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Atomistic understanding of diffusion kinetics in nanocrystals from molecular dynamics simulations
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Understanding the grain size effect on diffusion in nanocrystals has been hampered by the difficulty of
measuring diffusion directly in experiments. Here large-scale atomistic modeling is applied to understand the
diffusion kinetics in nanocrystals. Enhanced short-circuit diffusivity is revealed to be controlled by the rule of
mixtures for grain-boundary diffusion and lattice diffusion, which can be accurately described by the Maxwell-
Garnett equation instead of the commonly thought Hart equation, and the thermodynamics of pure grain-boundary
self-diffusion is not remarkably affected by varying grain size. Experimentally comparable Arrhenius parameters
with atomic detail validate our results. We also propose a free-volume diffusion mechanism considering negative
activation entropy and small activation volume. These help provide a fundamental understanding of how the
activation parameters depend on size and the structure-property relationship of nanostructured materials from a
physical viewpoint.
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I. INTRODUCTION

There are two types of atomic diffusion in polycrystalline
solids: diffusion in the lattice and diffusion in lattice defects
such as dislocations, grain boundaries (GBs), and surfaces.1,2

The latter is sometimes called the high-diffusivity path, or
short-circuit diffusion path, because usually the diffusivities
in such defects are much higher than that in the lattice.1

Among them, GB diffusion is the most important for the
high-temperature stability of polycrystals since it is directly
related to processes such as creep,3,4 grain growth, and
recrystallization,5–7 superplasticity,8 and sintering.1 In partic-
ular, in nanocrystalline (NC) metals, which are polycrystals
whose grain size is smaller than several hundred nanometers,
GB diffusion exerts a significant influence on macroscopic
mechanical properties since the volume fraction of GBs
drastically increases with decreasing grain size.9,10 It is
well accepted that the diffusion kinetics usually follows an
Arrhenius type of temperature dependence:

D = D0 exp

(
−�Q

kBT

)
, (1)

where D is the diffusion coefficient, D0 is a pre-exponential
factor, �Q is the activation energy, kB is Boltzmann’s constant,
and T is the absolute temperature. In the case of face-
centered-cubic metals such as copper, the activation energy
of lattice diffusion is about twice that of GB diffusion.11–13

The effective diffusivity of NC copper is greatly enhanced
compared with its conventional coarse-grained counterpart.13

However, quantitative knowledge on pure GB diffusivity in
polycrystalline metals is still controversial, because we do
not have enough experimental data with different grain sizes
and, moreover, the grain size of these polycrystalline metals
is sometimes not well controlled. Therefore, we have not yet
reached a well-established framework for the size dependence
of diffusion kinetics in polycrystalline metals, such as GB
diffusion-accommodated Coble creep and GB sliding creep,3,4

which are fundamental to understanding the inverse Hall-Petch
scaling in NC metals.9,10

With advances in computer capacity and the development
of reliable interatomic potentials, atomistic modeling enables
us to predict experimentally comparable diffusivity in the
temperature range of [0.6Tm,Tm], where Tm is the melting
point.14–21 Besides molecular dynamics (MD), kinetic Monte
Carlo also permits accurate calculations of diffusivity.15,19

However, it is only effective if the elementary diffusion steps
can be defined previously.19 Therefore, in this study we simply
carry out MD for the calculations of diffusivity of nanocrystals
which may include general disordered GBs. The present
modeling aims at addressing several important unknowns:
(1) Does the enhancement of diffusivity in NC metals come
from the variation in activation parameters, or does it come
from other size-dependent factors? (2) Since NC metals are
actually a mixed pack of nanosized crystallites and disordered
GB regions, what is the rule of mixtures behind diffusivity?
(3) What is the microscopic mechanism of short-circuit GB
diffusion? Is it a mechanism with dominating contributions
from vacancies or interstitial atoms, or is it a concept of excess
free volume?22

