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Aharonov-Casher effect in quantum ring ensembles
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We study the transport of electrons through a single-mode quantum ring with electric-field induced Rashba
spin-orbit interaction that is subject to an in-plane magnetic field and weakly coupled to electron reservoirs.
Modeling a ring array by ensemble averaging over a Gaussian distribution of energy-level positions, we predict
slow conductance oscillations as a function of the Rashba interaction and electron density due to spin-orbit
interaction induced beating of the spacings between the levels crossed by the Fermi energy. Our results agree
with experiments by Nitta c.s. [J. Nitta, J. Takagi, F. Nagasawa, and M. Kohda, J. Phys.: Conference Series
302, 012002 (2011) and Nagasawa et al. (unpublished)], thereby providing an interpretation that differs from the
ordinary Aharonov-Casher effect in a single ring.
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The Aharonov-Casher (AC) effect1 is an analog of the
Aharonov-Bohm (AB) effect but is caused by the spin-orbit
interaction (SOI) rather than an external magnetic field.
Originally, Aharonov and Casher predicted in 1984 that a
spin accumulates a phase when the electric charge is circling
in an external electric field.1 This situation is similar to a
single-mode ballistic ring with Rashba spin-orbit interaction.
Quantum rings in high-mobility semiconductor material have
therefore attracted extensive attention, both experimentally
and theoretically, as model devices to investigate fundamental
quantum-mechanical phenomena.

In the AC effect, the electrons injected into a quantum
ring with SOI acquire spin phases when traversing the two
arms due to precession in the effective spin-orbit magnetic
field. Interference of the spinor wave functions at the exit
point of the ring then leads to an oscillatory conductance as a
function of the spin-orbit coupling constant that in Rashba
systems can be tuned by an external gate voltage. König
et al.2 reported the first experimental evidence of the AC
effect in a single HgTe ring by measuring the phase shift
of the AB-type magnetoconductance oscillations caused by
tuning the Rashba SO strength. Since several sub-bands in
the ring were occupied, they supported their experiments
by multimode transport calculations. This study focused on
the symmetry points, at which the Rashba SOI is small,
and high values of the applied magnetic field.2 Experiments
on an array of rings4 agreed well with the theory provided
for a single-mode quantum ring symmetrically and strongly
coupled to the leads.3 More recently, the zero magnetic-field
conductance as a function of gate field has been interpreted
in terms of the modulation of (electron-density-independent)
Altshuler-Aronov-Spivak (AAS) oscillations by the SOI,5

emphasizing the importance of statistical averaging by the
ring arrays.

In reality, however, the situation is not as simple as it
appears. The assumed ideal link of the ring to the leads is
equivalent to the strong-coupling limit in terms of a connec-
tivity parameter.6 The implied absence of backscattering is
at odds with the interpretation of the observed oscillations in
terms of AAS oscillations due to coherent backscattering.5,7

Reference 8 addresses the effects of scattering at the contacts
of a single-mode Rashba ring to the reservoirs, interpolating
between the fully open and isolated ring regimes. However,
the experiments4,5 were not carried out on single rings in
the one-dimensional quantum limit but on a large array of
connected rings, each containing several transport channels.
Some theoretical papers compute transport through an array
of single-mode rings9,10 but assuming a constant Fermi wave
number, thereby disregarding the strong density changes
associated with tuning the Rashba spin-orbit parameter.7 In
the present paper we offer an explanation of the robustness of
the observed AC oscillations with respect to the complications
summarized above.

A quantitative analysis of the multimode ring array is
challenging and requires large-scale numerical simulations.11

Here we proceed from a single single-mode quantum ring,3

taking backscattering into account by assuming weak coupling
to the electron leads and correcting for the multimode character
a posteriori (see below). The conductance of a quantum ring
can be understood as resonant tunneling through discrete
eigenstates at the Fermi energy6 that are modulated by the
SOI Rashba parameter. The in-plane magnetic field11 allows
tuning of the conductance oscillations without interference of
the AB oscillations (see Fig. 1). We consider a modulation
of the Rashba interaction strength that is associated with an
experimentally known large change in the electron density.7

Small deviations between different rings in nanofabricated
arrays can be taken into account by an ensemble averaging
over slightly different single rings. We find that this procedure
leads to an agreement with experiments that rivals that of
previous theories.

We consider a ring with a radius of R, defined in the high-
mobility two-dimensional electron gas in the xy plane. The
Rashba SOI with the strength α is a known function of an
external gate potential. The Hamiltonian of an electron in the
ring has the form12
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FIG. 1. (Color online) Schematic of a quantum ring weakly
coupled to source and drain contacts in the presence of SOI effective
field BSOI and in-plane magnetic field Bx .

where m is the effective mass, ϕ is the azimuthal angle, and σ̂i

are the Pauli matrices in the spin space. The eigenstates are
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where ER = h̄2/(2mR2), tan θ = 2mRα/h̄2, the integer n is
the angular momentum quantum number, and σ = ± denotes
the spin degree of freedom.

