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Experiments on the fractional quantized Hall effect in the zeroth Landau level of graphene have revealed
some striking differences between filling factors in the ranges 0 < |v| < 1 and 1 < |v| < 2. We argue that these
differences can be largely understood as a consequence of the effects of terms in the Hamiltonian which break
SU(2) valley symmetry, which we find to be important for |v| < 1 but negligible for |v| > 1. The effective
absence of valley anisotropy for |v| > 1 means that states with an odd numerator, such as |v| = 5/3 or 7/5, can
accommodate charged excitations in the form of large-radius valley skyrmions, which should have a low energy
cost and may be easily induced by coupling to impurities. The absence of observed quantum Hall states at these
fractions is likely due to the effects of valley skyrmions. For |v| < 1, the anisotropy terms favor phases in which
electrons occupy states with opposite spins, similar to the antiferromagnetic state previously hypothesized to be
the ground state at v = 0. The anisotropy and Zeeman energies suppress large-area skyrmions, so that quantized
Hall states can be observable at a set of fractions similar to those in GaAs two-dimensional electron systems. In
a perpendicular magnetic field B, the competition between the Coulomb energy, which varies as B!/?, and the
Zeeman energy, which varies as B, can explain the observation of apparent phase transitions as a function of B
for fixed v, as transitions between states with different degrees of spin polarization. In addition to an analysis of
various fractional states from this point of view and an examination of the effects of disorder on valley skyrmions,

we present new experimental data for the energy gaps at integer fillings v = 0 and v = —1, as a function of
magnetic field, and we examine the possibility that valley skyrmions may account for the smaller energy gaps
observed at v = —1.
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I. INTRODUCTION

The Dirac spectrum and high fourfold valley and spin
degeneracy of Landau levels (LLs) in graphene lead to interest-
ing phenomena in the quantum Hall effect (QHE) regime.! In
particular, Coulomb interactions lift LL degeneracies, giving
rise to new integer quantum Hall states with broken spin and/or
valley symmetry.”"'7 Some of these states were conjectured to
have counterpropagating spin-filtered edge states,>!' 13 as well
as unusual spectra of collective excitations.’

Recently, progress in sample fabrication led to the ob-
servation of fractional quantum Hall (FQH) states in high-
mobility graphene samples (suspended and on BN),'23 in
both transport measurements, and in measurements of the local
incompressibility using a scanning single-electron transistor
(SET) technique. Recent experimental study®' revealed an
unexpected sequence of FQH states in the zeroth LL. Certain
FQH states in the interval 1 < |v| < 2 of filling factors
were missing or very weak, including states at filling factors
V= %, %, 17—] This is quite surprising, because fractional states
with denominator 3 are generally expected to be strong. In the
interval of filling factors |v| < 1, the FQH sequence was essen-
tially identical to that found in GaAs-based two-dimensional
(2D) electron systems.”* More recently, incompressibility
measurements in the range |v| < 1 have revealed transitions,
as a function of the applied perpendicular magnetic field, at a
fixed filling factor, which have been interpreted as transitions
between states with different spin polarizations.?® It is worth
noting that the absence of a v = —5/3 plateau in the regime
where states at v = 1/3,2/3, 4/3 were well developed was
first noticed in Ref. 20. Also, new multicomponent FQH states
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arising due to valley and spin degeneracy of LLs in graphene
were considered theoretically.?’

Here we propose some possible explanations for the
puzzling observations made in Refs. 20, 21, and 23. We argue
that the key differences between the first partially filled Landau
sublevel (=2 < v < —1) and the second one (—1 < v < 0)
arise from the greater importance in the second regime of the
valley-anisotropic terms in the Hamiltonian, which break the
SU(2) symmetry with respect to the valley index.

In what follows, we use both the carrier filling factor v =
n®y/ B, , where n is the net carrier density, B, is the magnetic
field perpendicular to the sheet, and ® is the flux quantum,
and the “LL filling factor,” f = v 4 2, to describe filling of
the zeroth LL. (When there are no carriers present, v = 0, the
LL is half full, and f = 2.) We concentrate on filling factors
—2 < v <0, as the filling factors 0 < v < 2 are related to
these by particle-hole symmetry.

The rest of the paper is organized as follows. In Sec. II
we introduce the Hamiltonian and discuss how particle-hole
symmetry can be used to relate the energies of different states.
In Sec. IIT we review the known results about integer states at
filling factors v = —1 and O and argue that the excitations
of these states are different, which makes the energy gap
at v = —1 smaller than the gap at v =0. In Sec. IV we
study various FQH states in the filling factor interval —2 <
v < —1. We argue that the states at odd-numerator fractions
generally have skyrmion excitations, while the excitations of
the even-numerator states are quasiparticles and quasiholes.
In Sec. V we turn to FQH states at —1 < v < 0. We discuss
the valley and spin structure of the states, finding that at
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all filling factors in this interval except for v = —1/3 there
are two or more competing states with different degrees of
valley and spin imbalance. The competition between Coulomb
energy and Zeeman energy results in multiple phase transitions
that occur as a function of magnetic field. In Sec. VI we
consider the effects of disorder on various fractional and
integer states, and argue that disorder can weaken and even
suppress the odd-numerator states at filling factors —2 <
v < —1. Section VII contains new experimental data on the
energy gaps of the v = —1 and v = 0 states, as well as a
discussion about the nature of the excitations of these states.
We summarize our findings in Sec. VIII and compare them
to recent experiments.?%>!>*> Finally, in Sec. IX we mention
possible future directions for studies of the FQH effect in
graphene and related materials.