II. METHODOLOGY

The modeling of diffusion kinetics is performed on fully
dense three-dimensional (3D) NC copper with grain size
ranging 5–15 nm, which is commonly thought to be within
the inverse Hall-Petch regime.9,10 Diffusional mechanisms
such as GB diffusion and its related GB migration and
sliding become dominant at such a small scale. The 3D
nanocrystal is built based on a Voronoi algorithm in which
grain seeds are previously determined according to random
close packing of monodisperse hard spheres,23 which ensures
a 3 × 3 × 3 mesh of almost equally sized grains; an example of
a 15-nm-grain-sized sample shown in Fig. 1(a). All the grains
are randomly oriented. However, we fix those orientations
when the grain size of the NC model is varied. The biggest
model, with a grain size of 15 nm (and a sample size of about
45 × 45 × 45 nm3), contains about 7 540 000 atoms. In the
present study, we ignore the variation of GB types with change
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FIG. 1. (Color online) Short-circuit diffusion in NC copper. (a) Upper: NC copper sample with 3 × 3 × 3 grains and grain size d = 15 nm.
Lower: 3D view of fast diffusion channels; see Supplemental Material for a movie with a 360◦ perspective (Ref. 32). Only those atoms that
have traveled farther than 0.6 nm after 1 ns are displayed. (b) MSD vs time at different temperatures with d = 10 nm. (c) Effective diffusion
coefficient vs d at different temperatures. Red solid lines and blue dash lines denote those fits to the Maxwell-Garnett equation and the Hart
equation, respectively. δDgb from fitting is displayed for each temperature.

in grain size. Therefore, the conclusions are applicable for
those high-angle GBs generated by the Voronoi tessellation
polycrystalline generator with random crystal orientation
setting.

MD simulations are performed using the embedded-atom
method (EAM) potential,24 which is implemented on the
large-scale atomic/molecular massively parallel simulator
(LAMMPS).25 This potential is reliable for predicting accu-
rate information for diffusion processes, and the migration
energy of point defects. It has been widely used to study
the diffusion behaviors of various GBs,16,17,19 GB triple
junctions,18 and diffusion-induced GB mobilities.5,20 Here
the diffusion kinetics in NC copper is investigated over a
wide temperature range of 600–1100 K. Before measuring
the diffusivity, all the samples are thermally equilibrated
for 100 ps at each specific targeted temperature by using a
Nosé-Hoover thermostat within an NPT ensemble,26 where N ,
P , and T denote the number of atoms, hydrostatic pressure,
and absolute temperature, respectively. A Parrinello-Rahman
technique is used to control the hydrostatic pressure during
thermal relaxation and derivation of the activation volume.27

Then a MD simulation is performed for each model for 1 ns,
which allow us to reach the effective diffusion coefficient,
Deff = 〈|r(t)−r(0)|〉2

6t
, where r(t) and r(0) are the positions of

atoms at times t and t = 0, respectively. This is actually the
well-known Einstein relation. The mean-squared displacement
(MSD) 〈|r(t) − r(0)|〉2 is shown as a function of time at
different temperatures in Fig. 1(b) in the case of d = 10 nm.
The slopes of these well-defined linear relations actually
provide quantitative information for the diffusion coefficients.
The diffusivities are determined by the relation of MSD against
time after 500 ps, where a linear relation has been well
established.

III. RESULTS AND DISCUSSION

A. Rule of mixtures

It is frequently discovered that diffusivity is pronouncedly
enhanced by reducing the grain size of a polycrystal.13

However, the atomic mechanism underlying this ubiquitous
phenomenon is still poorly understood. For example, we are
not clear how the diffusion activation energy varies with
change in grain size nor how it can affect the polycrystal
diffusivity. Smaller activation energy leads to faster diffusion
according to the Arrhenius equation (1). Besides the variation
in activation energy, another possible diffusion-enhancing
mechanism is related to the rule of mixtures (ROM) for
diffusion kinetics in polycrystalline materials, which involves
(the different roles of) lattice diffusion and GB diffusion.1 In
the present study we highlight atomistic modeling toward a
concrete understanding of pure self-diffusion of NC metal; in
particular, we are interested in the grain size dependence of
diffusivity.

The effective self-diffusivity in a polycrystal depends
strongly on the arrangement of grains and GBs. It is intuitive to
assume that the upper limit of the effective diffusivity involves
the parallel arrangement of these two counterparts along the
diffusion direction. The upper limit of the effective diffusivity
in a polycrystal is described by the Hart equation28

Deff(d) = gDgb + (1 − g)Dl, (2)

where g is the volume fraction of GBs in the polycrystal,
approximately 3δ

d
, with δ the width of the grain boundary,

which has been estimated to be of the order of 0.5 nm in the
present models (an estimation that is in agreement with exper-
imental findings29); Dgb = Dgb0 exp(−�Qgb

kBT
) is the pure GB

diffusion coefficient, with Dgb0 and �Qgb its corresponding
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pre-exponential factor and activation energy, respectively; and
the lattice diffusion coefficient Dl = Dl0 exp(−�Ql

kBT
) denotes

the crystallite diffusivity, with the formula adopting similar
definitions as that of GB diffusion. In general, the GB
self-diffusion coefficient is much larger than that of lattice
diffusion: namely, Dgb � Dl. Fox example, the activation
energy of self-diffusion in nano- and single-crystalline copper
were reported to be 62 and 191 kJ/mol, respectively.13

Consequently, their self-diffusion coefficients were measured
to be, respectively, 2.6 × 10−20 and 4 × 10−40 m2/s at ambient
temperature.13 There exists a difference of approximately
20 orders of magnitude in self-diffusion between nano- and
single-crystalline copper.

