large in
comparison with the experimental result. Including disorder
and Landau level mixing might help to decrease the gap to a
more realistic value. We may also consider working with the
full four-level model, i.e., consider skyrmions with intertwined
spin and valley textures.

ACKNOWLEDGMENTS
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12R. Côté, J.-F. Jobidon, and H. A. Fertig, Phys. Rev. B 78, 085309

(2008).
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