II. PROJECTED HAMILTONIAN

To understand the underlying symmetries, let us start with
the microscopic Hamiltonian of the zeroth LL. We neglect LL.
mixing and consider projections of all operators onto the zeroth
LL. For the analysis of spin and valley effects, it is convenient
to separate the Hamiltonian into the leading SU(4)-symmetric
part I:Isym and terms that break spin and valley symmetry. The
symmetric part may be written as

A

1 ~ o . n
Hom = 5 / drdr’ . Iy @V — ) ia)ga):, (1)

where the symmetric interaction is given, at least approxi-

mately, by a Coulomb potential, V(r —r') = ﬁ, where
e is an effective dielectric constant. Also, ¥/'(r) here is an
operator that creates an electron in the zeroth LL. Since there

are four fermion species, we view it as a four-component field,

U = Gk .0k O30k @00 ). @

The four components may be regarded as forming a spinor in
a 4D space, which we refer to as “hyperspin space,” and we
refer to an arbitrary vector in this space as a “hyperspin” state.

There are three main symmetry-breaking terms. First, the
Zeeman interaction breaks spin rotation symmetry:

H; = E; / drii(é.r(r), E; = %uBB. A3)

The most important valley-anisotropic terms arise due to
lattice-scale Coulomb interactions,®!*!7 as well as to electron-
phonon interactions.'>!® There are two types of valley-
anisotropic terms, which can be written as follows:

A

=% / dr: [Ty mF @)

Hy = % / dr ) TGP )
=X,y

The coupling constant g, originates from the electron-electron
interactions, while g, includes contributions from both
electron-electron and electron-phonon interactions.®!>~!7 The
valley-anisotropic terms can get renormalized and enhanced
by LL mixing,'*!” but here we treat them as phenomenological
parameters. We also assume that the interactions can be treated
as instantaneous in time. We note that LL mixing will also
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lead to some renormalization of the SU(4) invariant Coulomb
interaction, on the scale of the magnetic length, but we ignore
such effects here.

The valley-anisotropic terms in our model, (4) and (5),
have effect only when two electrons coincide in space. This
reflects the fact that on the microscopic scale, sensitivity to
the electron valley or sublattice occurs only when two electron
are separated by a distance of the order of the graphene lattice
constant, which is much smaller than the magnetic length. We
also remark that, in the zeroth LL, the electrons in opposite
valleys are confined to opposite sublattices.

With these assumptions the contributions of g, and g, to
the energy per flux quantum, for a fixed value of v, will scale as
gz/(ZTrlé) and gL/(anlz;), respectively. Here Ip = /hic/eB,
is the magnetic length. (We mostly consider the case when
magnetic field is perpendicular to the sample; therefore, in
the rest of the paper we identify B with B .) Consequently,
this energy will scale the same way as the Zeeman energy,
proportional to B, as previously remarked. (We note that the
relative importance of these terms can be altered, however, by
application of a parallel field, which will increase the Zeeman
energy but not affect the valley-anisotropic energies.) Because
the energies due to Coulomb interactions scale as B'/?, we
see that the ratio between these and the valley-anisotropic
and Zeeman terms will change when the magnetic field is
varied at fixed filling factor, and transitions between different
ground-state configurations could occur as a result.

A. Implications of electron-hole symmetry

As was mentioned in the Introduction, the Hamiltonian
described above, when projected onto a single LL, has an
exact particle-hole symmetry. Specifically, it can be shown
that given any many-body state |®) with LL filling factor f
and energy E ¢, there exists a particle-hole conjugate state | V),
with LL filling factor 4 — f, whose energy is given by

f—2

Ey =Eq + E,, (6)

where E, is the energy of the completely full LL, i.e., the
state with f = 4. The above expression can be obtained by
straightforward generalization of the analysis for the case of
two Landau sublevels performed in Ref. 26.

For the subsequent analysis, it is also helpful to note that
there are additional electron-hole symmetries if we restrict the
hyperspin states occupied by the electrons. For example, if we
consider only many-body states with electrons belonging to a
single, fixed hyperspin state, there is a particle-hole symmetry
relating a state |®) with LL filling factor f and a state | &) with
LL filling factor 1 — f, such that Ey = E¢ + 2f — DE;. If
we consider many-body states with electrons belonging to two
specified orthogonal hyperspin states, then there is a particle-
hole symmetry relating a state |®) with LL filling factor f and
a state W) with LL filling factor 2 — f, such that

Ey =Eo +(f — DEs. @)

We use these relations below when discussing the energies of
various fractional states.
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III. INTEGER QUANTUM HALL STATES

A. Nature of the ground state

We first consider the ground states at f =1 and f = 2,
which is to say at v = —1 and v = 0. If the terms in the
Hamiltonian which break the SU(4) symmetry are set to zero,
the ground state at f = 1 is predicted to be a simple Slater
determinant state, in which we have selected an arbitrary state
|x) in the 4D hyperspin vector space and filled all orbital
states in the LL with the given hyperspin.”>?’ Similarly, at
f =2, we expect the ground state to consist of two filled LLs
with arbitrary orthogonal hyperspin states | x1) and | x»). [More
precisely, it can be shown that these Slater determinants are
exact ground states of the SU(4)-symmetric Hamiltonian for a
wide range of interaction potentials,?® which almost certainly
includes the standard Coulomb interaction. We note, however,
that there could be lower energy states for more peculiar
interactions.] The energies of these states are given precisely
by the Hartree-Fock approximation.