In contrast with the upper limit, the lower limit of effective
diffusivity in a polycrystal involves a serial arrangement of
grains and GBs along the direction of diffusion. It is formulated
as1

Deff(d) = DgbDl

gDgb + (1 − g)Dl
. (3)

In this way, the effective diffusivity of a polycrystal is treated as
that of a single crystal. The diffusion carriers have to overcome
mainly the energy barriers in the crystallite lattice, which leads
to slow diffusion. Therefore, it is precluded as a fast-diffusion
mechanism in NC metals.

However, diffusion in a real polycrystal should be neither
of parallel nor serial arrangement of GBs and grains. In 3D
polycrystals, the Maxwell-Garnett equation

Deff(d) = Dgb[2gDgb + (3 − 2g)Dl]

(3 − g)Dgb + gDl
(4)

has been proposed to be an approximation of the effective
diffusivity.30 However, no evidence of atomic fidelity detail
has been available to our best knowledge.

The lower graph in Fig. 1(a) highlights the 3D short-circuit
diffusion paths in the case of NC copper with grain size
d = 15 nm. We visualize this structure by selecting those
atoms whose traveled distance is greater than 6 Å after
1-ns diffusion at 800 K, and the visualization is done with
ATOMEYE.31 It is noteworthy that the highlighted skeleton
frame reproduces the polyhedral GB structures, which clearly
verifies that fast diffusion occurs only in GBs of NC copper
from atomic level information. For 3D diffusion channels from
a 360◦ perspective the reader is referred to Movie S1 in the Sup-
plemental Material.32 If Dgb � Dl and the volume fraction of
GB regions becomes substantial, Eqs. (2) and (4) are reduced to

Deff(d) ≈ gDgb = 3δ

d
Dgb (5)

and

Deff(d) ≈ 2g

3 − g
Dgb = 2δ

d − δ
Dgb. (6)

Here we do not discuss Eq. (3) since it sets the lower limit
of effective diffusivity, and it requires the most contribution
from only lattice diffusion, which is not applicable in the
present case of short-circuit diffusion.

In the present study, we would like to provide atomistically
resolved detail to confirm which approximation can well
describe the dependence of size upon diffusivity in NC metals.

Figure 1(c) summarizes the effective diffusivity as a function
of grain size. The results are plotted at different temperatures
from 600 to 1100 K. The dashed blue and red solid lines denote
those curves that are fitted to Eqs. (5) and (6), respectively. It
is noted that the plots at 600 and 700 K are not reliable since
there is an overestimation of diffusivities. The MSD at such low
temperature has not yet reached a steady state with the short
MD time scale. Therefore, our conclusions are based on the
results derived at temperatures above 800 K. It is clear that the
Maxwell-Garnett equation is a better approximation of the ef-
fective diffusivity compared with the Hart equation. A similar
conclusion has been reached with Monte Carlo simulations.33

However, here we furthermore provide atomic scale evidence
without the inherent assumptions embedded in Monte Carlo
modeling. The Hart equation is usually assumed during the
derivation of the constitutive equations for creep governed
by GB diffusion3 and its accommodating GB sliding and
migration.4 The Hart equation leads to an ε̇ ∝ d−3 relationship
for the strain rate dependence on size for Coble and GB sliding
creep. Usually, this is a sound approximation provided that
other degrees of freedom (including activation entropy, attempt
frequency, and unit strain3,4) can be manipulated. However, the
relationship could be revised according to the more reasonable
approximation illustrated by Eq. (6) instead of Eq. (5). In
the next section, the activation parameters will be evidenced
to be insensitive to grain size. Thus the enhanced diffusivity of
NC metals is mainly attributed to the ROM, which is presented
by Eq. (6). It is noted that the triple junctions are generally the
fastest diffusion channels in nanocrystals (see Supplemental
Material32). Chen and Schuh have developed a composite
model to describe the effective diffusivity of the polycrystal by
considering various structural defects, i.e., grain boundaries,
triple junctions, and also dislocations.34 They find that triple
junction diffusion is relevant at small size scale. However, here
we do not separate the diffusivity of the triple junction from
the general GB diffusion. The difference in diffusivities of the
triple junctions and that of general GBs has been shown to
be not significant enough to require a new diffusion regime.18

Therefore, the conclusion about the rule of mixtures does not
change if we assume the triple junction diffusion and GB diffu-
sion as a general intergranular diffusion. It is a future study to
find the detailed ROMs about GB and triple junction diffusion.