An in-plane magnetic field B along the x direction
contributes the Zeeman energy H ′ = EBσ̂x, where EB =
gμBB/2, μB is the Bohr magneton, and g is the effective g

factor. We assume that the Zeeman energy is small compared to
the (kinetic) Fermi energy and can be treated as a perturbation
of the zero-field Hamiltonian, H

(0)
1D .
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The gate voltage Vg modifies the asymmetry of the electron
confinement potential, thereby modulating the Rashba SOI
strength α. We discuss here first the effects of varying SOI
for constant Fermi energy and subsequently take the gate
induced density variation into account. In the absence of
a magnetic field, the energy levels move with α according
to Eq. (2). The fourfold degeneracy in the absence of SOI,
En,σ = En,−σ = E−n−1,−σ = E−n−1,σ , is broken when α �= 0
into two Kramers-degenerate doublets with En,σ = E−n−1,−σ

[see Eq. (2)]. For σn > (<) 0 the energy increases (decreases)
with α as indicated in Fig. 2. The experiments by Nitta et al.7

were carried out in the low-temperature regime with level
spacings larger than the thermal energy,4,5 and therefore we
assume zero temperature in the following.

Resonant tunneling occurs when the energy of the highest
occupied level in the quantum ring, EnF ,σ , equals the chemical
potential μ in the leads, i.e., EnF ,σ (α) = μ, as indicated in
Fig. 2. Doublets of spin-split conductance peaks merge when
α = 0, μ = EnF ,σ , and the conductance becomes twice as
large. The in-plane magnetic field shifts the energy levels
as ∝B2. As illustrated in Fig. 3, the resonant tunneling
peaks at EnF ,σ (α,B) = μ are spin split and nonparabolic.
Figure 3 agrees qualitatively with the experiments11 when

FIG. 2. (Color online) Energies of a quantum ring with the radius
R = 630 nm close to the Fermi energy μ = 10 meV as a function
of the SOI strength α. Energies are labeled as n0 + i and n0 = 72,
for n > 0, whereby each level is Kramers degenerate with −n0 −
i − 1 and opposite spin direction. The effective mass for conduction
electrons in InGaAs is m = 0.045 m0, where m0 is the electron mass.
The conductance is nonzero when μ crosses an energy level.

assuming the strong-coupling limit and justifying the apparent
independence on the large μ variation with gate voltage
by coherent backscattering. In the following we suggest an
alternative interpretation.

According to the experiments,4,5 α depends on the gate
voltage as α(10−12 eV m) = 0.424−0.47 × VG(10−12 V) and

FIG. 3. (Color online) Shift of the conductance peaks, that for
zero magnetic field coincide with the crossings of the Fermi energy
in Fig. 2, by an in-plane magnetic field as obtained by perturbation
theory. The magnetic field is seen to break Kramers spin degeneracy.
The parameters are the same as in Fig. 2 and g = −2.9 for InGaAs.
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FIG. 4. (Color online) Energy levels around the Fermi energy for
α ≈ 2.4 × 10−12 eV m relative to μ, that strongly depends on the
gate voltage tuning α. Here n0 = 380, while dashed and solid lines
represent nσ < 0 and nσ >0, respectively. Similar to Fig. 2, we label
the energies for n > 0, keeping in mind that the levels are twofold
degenerate.

on the electron density as α(10−12 eV m) = 7.81−3.32 ×
Ns(1012 cm−2). In Fig. 4 we plot the ring energies as
a function of α including the chemical potential μ, that
varies much faster with α than the single-particle energies,
leading to conductance peaks that as a function of gate
voltage are very closely spaced. In ring arrays4,5 we do not
expect to resolve such narrow resonances due to disorder,
multimode contributions, and ring size fluctuations. We can
model the latter by averaging over an ensemble of rings with a
Gaussian distribution of resonant energies or conductance peak
positions with a phenomenological broadening parameter �.
Figure 5 illustrates the result of the averaging procedure in
the form of the normalized conductance modulations.13 While
the resonant tunneling peaks are smeared out, a slow (AC)
oscillation as a function of α reappears, which represents the
beating of the level spacings induced by the SOI, in qualitative
agreement with experiments.

The experiments of AC oscillations in arrays with different
ring radii5 are compared in Fig. 6 with our results.

In Fig. 5, we also illustrate the effect of in-plane magnetic
fields on the ensemble of Rashba rings. The magnetic field
shifts the phase of the oscillation to lower values of the
gate voltage or larger α and thus suppresses the amplitude
of the conductance oscillations increasingly for lower values
of the gate voltage. These features agree again well with those
observed experimentally by Nagasawa et al.11 The magnetic
field splits the Kramers degeneracy, thereby leading to two
sets of superimposed oscillations that might be experimentally
resolved in the form of different Fourier components.

