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Effect of spin-orbit couplings in graphene with and without potential modulation
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We investigate the effect of Rashba and intrinsic spin-orbit couplings on the electronic properties and spin
configurations of Dirac fermions confined in: (i) a flat graphene sheet, (ii) a graphene wire with p-n-p structure,
and (iii) a superlattice of graphene wires. The interplay between the spin-orbit interaction mechanisms breaks
the electron-hole symmetry and the spin configuration induced by Rashba spin-orbit coupling lacks inversion
symmetry in k space. We show that the Rashba spin-orbit interaction doubles the Fabry-Pérot resonant modes in
the transmission spectrum of a graphene wire and opens new channels for the electron transmission. Moreover,
it leads to the appearance of spin split extra Dirac cones in the energy spectrum of a graphene superlattice. It is
shown that the spin of the electrons and holes confined in a flat graphene sheet is always perpendicular to their
motion while this is not the case for the other nanostructures.
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I. INTRODUCTION

Spintronics is an emerging field that has received great
attention in recent years. The strong research interest in
spintronics is due to its promising applications, in particular to
achieve tiny devices that are expected to work more adaptably
and faster than today’s electronic devices.1 The realization of
stable single-layer carbon crystals, called graphene, as well
as that of multilayer graphene has triggered an avalanche of
interest in graphene’s properties.2,3 Graphene has excellent
electrical and thermal properties, e.g., massless and chiral
Dirac fermions, which move with a Fermi velocity of about
c/300, and a linear spectrum close to the K and K ′ points.2,3

Furthermore, the spin relaxation time in graphene is long
due to the absence of hyperfine coupling and the very small
intra-atomic spin-orbit coupling (SOC) in carbon atoms. This
makes single-layer as well as few-layer graphene promising
candidates for spin-based devices, where the spin-orbit cou-
plings play a key role in spin relaxation,4–6 spin injection,7,8

and spin transport.4,9–12

In recent years there has been an increasing interest
in the study of intrinsic and Rashba spin-orbit interaction
mechanisms in graphene and also its derivatives,13–16 which
are respectively due to the intra-atomic spin-orbit interaction of
carbon atoms17–19 and the out-of-plane inversion asymmetry
of the graphene sheet.18 The intrinsic spin-orbit splitting in
pristine graphene is very weak, about 0.01–0.05 meV,17,20

which is too small for practical purposes. However, by taking
the intrinsic spin-orbit coupling into account, a masslike
term with opposite sign in the two Dirac cones opens a
gap in the spectrum. This turns graphene from a semimetal
into a quantum spin-Hall insulator with quantized spin-Hall
conductance.13 Using angle-resolved photoemission spec-
troscopy it was shown that the Rashba splitting of the π bands
in graphene when deposited on Ni (111) is about 225 meV.21

This result was challenged later by Rader et al.,22 however, the
possibility to achieve a giant Rashba spin-orbit splitting (near
100 meV) was still supported by first-principles calculations.23

It was predicted that doping graphene with 5d transition
metals induces a large spin-orbit interaction, which results

in an anomalous quantum Hall effect.16 A recent experiment
showed that a strong spin-orbit coupling is achievable by the
intercalation of Au atoms at the interface of graphene-Ni in
which the hybridization with the Au 5d orbitals causes a large
spin-orbit splitting up to 100 meV.24 It is also known that
impurities25 and lattice distortions26 comprise other sources
of SOCs.

In this paper, we present an analytical study of the effect of
spin-orbit couplings on the electronic and spin-related prop-
erties of low-energy fermions confined in: (i) a flat graphene
sheet, (ii) a graphene wire, and (iii) a superlattice of graphene
wires. The latter two structures can be realized artificially
by using external electrical gates. For all these structures the
energy dispersion relation of low-energy Dirac fermions is
derived. The spin-chiral states induced by Rashba SOC result
in a spin configuration that lacks inversion symmetry in k

space. We show that the spin of a free electron that travels in a
flat graphene sheet (with zero external electrostatic potential) is
perpendicular to its motion while the application of an external
electrostatic potential causes the spin to have a component
parallel to the electron motion. It is also demonstrated that
the Rashba SOC induces extra Fabry-Pérot resonant modes,
providing additional channels for the electron transmission
across a graphene wire. Moreover, it leads to the appearance
of spin split extra Dirac cones in the energy spectrum of a
superlattice of graphene wires and, as a result, new oscillating
structure emerges in the spectrum of the density of states as
well as in the diffusive conductivity.