B. Size dependence of activation parameters

The diffusion kinetics follows an Arrhenius relation be-
tween diffusion coefficient and temperature, as illustrated
by Eq. (1). According to the Gibbs-Helmholtz relation, the
effective activation energy �Qeff of diffusion can be reached as

�Qeff(d) = −∂ ln Deff(d)

∂(1/kBT )
. (7)

Modeling results and experimental data for effective dif-
fusivity are plotted in Fig. 2. The diffusivity presents an
Arrhenius relation against reciprocal temperature. We only
show two examples here, for grain sizes of 7.5 and 15 nm.
In the former case, the experiment is performed on a similar
grain size of about 8 nm,11 whereas, in the latter case, the
experimental diffusivity is reduced from samples with larger
grain size of about 300 nm35 and about 120 nm.36 These data
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of grain size of 15 nm according to the Maxwell-Garnett equation
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are normalized to NC copper with a grain size of 15 nm
according to Eq. (6). It is noted that both modeling and
experiment results follow a similar linear relation, except for
those modeling data that lie at lower temperatures of 600 and
700 K. The temperature range 800–1100 K is reliable for
predicting an experimentally comparable diffusivity according
to the plot in Fig. 2. According to the data over the whole
temperature range, the activation energies are fitted to be 71
and 64 kJ/mol for samples with grain sizes of d = 7.5 and
d = 15 nm, respectively. Such data are in excellent agreement
with experimental measurements.11–13,35–39 Furthermore, if
we fit the activation energy by only taking account of
the temperature range 800–1100 K, the modeling predicts
activation energies of 57.3 and 55.3 kJ/mol for d = 7.5 and
d = 15 nm, respectively. The corresponding experimental data
are 61.7 kJ/mol11 and 57 kJ/mol,36 respectively. The fits
based on the temperature range 800–1100 K lead to activation
energies with better agreement to experiments, and more
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of the modeling data. The shaded area in (b) denotes the scattered
range of reported experimental data, and the solid line implies
the magnitude of the prefactor from other modelings on a general
high-angle GB with the same EAM potential.

importantly there exists good linear relation on the Arrhenius
plot. Therefore, all the activation energies in this study are
according to this temperature range.

To derive further understanding of the enhanced diffusivity
upon the reduction in grain size, we should first derive
the relationship for how activation energy depends on size
according to Eq. (1). The effective activation energy �Qeff

is shown in Fig. 3(a) as a function of grain size. �Qgb is
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not sensitive to the variation in grain size, which stays near an
average value of about 57 kJ/mol and agrees well with not only
experimental data but also MD simulations on other general
high-angle GBs, as shown in Refs. 16–18. We should note that
activation energy is quite sensitive to the geometry of the GBs.
It can be as small as 50 kJ/mol or as large as 250 kJ/mol
depending on the local interface structures.16,17 When we
change the grain size of the NC model, the orientations that
connect neighboring grains are fixed.

Based on knowledge of the activation energy and the ROM
as shown in Eq. (6), the pre-exponential factor of pure GB
diffusion Dgb0 can be determined. It is a prefactor for GB
diffusion that already excludes the size effect arising from the
ROM. The result, plotted in Fig. 3(b), is almost a constant and
is not sensitive to either temperature or grain size. The average
value of Dgb0 is determined to be about 1.6 × 10−7 m2/s,
which agrees with a previous MD modeling result of (1.0 ±
0.2) × 10−7 m2/s for general high-angle GBs.