The suppression of AAS oscillations in disordered ring
arrays at constant density9 can be interpreted in favor of our
model. Most previous theories3,12 treat ideally open rings,
while we consider the weak-coupling limit. Both extremes
are likely not met in experiments. The intermediate regime
can be modeled in terms of a connectivity parameter.6,8

An increased coupling causes a Lorentzian smearing of the

FIG. 5. (Color online) Conductance oscillations of an ensemble
of rings with energy levels broadened by a Gaussian with � = 0.003
peV/m as a function of an in-plane magnetic field. The dashed lines
are guides to the eye, to compare the oscillation amplitudes while
varying the magnetic field. All amplitudes are scaled with those at
B = 0 T that display a modulation of (Gmax − Gmin)/Gmax = 50%.
The in-plane magnetic field splits Kramers degenerate spin states that
evolve differently with gate voltage.

FIG. 6. (Color online) The conductance G of an array of rings
modeled as an ensemble of energy levels as a function of α broadened
by a Gaussian for various nominal radii R. The broadening parameters
are � = 0.005, 0.0035, 0.003, 0.002, and 0.001 peV/m, for R =
524, 608, 681, 857, and 1050 nm, respectively. All amplitudes are
scaled to a panel height corresponding to (Gmax − Gmin)/Gmax =
50%. We use the experimentally determined relations between the
Rashba constant and electron density as before. We compare our
calculations (lines) with the experimental results (points) from Ref. 5
(see also Ref. 13).
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conductance peaks, which is likely to effectively enhance the
phenomenological broadening of the ensemble average and
cannot be resolved in the experiments. The presence of several
occupied modes in the rings also contributed to the average,
since each radial node can be approximated as a ring with a
slightly different radius. We therefore believe that our results
are robust with respect to deviations from our Hamiltonian
and these deviations can be captured by the phenomenological
broadening parameter �.

In conclusion, we investigated the conductance of single
rings and an ensemble of them as a function of the Rashba
spin-orbit interaction in the limit of weak coupling to the
leads. We considered both constant and gate voltage-dependent
density of electrons. Both situations can in principle be realized
experimentally by two independent (top and bottom) gate
voltages. We compare results with experiments on ring arrays
in which a single gate changes both the SOI α as well
as the electron density. We found that, in agreement with
experiments, the ensemble averaged conductance oscillates as

a function of α. The oscillations undergo a phase shift under
an in-plane magnetic field, and the period varies with the ring
diameter, as observed. We conclude that experiments observe
SOI induced interference effects that are more complicated
than the original Aharonov-Casher model but are robust with
respect to the model assumptions. It should be possible to
experimentally distinguish between the different models by
separating effects of spatial inversion symmetry (and thereby
α) and the Fermi wave-number modulation. This should be
possible by employing a double gate configuration in which
the electric field is varied but density is kept constant.14
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10O. Kálmàn, P. Földi, M. G. Benedict, and F. M. Peeters, Phys. Rev.
B 78, 125306 (2008).

11F. Nagasawa, D. Frustaglia, H. Saarikoski, M. Kohda, K. Richter,
and J. Nitta (private communication).

12F. E. Meijer, A. F. Morpurgo, and T. M. Klapwijk, Phys. Rev. B 66,
033107 (2002).

13Experiments report resistances rather than conductances. The
resistance oscillations δR � R are measured on top of a large
background resistance R. Thus, experiments are represented by
δR(α �= 0)/δR(α = 0) = δG(α �= 0)/δG(α = 0), which we may
compare directly with our calculated normalized conductance
oscillations.

14M. Yamaguchi, S. Nomura, K. Miyakoshi, H. Tamura, T. Akazaki,
and H. Takayanagi, J. Appl. Phys. 100, 113523 (2006).

115410-4

http://dx.doi.org/10.1103/PhysRevLett.53.319
http://dx.doi.org/10.1103/PhysRevLett.96.076804
http://dx.doi.org/10.1103/PhysRevB.69.235310
http://dx.doi.org/10.1103/PhysRevB.69.235310
http://dx.doi.org/10.1103/PhysRevLett.97.196803
http://dx.doi.org/10.1103/PhysRevLett.97.196803
http://dx.doi.org/10.1103/PhysRevLett.108.086801
http://dx.doi.org/10.1103/PhysRevLett.108.086801
http://dx.doi.org/10.1103/PhysRevA.30.1982
http://dx.doi.org/10.1103/PhysRevA.30.1982
http://dx.doi.org/10.1088/1742-6596/302/1/012002
http://dx.doi.org/10.1088/1742-6596/302/1/012002
http://dx.doi.org/10.1103/PhysRevB.78.235312
http://dx.doi.org/10.1103/PhysRevB.78.235312
http://dx.doi.org/10.1103/PhysRevB.76.125311
http://dx.doi.org/10.1103/PhysRevB.76.125311
http://dx.doi.org/10.1103/PhysRevB.78.125306
http://dx.doi.org/10.1103/PhysRevB.78.125306
http://dx.doi.org/10.1103/PhysRevB.66.033107
http://dx.doi.org/10.1103/PhysRevB.66.033107
http://dx.doi.org/10.1063/1.2392662