The paper is organized as follows. In Sec. II we describe
our model Hamiltonian and investigate the effect of spin-orbit
couplings in a flat graphene sheet. In Sec. III we deal with
the transmission and the bound states of an electron that is
confined in a graphene wire. In Sec. IV we investigate the
effect of spin-orbit couplings on a superlattice of graphene
wires. Our conclusions are summarized in Sec. V.

II. SPIN-ORBIT HAMILTONIAN

The effective two-band Hamiltonian of a pristine graphene
layer in the presence of spin-orbit interactions can be divided
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into three terms

Heff = H0 + HI + HR. (1)

Here H0 is the usual Dirac Hamiltonian, HI is the intrinsic
spin-orbit Hamiltonian with the following standard form

HI = �τσzsz, (2)

where � determines the strength of the intrinsic SOC, σ , and
s are the pseudospin and real spin Pauli matrices, and τ = ±1
denote the K and K ′ valleys. The intrinsic SOC term plays the
same role as the mass term in the Dirac Hamiltonian. The third
term in (1) comes from an extrinsic spin-orbit interaction19

HR = λ(τσxsy − σysx), (3)

which is known as Rashba SOC. This term couples the
spin and pseudospin degrees of freedom by introducing off
diagonal terms to the Hamiltonian matrix. In Eq. (3), λ is the
strength of the Rashba spin-orbit interaction. We rewrite the
two-dimensional Dirac Hamiltonian around the K point as

H = 1 ⊗ [vF �σ . �p + V (x)1] + λ

2
(sy ⊗ σx − sx ⊗ σy)

+�sz ⊗ σz, (4)

where vF ≈ 106 m/s is the Fermi velocity of the electron, and
V (x) is the applied electrostatic potential along the x axis.

The Hamiltonian is invariant under an arbitrary translation
along the y direction which allows to apply the ansatz
�(x,y) = eikyxψ(x). We switch to a dimensionless form of
the Dirac equation by replacing x/L → x,

⎛
⎜⎜⎝

�̄ −i∂x − iky 0 0
−i∂x + iky −�̄ −iλ̄ 0

0 iλ̄ −�̄ −i∂x − iky

0 0 −i∂x + iky �̄

⎞
⎟⎟⎠

⎛
⎜⎜⎝

ψA,↑
ψB,↑
ψA,↓
ψB,↓

⎞
⎟⎟⎠ = (ε − v)

⎛
⎜⎜⎝

ψA,↑
ψB,↑
ψA,↓
ψB,↓

⎞
⎟⎟⎠ , (5)

where �̄ = L
vFh̄

�, Lky → ky , λ̄ = L
vFh̄

λ, ε = L
vFh̄

E, and v =
L

vFh̄
V . We rewrite the Dirac equation as a system of coupled

equations

−iL+ψB,↑ = (ε − v − �̄)ψA,↑
−iL−ψA,↑ = (ε − v + �̄)ψB,↑ + iλ̄ψA,↓

(6)
−iL+ψB,↓ = (ε − v + �̄)ψA,↓ − iλ̄ψB,↑
−iL−ψA,↓ = (ε − v − �̄)ψB,↓,

where L± = d/dx ± ky . In the case of constant potential, i.e.,
L±v = 0, we readily obtain

[L+L− + (ε − v)2 − �̄2]ψA,↑ = −λ̄L+ψA,↓, (7)

and

[L+L− + (ε − v)2 − �̄2]ψA,↓ = i(ε − v − �̄)λ̄ψB,↑. (8)

By multiplying the operator L+ on both sides in Eq. (8) and
using Eqs. (6) and (7) we find[

d2

dx2
− k2

y + (ε − v)2 − �̄2 ± λ̄(ε − v − �̄)

]
ψA,↑ = 0.