So far, both the activation energy and the pre-exponential
factor of pure GB diffusion have been verified to be indepen-
dent of grain size. Thus, the GB self-diffusivity itself is not size
sensitive. Therefore, pure GB diffusivity can be correlated to
effective diffusivity via a parameter that is determined by grain
size, as shown in Eq. (6). In terms of Eq. (6), the activation
energy of GB diffusion, �Qgb, can be derived directly from the
effective diffusivity Deff(d), i.e., �Qgb ≈ − ∂ ln Deff (d)

∂(1/kBT ) , instead
of turning back to pure GB diffusivity Dgb, provided that the
grain size is fixed and that the variation of GB width with
temperature is negligible. Consequently, we conclude that the
enhanced diffusivity of NC metal originates from the ROM,
which is expressed by the reduced Maxwell-Garnett equation
[Eq. (6)], instead of the usual idea that fast diffusion originates
from the variation in activation parameters.1,13 We note that
here we assume that the GB characters do not change with
variation in grain size. Therefore, the lack of dependence of
grain size effect on the diffusion kinetics of polycrystalline
models may be a reflection of our methodology for creating
the GBs. It needs further work to verify whether GB characters
and kinetics change with grain size.

If the pre-exponential factor of pure GB diffusion is size
independent, then the activation entropy, which is included
in this factor, should also be expected to be a constant value
regardless of variation in grain size. Without external pressure,
the GB diffusivity can be written as1

Dgb = f γ δ2ν0 exp

(
�S

kB

)
exp

(
−�Qgb

kBT

)
, (8)

from a physical perspective. Here f is a correlation factor,
and γ is a geometrical factor. They are both on the order of
unity, and here we take f γ = 1 for simplicity.1 δ is originally
the jump distance of the diffusion carrier; here we assume
it to be of the order of the GB width, which is estimated
to be 0.5 nm in the present models. This magnitude is in
agreement with experimental observations.29 ν0 is the atomic
vibrational frequency and is of the order of 1013 s−1 to a
first approximation. Therefore, the activation entropy �S can
be predicted with knowledge of Dgb and �Qgb, which have
been provided by our MD simulations. The derived activation
entropy is shown in Fig. 3(c) as a function of grain size.

�S is size insensitive. It is estimated to be of the order of
−2kB to −3kB. This value contains contributions from the
formation entropy and migration entropy of defects. It has
been reported that the formation entropy of point defect in
GBs is on the order of several kB.15–17 Therefore, the migration
entropy should be more negative but remains of the same
order. Moreover, the width of GBs generally increases with
increasing temperature. This trend leads to a more negative
activation entropy according to Eq. (8). However, the negative
character of activation entropy does not change with any
reasonable choice of δ.

The activation entropy arises from an anharmonic effect
when the diffusion carrier moves from the equilibrium position
to the transition state. For a qualitative understanding, we note
that the harmonic transition state approximation correlates
activation entropy to vibration frequency by ν0 exp(�S/kB) =∏3N

i=1 ν initial
i /

∏3N−1
i=1 νsaddle

i , where ν initial
i and νsaddle

i are the
vibrational frequency of the ith normal modes at the local
energy minimum and the saddle point state in the 3N -
dimensional configurational space, respectively. There are two
possible diffusion mechanisms. One involves the migration of
a unit vacancy. This mechanism requires a vacancy migration
that is of the size of unit atomic volume with the help
of several neighboring atoms. Mantina et al. have shown
a positive entropic contribution to the self-diffusion of Al
by a first-principles calculation.40 They find that most of
the normal model frequencies shift to lower values at the
saddle point compared with the initial stable state. Therefore,
they conclude that there is a positive entropic effect on
vacancy migration. The other diffusion mechanism involves
the migration of interstitial atoms.40 This interstitial diffusion
opens smaller spaces during migration compared with vacancy
diffusion. Equivalently, it could be assumed to act as excess
free-volume diffusion, in which the volume of the diffusion
carrier is smaller than that of the vacancy. The vibrational
state is more constrained when the migrating interstitial atom
approaches the saddle point compared with the stable state,
leading to an increase in the vibration frequency of the
saddle state. Consequently, the activation entropy is anticipated
to be negative.41 Milman et al. have verified a negative
entropy of interstitial diffusion in crystalline silicon by using
a combined thermodynamical integration and first-principles
MD method.41 In summary, the sign of the activation entropy
presumably provides an indication of the diffusion mechanism.
However, further study is needed to verify the interrelation
between the activation entropy and the diffusion mechanism,
in particular in the case of GB diffusion.