As long as the Hamiltonian is chosen to be SU(4) invariant,
the ground state energies of the Slater determinant states
will be independent of the choice of the occupied hyperspin
states. The valley-anisotropic terms and the Zeeman energy
lift the ground-state degeneracy, at least partially. To find the
true ground state or ground states, one should calculate the
expectation value of the anisotropy terms for arbitrary choice
of the occupied hyperspin states and choose a state which
minimizes the total energy.

For the case of f = 1, the energy minimization is quite
simple. When only a single hyperspin state is occupied, there
will be zero probability density for two electrons to sit at
the same point in space because of the Pauli exclusion prin-
ciple. Since the valley-anisotropic terms in our Hamiltonian
act nontrivially only if two electrons occupy the same point
in space, their expectation value will be zero in any wave
function that contains only a single occupied hyperspin state.
Therefore, splitting of the SU(4) degeneracy can arise only
from the Zeeman term. The ground state will then have electron
spin aligned with the applied magnetic field, but the valley
pseudospin state |v) may point anywhere on the Bloch sphere.

For f =2, the valley-anisotropic terms come into play,
because the Pauli principle does not prevent electrons in
different hyperspin states from coinciding in space. In this case
ground states with several different symmetries are possible,
depending on the signs and relative sizes of g,, g, and
the Zeeman energy. These states have been classified and their
mean-field phase diagram is summarized in Ref. 17. If the
Zeeman term were large compared to the valley-anisotropic
terms, electrons in the lowest LL at v = 0 would have their
spins completely aligned with the magnetic field, and the
ground state would be a valley singlet. However, if this were
the case, the state at v = 0 should have a finite electrical
conductance, due to the contribution of zero-energy edge
states,!! which is contrary to experimental results.>'$?° One
possible state, which would have an energy gap at the edge
as well as in the bulk, is the Kekule state,'>'® which is a
spin-singlet state in which all electrons occupy a single linear
combination of the two valley states, with 50% probability to
be in either valley. Another possibility, which, however, seems
unlikely in the presence of strong short-range repulsion would
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be a “charge-density-wave” state, where electrons occupy both
spin states in a single valley. This state was discussed in
Refs. 7, 8, and 14.

Another possibility, explored by Jung and MacDonald,'* as
well as by Kharitonov,'” is an antiferromagnetic (AF) state in
which electrons have spin in a direction §; on one sublattice
(say sublattice A) and have a different orientation s> on the
second sublattice. (Recall that for electrons in the lowest LL,
electrons in valleys K and K’ will reside on different graphene
sublattices.) In the absence of a Zeeman field, the orientations
1 and s> will point opposite to each other, but can lie along an
arbitrary axis in space. In the presence of a weak Zeeman field,
the spins will cant slightly and line up so that their sum §; + §»
points in the direction of the magnetic field B, while §; — §,
lies in the plane perpendicular to B. As noted by Jung and
Macdonald'* and subsequently by Kharitonov,!” this canted
antiferromagnetic (CAF) state could transform continuously
to a spin-aligned state in the presence of a sufficiently large
parallel magnetic field. The AF state will be the ground state,
in the absence of a Zeeman term, if g, > 0, g; < 0,and g, >
|g1 |- The expectation value of the anisotropy energy in the AF
state, per flux quantum, is equal to E3" = —g./(27l%). For
small Zeeman coupling, the canting angle will be small, and
the energy gain due to canting will be equal to w/2E2%/|g,|. It
is also worth noting that, in the absence of Zeeman interaction,
the ferromagnetic phase is favored at g, > 0,g, > —g, the
Kekule phaseat g, < g, < —g., and the charge-density wave
(CDW) phase at g, < —|g1|. A weak Zeeman term slightly
shifts the phase boundaries.!”

Current experimental evidence points to the CAF state
being the ground state at v = 0 in the absence of a parallel field
component.®® At a certain large parallel field, the insulating
CAF state gives way to the metallic FM state,* similar to
the case of bilayer graphene.’! To characterize the relative
strength of the valley-anisotropic and Zeeman interactions,
we introduce a quantity

ZﬂléEZ
lgLl

Based on experimental evidence, including the behavior of
transport coefficients at v =0 in a tilted magnetic field, it
appears that y is of order 0.1 (Ref. 30). Therefore, the Zeeman
energy is small compared to the valley-anisotropic energy at
f =2, and the canting angle is small.

In our analysis of integer and fractional states below, we
consider parameter values that favor the CAF state (g, >
0,g1 <0, and g, > |g.1|), and also mostly assume that the
Zeeman interaction is much smaller than the valley anisotropy.

Y ®)

B. Charged excitations at f =1

Given our characterizations of the ground states at f = 1
and f = 2, it is natural to ask about the elementary charged
excitations in the two cases. As we shall see below, the nature
of excitations is quite different in these two cases: At f = 1,
the excitations are skyrmions, while at f = 2 the excitations
are electrons and holes.

We first consider the case of f = 1. The simplest model for
a hole excitation is the state in which one simply removes one
electron from the filled level with the chosen hyperspin state
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| x). The simplest model for an electron excitation would be to
add a single electron in one of the hyperspin states orthogonal
to | x). The energy of a hole excitation is given by

E—AO—i—E An— [ €2
h_2 Zs 0 — 28137

irrespective of its hyperspin. Quantity A, is the energy gap
for creating an electron-hole pair in the absence of symmetry-
breaking terms. In the case of graphene, the energy of an
electron excitation, however, contains a contribution from
valley-anisotropic terms in the Hamiltonian and therefore
is sensitive to the hyperspin of the extra electron. Let us
assume that the ground state at f = 1 is polarized along the
K 7 direction in the hyperspin space. Then we can consider
extra electrons with hyperspin K’ | or K’ 4. Their respective
energies are given by

EeAF:&__Z‘FEZ’
' 2 2xl3

Eopy= 20 _ 28118 o
' 2 213

We also note that adding an extra electron with K | will cost
more energy. Given that % > E, the electron excitation
B

with hyperspin K’ | (“AF” one) has the lowest energy.