(9)

After introducing the momentum

k2
± = −k2

y + (ε − v)2 − �̄2 ± λ̄(ε − v − �̄), (10)

we find the energy dispersion

ε = v + p

√
k2± + k2

y + �̄2 + λ̄2

4
± λ̄�̄ ∓ λ̄

2
, (11)

for both p = 1 and p = −1. In order to find the associated
eigenspinors, let us first define the phases θ± as follows

eiθ± = ky + ik±
|ky + ik±| = ky + ik±

|ε(�̄ = 0,λ̄ = 0) − v| . (12)

Now, the propagating plane waves can be plainly written
as ψ(k±) = A±eik±x where A± is a four-component spinor
given by

A± =

⎛
⎜⎜⎝

eiθ±

ic±
±c±

±ie−iθ±

⎞
⎟⎟⎠ , (13)

and c± = (ε − v − �̄)/|k2
± + k2

y |1/2.
Electron-hole energy dispersion. Figure 1 shows the low-

energy band dispersion of Dirac fermions traveling freely in the
x direction (ky = 0) in the absence of any applied electrostatic
potential (v = 0). The strengths of the intrinsic and Rashba
SOCs are �̄ = 0.01 and λ̄ = 1.52, which correspond to the
SOC strengths � ≈ 0.05 meV and λ = 10 meV with the length
scale L = 100 nm. In the case of only pure intrinsic SOC,
no spin-orbit splitting occurs for the Dirac cone but a gap
opens up between the electron-hole energy bands [Fig. 1(a)].
In contrast, Rashba SOC splits the energy bands and removes
the energy gap. Once the strengths of the Rashba and intrinsic
SOCs become comparable the symmetry of the electron-hole
energy dispersion is broken [see Fig. 1(b)]. This electron-hole
symmetry is retained if only one SOC mechanism is present.

In order to attribute a physical meaning to the k± wave vec-
tors we examine the spin configuration of the electrons occupy-
ing the corresponding spin split band of the k± states. We have

〈ψ(k±)|Ŝ|ψ(k±)〉
〈ψ(k±)|ψ(k±)〉 = h̄c±

1 + c2±

⎛
⎝± cos θ±

∓ sin θ±
0

⎞
⎠ , (14)

which shows that the real spin of an electron occupying the
k+ state is in the opposite direction to the electron of the k−
state. Moreover the spin is in-plane and is perpendicular to the
electron momentum, which is the same as to an electron spin
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FIG. 1. (Color online) The energy dispersion of free electrons and
holes in a flat graphene sheet for ky = 0, v = 0 and (a) �̄ = 0.01,
λ̄ = 0, (b) �̄ = 0.01, λ̄ = 0.03, and (c) �̄ = 0, λ̄ = 1.52. The solid
(dashed) curves correspond to the k+ (k−) wave vector, which refer
to the different spin-chiral states. The arrows indicate the spin-up
and spin-down states. By changing the direction of motion a spin
inversion occurs.

confined in a two-dimensional electron gas in the presence of
Rashba SOC. Figure 2 shows this result for electrons situating
in two different energy bands corresponding to k± states.
The Rashba SOC induces new spin-chiral states with a spin
configuration obeying the relation Ŝ(−�k) = −Ŝ(�k), which
lacks inversion symmetry. Note that if the electron-hole energy
band is symmetric, the electron spin is opposite to the spin
of the corresponding hole traveling in opposite direction [see
Fig. 1(c)]. This implies that in the presence of Rashba SOC
the spin of the holes in p-doped graphene is opposite to the
spin of electrons with the same energy in n-doped graphene.

FIG. 2. (Color online) The energy surfaces of free electrons, in k

space, traveling in a pristine graphene sheet in the presence of spin-
orbit interactions. The contour lines trace out the two constant-energy
surfaces that lie on different energy bands. The arrows show the
electron spin direction. The spin of the electrons occupying different
energy surfaces are opposite and is perpendicular to the electron
momentum.

III. SPIN-ORBIT COUPLINGS IN A GRAPHENE WIRE:
p-n- p STRUCTURE

We now deal with the effect of SOCs on the bound states
as well as on the transport properties of a graphene wire that
can be created artificially by gating a flat graphene layer (see
Fig. 3). The potential profile is in the form of a well, V (x) =
V0[�(x) − �(x − L)], with depth V0 < 0 and width L. As
previous we normalize the variables by using x/L → x which
yields the potential v(x) = v0[�(x) − �(x − 1)].