C. Mechanism of GB diffusion

A comprehensive characterization of diffusion kinetics
requires complete information on three important activation
parameters, i.e., energy, entropy, and volume of activation.
Among them, the activation volume is commonly thought to be
an intuitive indication of the diffusion mechanism.10 To derive
it, we apply hydrostatic pressure with varying magnitude up to
0.4 GPa to a sample with a grain size of 10 nm. In general, the
activation volume is a tensor with anisotropic characteristics.10

However, it is found that its shear components are negligible
compared with its tensile components.10 In the present case
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of GB diffusion, we use the hydrostatic pressure since the
atoms in the GBs are disordered, and the activation volume
is assumed to be isotropic. A characteristic value for the
activation volume can be reached through this strategy. In
the presence of external pressure P , the GB diffusivity is
correlated to the activation enthalpy �Hgb = �Qgb + P� via

Dgb = Dgb0 exp

(
−�Qgb + P�

kBT

)
, (9)

where � is the activation volume of GB diffusion. If the pre-
exponential factor Dgb0 is not sensitive to pressure, one can
obtain the activation volume through the following expression:

� = −kBT
∂ ln Deff

∂P
, (10)

where we can use straightforwardly the effective diffusivity
Deff instead of pure GB diffusivity Dgb because they are only
differentiated by a constant at a given grain size according to
Eq. (6).

In Fig. 4 we present a natural logarithmic plot of Deff versus
the magnitude of applied pressure. The gradient of this well-
defined linear relation leads to an activation volume of the order
of magnitude of 0.15�atom via Eq. (10), in which the unit �atom

denotes the volume of a Cu atom in the perfect fcc lattice (about
11.8 Å3). Small activation volume means that the influence
of pressure on the diffusivity is not substantial in the pure
GB self-diffusion of NC copper. The calculated data here are
much smaller than the activation volume of vacancy diffusion
in fcc Cu, which can be determined either from calculation
with the same EAM potential10 or experimental measurement.1

The reported activation volume for lattice diffusion is on the
order of �atom.1,10 The lattice diffusion mechanism is well
established by a vacancy migration process. Consequently,
vacancy migration cannot be a reasonable mechanism for GB
diffusion. Moreover, a small activation volume is in contrast
with an atomistic simulation of diffusional creep on NC copper,
in which the activation volume is found to be as much as several
times the atomic volume.42–44 The reason for this difference
is that creep simulations have been done by applying uniaxial
stress, which could activate and effectively drive the more

collective components of GB activity, such as GB sliding
and migration, which involve simultaneous participation of
multiple atoms.10

We have mentioned an excess free-volume diffusion mech-
anism in the discussion of activation entropy. The diffusion
carrier (free volume) can be smaller than the volume of the
atom. Small-free-volume diffusion needs only neighboring
atoms to open tiny spaces, in contrast with vacancy migration,
which requires a neighbor atom of the vacancy to occupy its
original position. Therefore, the activation volume is expected
to be only a small proportion of the atomic volume for
free-volume diffusion but roughly one atomic volume for
vacancy mechanism.2 In the present case of small activation
volume, it is more likely to be a free-volume mechanism
that accommodates GB diffusion. This hypothesis is also
supported by the previously mentioned negative entropy shown
in Fig. 3(c). The conclusion seems to be self-consistent in
the language of both vibrational entropy and geometrical
analysis of activation volume. In a recent study, Bachurin
et al. have proposed the concept of free-volume migration to
explain the elastic and plastic anisotropy after straining of NC
palladium.22

IV. SUMMARY

We have provided a report on the size dependence of
diffusion kinetics of NC metal with atomic details. Atomically
resolved information enables us to reveal several important
unknowns related to GB self-diffusion: (1) The enhanced
diffusivity of NC metal is caused by a ROM for pure GB
diffusion and lattice diffusion, whereas pure GB diffusion
kinetics is not obviously size dependent. The activation
parameters of the Arrhenius relation from our modelings are in
agreement with experimental data, indicating that the physics
of GB diffusion can be captured within the approachable MD
time window. (2) The Maxwell-Garnett model, in which one
considers the 3D arrangement of GBs and the grain interior,
is confirmed to be an accurate approximation of effective
diffusivity of NC metals rather than the commonly used Hart
approximation. The latter is usually assumed in the constitutive
equations for creep governed by GB diffusional mechanisms.
(3) Negative activation entropy and small activation volume
consistently indicate a free-volume migration mechanism of
GB diffusion in NC metals. We hope that our findings and the
discussion herein will expand our understanding of the size
dependence and the diffusion mechanism of NC metals with
atomic detail. The reported size effect on diffusion potentially
sheds light on building a physically sound strength-size scaling
law in the inverse Hall-Petch regime.
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