For Coulomb interactions, however, we expect that the
lowest energy charged excitations at f = 1 will be skyrmions,
in which the hyperspin is misaligned relative to | x ) over a large
area’®3? (for a discussion of skyrmions in a SU(N)-symmetric
quantum Hall ferromagnet, see Ref. 27). In the absence of
symmetry-breaking terms, Coulomb interactions will favor
skyrmions of infinite radius, where the skyrmion energy is
found to be one-half of the energy of a single-particle electron
or hole excitation.2°32 In GaAs, the radius of the area of the
skyrmion, and the number of overturned spins, is limited by
the Zeeman energy, which gives an energy cost proportional
to the skyrmion area.’

In graphene, hyperspin can take four different values,
so several kinds of skyrmions are possible. One possibility
is to consider valley skyrmions, textures in which valley
polarization is smoothly varied but spin is aligned with the
magnetic field. There is no Zeeman cost for such a valley
skyrmion, and we would expect that the size of an isolated
skyrmion in an ideal sample would be arbitrarily large to
minimize the Coulomb interactions. (In practice, the size of
a skyrmion might be limited by disorder or by the distance
between skyrmions.) In any case, the energy of a valley
skyrmion should be close to 1/2 of that of a single electron or
hole excitation,

Ag
Eg = T t Ez + E,, 9

where E, denotes the contribution of valley-anisotropic terms
and =+ refers to hole (electron) skyrmions.

To examine the effect of valley-anisotropic terms, first
note that a large-area skyrmion may be characterized by
a space-dependent orientation in hyperspin space for the
occupied electron state. At the center of the skyrmion, the
hyperspin should point in a direction determined by a spinor
| x2) that is orthogonal to the state | x) which characterizes the
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background far from the skyrmion. We define a normalized
probability density P for two electrons to coincide at a point
r by

Pr) = (273)° ¢ P o @d @) 3). (10)

Because the valley-anisotropic terms are relevant only when
two electrons coincide in space, any contribution of these terms
to the energy density of the skyrmion must be proportional to
P(r). [We note that two electrons with valley indices K, K’ in
the zeroth LL can never reside on the same lattice site, because
the zeroth LL wave functions in the K (K") valleys reside solely
on the A(B) sublattice. So, by “coincide in space” we mean
that two electrons are much closer than the magnetic length
Ip.] A priori, we would expect that P will be of order 1123 /R?
inside the skyrmion of radius R (one extra electron spread out
over area R?) and that it will fall to zero outside.

A deeper analysis of the skyrmion structure at f =1
leads to the conclusion that P(r) = 0 in the case of the hole
skyrmion,® at least in the limit of large skyrmion radius.
Therefore, there is no anisotropy energy for the hole skyrmion,
and

Ay
Egn = 7 + E7.

For the electron skyrmion, P # 0, since we have added an extra
electron. Furthermore, it follows from particle-hole symmetry
that f P(r) d*r = 1for the electron skyrmion. Therefore, there
will be a nonzero anisotropy energy in this case, equal to £, =
— 2*’%—7; This gives the energy of the spin-aligned electron
valley skyrmion:

Mo Bo g 28t 8

- 2712

sk,e — T (11)

This is the energy in the limit of infinite skyrmion size. Smaller
skyrmions will be more costly due to the Coulomb interactions.

As an alternative to the valley skyrmion, one may consider
a spin-involved skyrmion, where x, has a spin orientation
opposite to the magnetic field. In this case, |x,) may have a
valley pseudospin that is the same or is different from that
of |x). Taking into account the implications of Eq. (7), we
find that if the lowest energy state at f = 2 is the AF state,
the electron skyrmion at f = 1 with lowest anisotropy energy
will be one where the hyperspin state far from the skyrmion
has electrons in one valley and spin aligned with the magnetic
field, while at the center of the skyrmion the electrons sit in the
opposite valley and have reversed spin. The anisotropy energy
in this case would be E;‘erm’z = —(271123)’1(&), just like for
the single electronlike excitation.

The total energy of the “AF” skyrmion is given by

A 2
AP _ D0 & +(2n.v—1)Ez+D—eR, (12)
£

she T4 T ol

where R is the nominal skyrmion radius, the term Deé? /e€R
arises from the long-range Coulomb interaction energy (D is
a numerical constant of order unity), and n,(R), the number
of electrons with reversed spins, is proportional to (R/13)?,
multiplied by a constant that depends logarithmically on R and
E7. The Zeeman interaction favors small skyrmions, while
the Coulomb interaction favors infinitely large skyrmions.
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The competition of these two terms leads to an optimal

intermediate-size skyrmion with energy>>3*
AV ~1/3 -
EN, = = — S 4 AAg/ In(10g)'P. (13)
4 2y
Here
34/355/6
and
Y
82 = el

is the Zeeman interaction in units of Coulomb interaction en-
ergy (notice that the dimensionless Zeeman interaction differs
from the definition adopted in Refs. 32 and 34 by a factor of 4).
The expression (13) is valid in the limit g§; < 1. The number
of electrons with reversed spins may be found from

dE/,\kF A |m __,
2y — 1) = —%¢ ~ 2 = 522 In(10 g)| .
(2n ) L, 3\ 2 8z [In(10g2)|

The difference of the energies of two kinds of skyrmions is
given by

~ ~ 2|g.|
AEy. = Eff, — EY, = ANz In(10g,)|'* + ==
2mly
(14)