Derivation of the energy dispersion of bound states. An
electron trapped within a graphene wire has spinor wave
functions decaying exponentially outside the wire. Then, it
is convenient to distinguish the wave vectors associated to the
traveling and decaying wave functions which we denote by
k± and α±, respectively, and both are assumed to be tive real.
We represent the spinor coefficients of the forward (backward)
propagating wave functions by A

f
± (Ab

±) where the spinors A
f
±

are the same as in Eq. (13) but where Ab
± are now given by

Ab
± =

⎛
⎜⎜⎝

e−iθ±

ic±
±c±

±ieiθ±

⎞
⎟⎟⎠ . (15)

The wave functions outside the wire, which satisfy the
asymptotic boundary conditions ψ(x → ±∞) = 0 are as
follows

ψ(x < 0) = B1e
α+x

⎛
⎜⎜⎝

f+
ic′

+
c′
+

ih+

⎞
⎟⎟⎠ + B2e

α−x

⎛
⎜⎜⎝

f−
ic′

−
−c′

−
−ih−

⎞
⎟⎟⎠ , (16)

and

ψ(1 < x) = D1e
−α+x

⎛
⎜⎜⎝

h+
ic′

+
c′
+

if+

⎞
⎟⎟⎠ + D2e

−α−x

⎛
⎜⎜⎝

h−
ic′

−
−c′

−
−if−

⎞
⎟⎟⎠ (17)

where f± = (ky + α±)/|k2
y − α2

±|1/2, h± = (ky − α±)/|k2
y −

α2
±|1/2 and c′

± = (ε − �̄)/|k2
y − α2

±|1/2. In general, the electron
wave inside the wire can be expressed as a linear combination
of forward and backward traveling plane waves that consist of
both, or at least one of, the k± states

ψ(0 < x < 1) = C1A
f
+eik+x + C2A

b
+e−ik+x

+C3A
f
−eik−x + C4A

b
−e−ik−x. (18)

ε=0

L

v0

Gate
Gate

FIG. 3. (Color online) A schematic illustration of a graphene wire
created by applying an external electrostatic potential.
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Since the electron is confined in the wire, the x component
of the probability current density should vanish, i.e., jx =
jx,↑ + jx,↓ = vF ψ†Sψ = 0 where S = 1 ⊗ σx . This imposes
a strong constraint on the wave function inside the well,
resulting in the restriction that the solution is a standing wave.

Therefore, in the most general case, one finds the solution as
C1 = (a − ib)/2, C2 = (a + ib)/2, C3(a′ − ib′)/2 and C4 =
(a′ + ib′)/2, which ensures that the spinor components of the
overall wave function in (18) are pure real or imaginary. This
yields

ψ(0 < x < 1) =

⎛
⎜⎜⎝

a cos(k+x + θ+) + b sin(k+x + θ+)
ic+[a cos(k+x) + b sin(k+x)]
c+[a cos(k+x) + b sin(k+x)]

i[a cos(k+x − θ+) + b sin(k+x − θ+)]

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

a′ cos(k−x + θ−) + b′ sin(k−x + θ−)
ic−[a′ cos(k−x) + b′ sin(k−x)]
−c−[a′ cos(k−x) + b′ sin(k−x)]

−i[a′ cos(k−x − θ−) + b′ sin(k−x − θ−)]

⎞
⎟⎟⎠ . (19)

Therefore, the first and third spinor components (related to sublattice index A) are pure real and the rest (corresponding to sublattice
index B) are pure imaginary. Continuity of the wave function inside and outside the well gives the following transcendental
equation for the exact dispersion equation

det

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−f+ −f− cos θ+ sin θ+ cos θ− sin θ− 0 0
−c′

+ −c′
− c+ 0 c− 0 0 0

−c′
+ c′

− c+ 0 −c− 0 0 0
−h+ h− cos θ+ − sin θ+ − cos θ− sin θ− 0 0

0 0 cos(k+ + θ+) sin(k+ + θ+) cos(k− + θ−) sin(k− + θ−) −h+e−α+ −h−e−α−

0 0 c+ cos k+ c+ sin k+ c− cos k− c− sin k− −c′
+e−α+ −c′

−e−α−

0 0 c+ cos k+ c+ sin k+ −c− cos k− −c− sin k− −c′
+e−α+ c′

−e−α−

0 0 cos(k+ − θ+) sin(k+ − θ+) − cos(k− − θ−) − sin(k− − θ−) −f+e−α+ f−e−α−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (20)

which we solved numerically.
Electron transmission. We turn to the study of the transmis-

sion across a graphene wire and calculate the fraction of the
incident wave transmitted perpendicular to the wire. Assuming
that the incident electron wave only consists of a k+ state we
obtain the wave functions outside the wire as