The first term scales as B%? with magnetic field, while the
second term scales as B. Therefore, at low fields we expect
the large valley skyrmions to be the lowest-energy excitations,
while at high fields, spin-reversed skyrmions will have lower
energy. The critical field at which the nature of the skyrmions
changes is found from the condition AE; , = 0, which can
be rewritten as follows:

T B 2
A,/Elgzl Blingz'? = =.
14

This gives the critical dimensionless g factor (with logarithmic
precision):

A 3/2 A 3/2
(22 2) wefi(A 7)) 7]
2V2 2\V2

For y =0.1 and ¢ =5.24 (the RPA result for intrinsic
screening function of graphene®), this yields

gz~ 0.0075, B,~18T.

Thus, at B > B, we expect the lowest-energy excitations to
be spin-reversed skyrmions.

The number of reversed spins for AF skyrmions can be
accurately determined using numerical results of Refs. 36
and 37 (the effective o-model result is valid only in the limit
when parameter g, is very small, which is not necessarily
the case for experimentally relevant fields B ~ 10 T). Within
a classical (i.e., Hartree-Fock) description, the mean number
of electrons with reversed spins 7, in a skyrmion will vary
continuously with the radius of the skyrmion. In a proper
quantum description, however, the skyrmion must be an
eigenstate of the spin angular momentum parallel to the applied
magnetic field, and hence the value of n, will be quantized and
have only integer values. Similarly, the number of electrons
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n, with the reversed valley index K must also be an integer.
Different types of skyrmions are thus properly characterized
by specifying the two integers n, and n,. For the AF skyrmion
described above, we have n, = ny, while for the pure valley
skyrmion, we have n; = 0,n, = co. We may also consider
skyrmions in the quantum equivalent of a canted AF state,
which would have 0 < n, < n, < 0o. However, it is not clear
that such skyrmions would be favored in the parameter range
of interest.

For magnetic fields B = 2.5, 5, 10 T we find, using results
of Ref. 37, ny &~ 5,4,3 for AF skyrmions. The number of
reversed spins can be measured in parallel field experiments.
Recent transport experiments on samples on BN substrate
found that the activation gaps at f = 1 were sensitive to the
parallel field component, indicating that they involve spin
flips.* The effective g factor was found to be somewhat
enhanced, which is consistent with small spin skyrmion
excitations. It should be noted, however, that the spin-reversed
and valley skyrmions might have different sensitivity to
disorder, and their transport properties might be different as
well. Therefore it is possible that large valley skyrmions are
present and contribute to compressibility, but are more easily
pinned by disorder and therefore their contribution to transport
is suppressed. Future compressibility measurements in tilted
field might shed light on the nature of excitations at f = 1.

C. Charged excitations at f =2

In an SU(4)-symmetric model, skyrmions are possible at
filling fraction f = 2 and have the same energy as at f =
1. In the case of graphene, however, the short-range valley-
anisotropic terms presumably favor an AF state, and, in the
presence of Zeeman energy, the symmetry is broken down to
Z(2) x U(1) [where Z(2) is the valley symmetry and U(1) is
the symmetry related to the rotation of the spin orientation in
the xy plane]. Because of the low symmetry, skyrmions cost a
large anisotropy energy proportional to their area, in contrast
to the case of f = 1. As a result, skyrmions are not favorable
and the lowest excitations are single-particle-like. We expect
that this would make the energy gaps at f = 2 significantly
larger than the gaps at f = 1.

Let us suppose that the ground state at v = 0 is the AF state,
with occupied states K 1 and K’ |. A single hole excitation,
in which we remove an electron with spin that is antialigned
with magnetic field (hyperspin K’ |), has an energy

8z

Ep=Ag—Ez+ =,
PO e

while an electron excitation with hyperspin K’ 1 (to minimize
Zeeman interaction) has an energy

281

E.=Ay—Ez — —.
e 0 z 2]Tlé

The corresponding activation gap is then given by

8. — 281

Avo=E, +E. = ZAO - 2EZ + 2
2mly

s5)
Turning to the possibility of having skyrmions at v = 0, we
note that several types of charged skyrmions are possible.
A charged skyrmion might have a filled LL for K 4 and a
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valley-pseudospin texture which mixes K’ | and K |. At the
center of the skyrmion the system would be locally in a CDW
state, with both spin states in valley A, which would cost an
energy proportional to g, and to the area of the skyrmion.
Similarly, we could consider a texture that mixes K’ | and
K’ 4. Such a configuration would cost an energy proportional
to | g |, multiplied by the skyrmion area. Therefore, the energy
of the charged skyrmion involves a valley-anisotropic cost
proportional to the skyrmion area.

Given that the valley anisotropy is large, we therefore
expect the skyrmions at f = 2 to be unfavorable. The relevant

parameter that determines the size of the skyrmions and their

energy is § = (Ig;z\;—igl@_ Taking y = 0.1, we obtain § =~ (.35,

which is well above the critical values & ~ 0.06 at which
skyrmions become completely suppressed and lowest energy
excitations are electrons/holes.?®37 Thus, we conclude that
the lowest-energy excitations at f = 0 are single holes and
electrons, with the corresponding gap given by Eq. (15).

IV. FQH STATESFOR0 < f <1

We start our analysis of the FQH effect in graphene by
considering various states in the interval of filling fractions
0< f<l.

A, f=1/3 (v=-5/3)

The ground state at f = 1/3 is presumably well described
by the Laughlin trial wave function, with the electrons in
a single hyperspin state, with spin aligned by the magnetic
field and arbitrary orientation of the valley pseudospin. The
Laughlin state is the exact ground state in the limit of a
zero-range interaction potential and is known to be very
accurate for the Coulomb potential. Moreover, the assumption
that the ground state contains only one hyperspin state is
consistent, as the valley-anisotropic terms have no effect on
such a state due to the Pauli exclusion principle, and the state
has been already chosen to minimize the Zeeman energy.

The lowest energy charged excitations at f = 1/3 are
probably valley skyrmions. The size of such a skyrmion can
be very large, as it does not cost any Zeeman energy, in
contrast with the case of a conventional semiconductor, where
the skyrmion involves spin orientations that are not aligned
with the magnetic field. As far as we are aware, there are
currently no reliable calculations of the spin-stiffness constant
for an f =1/3 state with Coulomb interactions, so it is
difficult to estimate the size of the energy gap that would
be produced. However, based on numerical calculations for
small systems®® it is expected that the skyrmion energy
will be significantly smaller than the energy of a Laughlin
quasiparticle or quasihole.

Unlike the skyrmions at f = 1, the excitations at f = 1/3
should have only a very small probability of two electrons
being at the same position in space, for quasi-electron-like
as well as a quasi-hole-like skyrmions. Indeed, it is possible
to construct a trial wave function for a pseudospin-reversed
electron, or for a skyrmion, which costs energy due to the V,
pseudopotential, but has no contribution from Vj, and it is prob-
able that even for Coulomb interactions, the skyrmion wave
function will tend to strongly avoid such a contribution.*%#!
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Consequently, the valley-anisotropic interactions should have
very little effect on the energy of the skyrmions.

Let us estimate the effective valley anisotropy of f = 1/3
state and show that it is indeed very small. This can be
done similarly to the case f = 1 considered in Ref. 12. The
probability to find two electrons on neighboring lattice sites is
proportional to (a/I)? [a factor of (a/l3)° arises due to the
structure of the Laughlin wave function, and a factor of (a// 5)?
is due to the fact that the density of electrons in a single LL
equals 1 /271112[3]. Thus, the anisotropy energy per electron is

given by
e (a\® a\’
AE~—-\—) ~Ao-|—) -
a l B l B
The anisotropy energy is a factor of (a/lg)’ ~ 10~'* (at B ~
10 T) smaller than the Coulomb energy scale A and therefore
is completely negligible. A similar estimate of the effective

valley anisotropy can be performed for other fractional states at
0 < f < 1 with odd numerators, which are considered below.

B. f=2/5 (v=-8/5)

We expect that the ground state at f =2/5 should be
a pseudospin singlet state, with two valley states equally
occupied and with electron spins aligned with the magnetic
field. The elementary trial wave function for this state is
the Halperin 332 wave function,*> in which the amplitude
vanishes as the cube of the separation when two electrons
in the same valley state approach each other and vanishes
quadratically for electrons in opposite valleys. This is an exact
ground state for a system of N > 2 species of particles with
an SU(N)-invariant Hamiltonian in the limit of a zero-range
repulsive interaction, since it is the only wave function at filling
2/5 in the lowest LL which has no contributions from the Vj
and V; pseudopotentials. It is also found to be an excellent
approximation in the case of the Coulomb potential.

In GaAs, the spin-singlet state is in competition with a
spin-aligned 2/5 state that has a higher Coulomb energy but
is favored by the Zeeman term, so there exists a transition
between the two states as one varies the magnetic field at
fixed filling factor, or if one increases the Zeeman energy by
application of a parallel magnetic field. In graphene, however,
the spins are already fully aligned with the magnetic field in the
valley-singlet state, so there is no Zeeman penalty for forming
the state. Therefore, we predict that a state where all electrons
have the same hyperspin configuration should never be the
ground state in graphene at f = 2/5, and there should be no
transition as one varies the magnetic field.

C. f=2/3 (v=-4/3)

At first glance, there are two plausible candidates for the
state at f = 2/3. One may consider a state in which all
electrons have the same hyperspin configuration, or one may
consider a state which is a valley singlet with spins aligned
by the magnetic field,*’ as for the f = 2/5 state discussed
above. In GaAs, at f = 2/3, it is found that the spin singlet
state has a lower Coulomb energy than the spin-aligned state,
but as at f = 2/5, the spin-aligned state is favored by the
Zeeman energy, and there is a transition between the two
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states depending on the ratio of the Zeeman energy to the
Coulomb energy scale. In graphene, by contrast, the valley
singlet and the hyperspin-aligned states would have the same
Zeeman energy, so we would expect the valley singlet to be
the ground state at all magnetic fields. However, we should
also consider the possible contribution of the anisotropy terms
before concluding that this is the case.

As noted previously, a state with all electrons in the
same hyperspin state will have no energy contribution arising
from the valley-anisotropic terms, due to the Pauli exclusion
principle. On the other hand, the valley-singlet state at f = 2/3
could have a nonzero probability density P for two electrons
in opposite valleys to coincide at the same point in space. [We
continue to use the normalization of P defined by (10), which
is such that P = 1in the AF state at f = 2.] Then if P,/3 is the
value of P in the f = 2/3 valley-singlet state, the anisotropy
energy, per flux quantum will be —(g; +2g1)P>3 /(2711123),
which will be positive if (g, + 2g,) < 0. This inequality is
consistent with the condition g, > —g, > 0 for stability of
the AF state at v = 0, but is not required by it. As previously
noted, the anisotropy energy per electron at fixed f will scale
linearly with the applied magnetic field, just as for the Zeeman
energy in GaAs, so if (g, +2g,) > 0, it is conceivable, in
principle, that there could be a transition between the two
types of ground states in graphene at f = 2/3. However, it
appears that the value of P,/3 is actually extremely small, so
that the valley singlet is always the ground state.