ψ(x < 0) = A
f
+eik+x + r++Ab

+e−ik+x + r+−Ab
−e−ik−x, (21)

and

ψ(1 < x) = t++A
f
+eik+x + t+−A

f
−eik−x. (22)

Here r++ (r+−) is the amplitude of the reflected wave from
the wire edge, and t++ (t+−) denotes the amplitude of the
transmitted wave with k+ (k−) wave vector. The incoming
and outgoing currents should be equal because the probability
current is conserved. Using the electron density current jx =
vF ψ†Sψ together with the following relations

(Af
±)†SA

f
∓ = (Ab

±)†SAb
∓ = (Af

±)†SAb
± = 0

(23)
(Af

±)†SA
f
± = −(Ab

±)†SAb
± = 4c± sin θ±,

we obtain the incoming and outgoing electron currents, in units
of vF , as follows

j̄x(x < 0) = 4c+ sin θ+(1 − r2
++) − 4c− sin θ−r2

+−
(24)

j̄x(x > 1) = 4c+ sin θ+t2
++ − 4c− sin θ−t2

+−.

Note that θ± is the angle that the incoming electron wave
vector makes with the wire edge, i.e., θ± ∈ [0 π ] because
k± is positive. By imposing the continuity condition of the

electron current we find

c+ sin θ+(1 − r2
++ − t2

++) − c− sin θ−(r2
+− + t2

+−) = 0. (25)

Continuing along the same lines for an incoming electron with
the wave vector k− we find

c− sin θ−(1 − r2
−− − t2

−−) − c+ sin θ+(r2
−+ + t2

−+) = 0. (26)

Combining Eqs. (25) and (26) for a mixed incoming current
consisting of both k+ and k− wave vectors yields the
transmission and reflection probabilities as follows

T = c+ sin θ+(t2
++ + t2

−+) + c− sin θ−(t2
−− + t2

−+)

c+ sin θ+ + c− sin θ−
, (27)

R = c+ sin θ+(r2
++ + r2

−+) + c− sin θ−(r2
−− + r2

−+)

c+ sin θ+ + c− sin θ−
. (28)

The coefficients of the reflected and transmitted electron waves
can be easily obtained from the continuity condition of the
wave function. If the wave function outside the wire decays
for one of the available k± states, all the associated coefficients
will be of course zero.

Extra Fabry-Pérot resonances. In Fig. 4 we summarize the
results of our calculations performed for both the transmission
spectrum and the bound states of a graphene wire with V0 =
−60 meV and L = 100 meV; i.e., v0 � −9.12. The contour
maps of the transmission spectrum show clear resonant peaks
of Lorentzian form stretched to the oblique red boundaries
separating the regions of the bound and unbound electron
states. These resonant peaks show the regions at which the
electron is completely transferred over the wire; that is exactly
where the allowed energies of the bound states (with a standing

115408-4



EFFECT OF SPIN-ORBIT COUPLINGS IN GRAPHENE . . . PHYSICAL REVIEW B 88, 115408 (2013)

FIG. 4. (Color online) Contour plot of the transmission as a
function of the energy and the y component of the electron momentum
for v0 = −9.12, �̄ = 0.01, and (a) λ̄ = 0 and (b) λ̄ = 1.52. The
green solid curves are the allowed energies of the bound states. The
red oblique lines separate the different regions related to the bound,
unbound and forbidden electron states. In the region between the blue
and red lines only one of the k± states is available for the electron
transmission. In (a) the bound states are degenerate. The inset in (b)
shows the average spin Sx for two energy branches marked by the
triangle and star symbols.

wave function inside the wire [see Eq. (18)]) cross the unbound
states.27,28 The same resonant peaks are observed in the
transmission of light from the Fabry-Pérot optical resonators in
which multiple reflections between two facing plates give rise
to a standing wave inside the cavity resonator. In the presence
of Rashba SOC the number of resonant peaks increases due
to the spin-orbit splitting and, as a result, new channels open
for electron transmission (for the case of pure intrinsic SOC
no spin-orbit splitting occurs). Note that these extra resonant
peaks appear in the region between the red and blue boundaries
in Fig. 4(b). In this region there is only one k+ or k− state
providing a channel for electron transmission because the
solution for the other k state is an evanescent wave.

The x component of the average spin is calculated for the
two energy branches shown by the triangle and star marks
[see the inset in Fig. 4(b)]. For an electron trapped inside
the graphene wire the average spin only has a projection
perpendicular to the graphene wire and the other normal
components are zero. In this special case the electron travels
along the graphene wire and its spin is perpendicular to the
electron motion.

IV. SPIN-ORBIT INTERACTIONS IN A SUPERLATTICE:
PERIODIC p-n STRUCTURE

We consider an ideal array of periodically spaced electri-
cal gates, forming a regular superlattice of graphene wires
arranged along the x direction (see Fig. 5). We approximate
the superlattice potential by an infinite series of rectangular
barriers as follows

V (x) =
∞∑

n=−∞
V0[�(x − w + nL) − �(x + (n − 1)L)] − V0

2
,

(29)

where L = w + b is the superlattice period, and w and b

denote the width of the well and the barrier, respectively. We
use dimensionless parameters as before and replace w/L → w

and b/L → b. The translation operator which shifts the wave
function argument by a superlattice period can be expressed
as

T = TwTb, (30)

where Tw = MGwM−1|v=− v0
2

and Tb = MGbM
−1|v= v0

2
trans-

fer the wave function between the two edges of a well and a
barrier, respectively. The operators M , Gw, and Gb, which
functionally depend on v, are given by

M[v] =

⎛
⎜⎜⎝

eiθ+ eiθ− e−iθ+ e−iθ−

ic+ ic− ic+ ic−
c+ −c− c+ −c−

ie−iθ+ −ie−iθ− ieiθ+ −ieiθ−

⎞
⎟⎟⎠ , (31)

ε=0 0

w

b

v

FIG. 5. (Color online) A schematic illustration of a superlattice
of graphene wires created by an ideal array of periodically spaced
electrical gates. The electron spin is normal to its momentum if the
electron travels perpendicular to the superlattice as illustrated in the
figure.
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and

Gw(b)[v] =

⎛
⎜⎜⎜⎝

eik+w(b) 0 0 0
0 eik−w(b) 0 0
0 0 e−ik+w(b) 0
0 0 0 e−ik−w(b)

⎞
⎟⎟⎟⎠ .

(32)

Note that all the parameters θ±, c±, and k± depend on both ε

and v. The wave function transferred by T should satisfy the
Bloch condition ψ(x + L) = eikxLψ(x). For a given Bloch
momentum kx this imposes a rigorous restriction on the ε-
dependent eigenvalues of T because the act of T on the wave
function should give the Bloch phase e±ikxL. Therefore one
obtains an exact energy dispersion equation as the real part of
the eigenvalues should be equal to cos(kxL).

Energy spectrum and spin configuration. In Fig. 6(a) we
show the lowest electron-hole energy surfaces, in k space,
obtained by including the effect of spin-orbit interactions.
In Ref. 29 it was shown that in a superlattice on graphene
extra Dirac cones appear in the energy spectrum in addition
to the main Dirac cone. The Rashba spin-orbit interaction
splits the energy surfaces in the direction of the array of
barriers, resulting in additional Dirac cones in the energy
spectrum. Notice that the Rashba SOC strongly deforms the
linear dispersion of the main Dirac cone in the x direction
but less in the y direction. The intrinsic spin-orbit interaction
is responsible for the energy gaps in the electron-hole energy
surfaces around the Dirac points. In contrast to the case of
a graphene layer without periodic potential, the inclusion of
Rashba SOC does not remove these energy gaps.

Figure 6(b) displays the spin configuration in k space
calculated for the lowest electron energy surface. In contrast
to the case without superlattice potential we find that the
electron spin is no longer perpendicular to its momentum. If
the electrons travel strictly along the array of barriers (ky = 0)
the Hamiltonian commutes with the unitary operator

u =

⎛
⎜⎜⎝

0 0 0 −i

0 0 −i 0
0 i 0 0
i 0 0 0

⎞
⎟⎟⎠ . (33)