Unlike the case of the 332 wave function at f = 2/5, there
is no simple trial wave function for the valley-singlet state at
f = 2/3, where one can evaluate the value of P. Nevertheless,
numerical calculations on a finite system suggest that P,/3
has a value less than 10~* for pure Coulomb interactions.**
This is, in fact, very much smaller than the value P = 1/9
that one would obtain if one filled one-third of the available
states in each valley with spin parallel to the magnetic field
and assumed that there were no spatial correlations between
electrons in opposite valleys. The small value of P53 also
guarantees that any advantage in anisotropy energy could never
outweigh the Zeeman penalty for a state in which spins are not
all aligned with the magnetic field. If we add a skyrmion to
the valley-singlet state, it will necessarily cost a substantial
Zeeman energy, so we do not expect there to be low-energy
charged excitations in the form of large-radius skyrmions.

We note that if the ground state at f = 2/3 were actually
the state with electrons confined to a single hyperspin state, it
would be a particle-hole conjugate of the state at f = 1/3. Just
as for the f = 1/3 state, there would be low-energy skyrmion
excitations, which mix in the second valley state but do not
cost any Zeeman energy.

Within the language of composite fermions, the valley-
singlet state at f = 2/3 would be described as a state where
one has doubly filled the lowest composite fermion LL in
an effective magnetic field that is opposite in sign to the
applied field, with particles in two orthogonal hyperspin states.
Alternatively, it is possible to describe the valley-singlet 2/3
state as one that can be obtained by adding a 1/3 density
of holelike charged excitations to the fully polarized state
at f = 1. In this case, the charged excitations would be
minimally sized holelike skyrmions, which may be described
as a bound state of two missing electrons in the occupied
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hyperspin state and one added electron in the reversed valley
state. As the difference in occupation numbers of the two valley
states is decreased by three for each added hole, the difference
will be reduced to zero at f = 2/3.

D. f=4/5and 6/7 (v = —6/5, —8/7)

We may consider several possible candidates for a state
at f = 4/5. One possibility would be a completely hyperspin
polarized state, in which all electrons occupied the same valley
state and had spin aligned with the magnetic field. Such a state
would be a particle-hole conjugate of the state at f = 1/5,
and would be described as a Laughlin 1/5 state of holes in the
full hyperspin-polarized LL. This state would presumably be
the correct ground state in a model of short-range interactions,
with a dominant Vj, repulsive pseudopotential, but it is unlikely
to be the true ground state in the case of Coulomb interactions.

As was previously noted, at f =1, the lowest energy
hole excitation, in the case of Coulomb interactions, should
be a large-area skyrmion with many reversed valley spins,
rather than a single missing electron from the full polarized
LL. Thus, it seems likely that the ground state at f =4/5
should be constructed out of skyrmions rather than of holes
in the polarized LL. In particular, let us consider a finite size
skyrmion consisting of four missing electrons bound to three
electrons in the reversed valley state. If we add such skyrmions
to the f =1 state, at a density of one skyrmion for every
five flux quanta, we obtain a state with f = 4/5 and equal
population of the two valley states. One possibility is that the
skyrmions would form a Wigner crystal, in which case the Hall
conductance would lie on the v = —1 plateau, and there would
not be an FQH state at f = 4/5. However, recent experiments
do show clear evidence of an FQH state at f = 4/5. Therefore,
we believe that the FQH state at f = 4/5 can be understood,
roughly, as a Laughlin m = 5 state formed from hole-type
skyrmions of the type described above.

This state will be fully spin aligned but should be invariant
under SU(2) rotations in valley space. Therefore, it cannot
accommodate pure valley skyrmions. Any skyrmions must
therefore involve the spin orientation, with an energy cost
due to the Zeeman field. Consequently, the state could have a
substantial energy gap for charged excitations.

Similar arguments suggest that the ground state at f = 6/7
should be a valley-singlet state and that it might also be a
quantized Hall state. However, a quantized Hall state has not
been observed experimentally at this fraction.

Unpublished calculations of finite systems by Morf* sug-
gest that for pure Coulomb interactions, spin-singlet ground
states should exist at f =4/5 and f = 6/7 and that the
probability density P for two electrons to coincide is very
small in both of these states, of order 10~3. This implies
that the effects of valley anisotropy should be negligible in
these states, and it is consistent with the skyrmion construction
starting from the f = 1 state, as outlined above.

E. Other fractions with0 < f <1

At f =4/9, we see two candidate ground states. One
possible state would have equal numbers of electrons in each
of two hyperspin states, occupying states in both valleys with
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spins parallel to the magnetic field. The ground state in this
case could be described in the composite fermion picture as
a state with two types of composite fermions occupying the
lowest two effective LLs.

An alternative state could have electrons in all four hyper-
spin states. This state could be described by a generalization of
the Halperin 332 state, in which the many-body wave function
contains factors that vanish as (z; — z j)3 for particles in the
same hyperspin state, but vanish as (z; — z; )2 for particles with
different hyperspin states (here z; = x; + iy; is the complex
coordinate of ith particle). Such a state would presumably
minimize the Coulomb energy but would pay a price in Zeeman
energy. In principle, there could be a phase transition between
the two types of states, if one varies the magnetic field at fixed
LL filling. An FQH state at f = 4/9 has been observed in
experiments, but no phase transition has been observed as yet.
We also note that one could consider other states at f = 4/9,
e.g., ones in which three different hyperspin states are occu-
pied. However, given the double degeneracy of CF levels at
f = 4/9, it seems unlikely that such states would be favorable.