Since the eigenvalues of u are ±1, consequently, one finds
from the relations uSyu = Sy , uSxu = −Sx and uSzu = −Sz

that only the y component of the average spin, Sy , is nonzero.
In order to extract the symmetries of the spin configuration
in a more efficient way, we present in Fig. 7 a contour plot
of the average spin components calculated for the electrons
occupying the lowest conduction band around the Dirac points.
From the results we find that by a mirror reflection of the
direction of motion with respect to the k-space axes the spin
component perpendicular to the reflection axis is inverted:
Sx(kxêx + kyêy) = −Sx(kxêx − kyêy) and Sy(kxêx + kyêy) =
−Sy(−kxêx + kyêy). Thus, the electrons traveling in opposite
directions possess antiparallel spins; that is Ŝ(�k) = −Ŝ(−�k).
Therefore, the average spin of a completely filled energy
surface is zero.

Density of energy states. When the graphene superlattice
involves spin-orbit couplings, the number of k states available

FIG. 6. (Color online) (a) The lowest electron-hole energy sur-
faces of the graphene superlattice in the presence of spin-orbit
interactions. The strengths of SOCs are �̄ = 0.01 and λ̄ = 1.52, the
normalized depth and width of the potential wells are taken as v0 =
15.2 and w = 0.5, respectively, corresponding to V0 = 100 meV,
w = 50 nm and the superlattice period L = 100 nm. (b) Projection
of the spin configuration for electrons in the lowest conduction band.
The red curves correspond to the constant energy surface ε = 0.16.

for the occupancy of electrons per unit volume and energy is
given by

D(E) =
∑
n,s,�k

δ[E − En,s(�k)]. (34)

To calculate numerically the density of states (DOS) we
replace the δ function by a sharp Gaussian broadening
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FIG. 7. (Color online) Contour plot of the average spin compo-
nents Sy (a) and Sx (b) calculated for the lowest conduction band of
a graphene superlattice around the Dirac cones.

δ[E − En,s(�k)] → 1
�

√
π

exp{− 1
�2 [E − En,s(�k)]}, where � de-

termines the amount of the broadening. In Fig. 8, the DOS
of the graphene superlattice is calculated for V0 = 100 meV
and L = 100 nm by taking spin-orbit couplings into account
(dashed curves) and the results are compared with the case of a
graphene superlattice in the absence of spin-orbit interactions
(solid curves). The dotted black curve shows the DOS of a flat
pristine graphene sheet with SOCs strengths �̄ = 0.01 and
λ̄ = 1.52. With the inclusion of Rashba spin-orbit interaction
the DOS exhibits an oscillating structure between the peaks
and dips of the curves obtained in the absence of spin-orbit
couplings. The fluctuations originate from the new saddle
points in the energy spectrum due to the Rashba spin-orbit
splitting around the Dirac points. The major oscillations at low
energies arise due to the supperlattice potential, in particular

FIG. 8. (Color online) The density of energy states of a graphene
superlattice with v0 = 15.2 in the absence (solid curves) and presence
(dashed curves) of spin-orbit couplings. The results are shown, in
units of D0 = L/h̄vF , for w = 0.5 and w = 0.6 by the red and green
curves, respectively. The DOS without the superlattice potential is
represented by the black dotted curve for �̄ = 0.01 and λ̄ = 1.52.
The inset shows the DOS in a wider energy range (up to the barrier
height) for w = 0.5.

below the barrier height, but with increasing energy the
influence of the superlattice potential diminishes, resulting in
a quenching of the oscillations arising from the Rashba SOC.
For w = 0.6 the electron-hole symmetry is broken29 and the
touching point of the valence and conduction bands moves
away from zero energy and hence the DOS has no zero at
ε = 0 (see the green curves in Fig. 8). Moreover, the results
show that changing the width of the potential wells has no
qualitative consequences on the feature of oscillating structure
induced by SOCs.

Low-temperature diffusive conductivity. At sufficiently low
temperatures the inelastic scattering due to thermal vibrations
of the atoms has negligible contribution to the electron trans-
port and the tensor elements of the diffusive DC conductivity
is given by a sum of the contributions from each energy band:

σμν = e2vF β

A

∑
n,s,�k

τvμ
n,sv

ν
n,sf [En,s(�k)]{1 − f [En,s(�k)]}.

(35)

Here β = 1/kBT , A is the area of the system,
�vn,s = 1

h̄
∂En,s/∂ �k is the electron velocity, f (En,s(�k)) =

1/{exp[β(EF − En,s(�k))] + 1} is the equilibrium Fermi-Dirac
distribution function, and τ denotes the momentum relaxation
time which, at low temperatures, we assume to be a constant
near the Fermi energy (τ ≈ τF ). Note that the isotropy of
the diffusive conductivity is not influenced by the spin-
orbit interactions as the conductivity tensor contains only
the diagonal components σxx and σyy . This is due to the
symmetry of the energy surfaces that results in the inversion
symmetry of the electron velocity as vx

n,s(−�k)vy
n,s(−�k) =

−vx
n,−s(�k)vy

n,−s(�k). Since the sum in Eq. (35) runs over all k

states the off-diagonal components of the conductivity vanish.
Meanwhile, the isotropy of the diffusive conductivity for a
pristine graphene sheet including spin-orbit couplings is also
preserved.

To illustrate the effect of spin-orbit interactions on the
electrical conductivity of a graphene superlattice we plot the
tensor components σxx and σyy by assuming that temperature
is low enough (T = 4 K). The results are shown in Fig. 9 for
w = 0.5 and w = 0.6. Comparing the conductivities σxx and
σyy we find that the Rashba spin-orbit splitting has a more
pronounced effect on the conductivity component parallel to
the barriers. The spin-splitting due to the Rashba SOC alters
the electron velocity especially around the Dirac points. These
Dirac points were located at kx = 0 before the spin-splitting,29

but now each point is moved from kx = 0 to the two side points
and as a result the velocity component vx

n,s(�k) is more affected

by the SOC than the normal component v
y
n,s(�k). Therefore,

additional local oscillations appear in the conductivity σxx in
addition to the main oscillations resulting from the superlattice
potential. Moreover, for both widths of the potential wells the
Rashba SOC decreases the conductivity tensor component σxx .

V. CONCLUSIONS

Within the continuum Dirac equation we studied the effect
of SOCs in a graphene sheet with different potential structures:
(i) a pristine graphene sheet, (ii) a graphene wire (p-n-p
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FIG. 9. (Color online) (a) and (b) show the diffusive conductivity σxx , in units of σ0 = e2vF τF /h̄L, for a graphene superlattice with
w = 0.5 and w = 0.6, respectively. (c) and (d) are the same as in (a), (b) but now for the conductivity σyy . The solid (dashed) curves indicate
the conductivities in the absence (presence) of SOCs. The blue dotted curve in (a) and (c) correspond to the conductivity of a graphene sheet
without superlattice potential.

structure), and (iii) a graphene superlattice. In the latter two
structures an external electrostatic potential is applied to the
graphene sheet inducing artificially quantum confinement for
Dirac fermions. The energy dispersion relation of a Dirac
fermion confined in each structure is analytically derived.
We found that in a graphene sheet without any potential
the interplay between the Rashba and intrinsic SOCs breaks
the symmetry of the electron-hole energy dispersion as long
as the strength of one SOC mechanism becomes zero. The
Rashba SOC results in spin-orbit splitting of the energy
spectrum with the two spin configurations for the electron
being perpendicular to its motion. However, this is no longer
the case when an external electrostatic potential is applied; i.e.,
spin can have a component parallel to the electron motion. Our
results demonstrate that the Rashba spin-orbit splitting doubles
the number of Fabry-Pérot resonant peaks in the transmission
spectrum of a graphene wire and, as a result, new channels

open that are able to transfer electrons. Moreover, it is shown
that due to the presence of Rashba SOC extra spin split Dirac
cones appear in the energy spectrum of a graphene superlattice,
leading to the appearance of small local fluctuations in
the density of energy states as well as in the diffusive
conductivity.
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9M. Popinciuc, C. Józsa, P. J. Zomer, N. Tombros, A. Veligura, H. T.
Jonkman, and B. J. van Wees, Phys. Rev. B 80, 214427 (2009).

10W. Han, K. Pi, W. H. Wang, K. M. McCreary, Y. Li, W. Bao, P. Wei,
J. Shi, C. N. Lau, and R. K. Kawakami, Proc. SPIE 7398, 739819
(2009).

11M. Nishioka and A. M. Goldman, Appl. Phys. Lett. 90, 252505
(2007).

12T. Maassen, F. K. Dejene, M. H. D. Guimarães, C. Józsa, and B. J.
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