In a similar way, at f = 3/7, we might consider a ground
state with three different hyperspins occupied, each with 1/7
electron per flux quantum, or a state with all electrons in one
hyperspin state, or a state with 2/7 electron per flux quantum
in one hyperspin state, and 1/7 in another. Similarly, at f =
3/5, we could consider states with three different hyperspins
occupied, with all electrons in one hyperspin state, or having
two hyperspin states with filling factors of 2/5 and 1/5. All of
these states would have charged skyrmion excitations that cost
no Zeeman energy, and little or no anisotropy energy. Although
at present there are no theoretical studies of skyrmion gaps at
these filling factors, we expect the skyrmions to have a small
energy cost, and that the corresponding FQH states would be
easily suppressed by disorder or finite temperature. A FQH
state at f = 3/7 has not been observed yet, and there is only
a faint hint of an incompressible state at f = 3/5 (Ref. 23).

V. FQH STATESFOR 1 < f <2

In the discussion below, we consider only candidate ground
states in which only two fixed hyperspin states, | x;) and | x2),
may be occupied. (The remaining two hyperspin states are
completely empty.) States of this type are consistent with the
symmetry of our Hamiltonian, and it seems like a reasonable
assumption that the actual ground states will satisfy this
restriction, but we do not have any rigorous argument that
this must be the case at all filling factors.

Following our assumptions, the ground state at LL filling
f in the range 1 < f < 2 should be related by particle-hole
conjugation to the ground state one would obtain for the
same choice of |x;) and |x,) at a LL filling f' =2 — f, in
the range 0 < f’ < 1. In particular, the expectation value of
the anisotropy energies in the states at f and 2 — f, for the
given choice of hyperspin states, would be related, following

Eq. (7), by
EP = E" 4+ (f — DEY, (16)

where EJ" is the anisotropy energy of the state at f = 2 for this
choice of | x;) and | x»). However, the conjugate state at f" may
not be the true ground state at that filling factor, because the
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optimal choice of hyperspin states may be different at f’ than at
f. We found previously that the optimum ground states for 0 <
f < 1 were obtained when the two constituent hyperspin states
had opposite valley indices but both spins aligned with the
magnetic field. However, if the Zeeman energy is small com-
pared to the anisotropy terms at f = 2, so that the AF state is
the ground state at that filling factor, we may guess that for 1 <
f < 2 we should choose the hyperspin states to be the same
ones that are represented in the AF state, e.g., K 1 and K’ |, so
the system is not fully spin-polarized. (We assume, for the mo-
ment, that the Zeeman field is small compared to the anisotropy
energy in the AF state, so we may ignore canting of the spins.
We discuss effects of canting in a separate section below.)

In the following discussion we assume that |x;) and |x2)
are given by K 1 and K’ | for 1 < f < 2. With this choice,
we see that EZ" is the anisotropy energy of the AF state at
f =2,givenby EI" = —gz/(27rlé) < 0.

A. f=5/3 (v=-1/3)

The obvious candidate for this filling fraction is a maximally
polarized state |®), where we align the spin’s quantization
axis with the magnetic field and remove from the f =2 AF
state one-third of the electrons in the hyperspin state with spin
opposite to the magnetic field (K’ | ), while retaining the com-
pletely full LL of electrons in the hyperspin state K 1 favored
by the Zeeman interaction. We may describe this state as a
Laughlin state of hyperspin-aligned holes in the f = 2 state.
The particle-hole conjugate of this state would be an f = 1/3
state |®’) where all electrons are in the hyperspin state K’ |.
That state will have no anisotropy energy, because of the Pauli
exclusion principle, so the proposed state at f = 5/3 should
have an anisotropy energy E5); = (2/3)E5", according to (16).

We argued previously that the true ground state at f =
1/3 should have all electrons in a single hyperspin state with
spin parallel to the Zeeman field (here, spin 1) and arbitrary
choice for the valley pseudospin state. If the Zeeman energy
were absent, the state |®’) would have the same energy as the
true ground state at f = 1/3, so it must also be a state that
minimizes the combination of Coulomb and valley-anisotropic
energies. It follows by particle-hole symmetry thatat f = 5/3
the wave function |®) must also minimize these energies,
among states within the class we are considering, in which
electrons are restricted to the hyperspin states K 1 and K’ .
As the state |P) also minimizes the Zeeman energy, it is the
correct ground state at f = 5/3, at least within the class we
are considering.

Although the ground-state energy at f = 5/3 is directly
related to the energy of the ground state at f = 1/3, the
excitation energies will be quite different. In particular, a
skyrmionat f = 5/3 will inevitably engender a costin Zeeman
energy and/or anisotropy energy. Consequently, we expect
that there will be a substantial energy gap at f =5/3 and
a well-established quantized Hall state, in contrast with the
situation at f = 1/3.

B. f=4/3 v==2/3) (f=4/3)

If we restrict our considerations to many-body states with
only two occupied hyperspin states, the ground state at
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f = 4/3 should be related by particle-hole conjugation to the
ground state at f = 2/3 for the same choice of hyperspin
states. However, the optimal choice of the hyperspin states
should be different in the two cases. We found previously that
the optimum ground state at f = 2/3 was obtained when the
two constituent hyperspin states had opposite valley indices
but both spins aligned with the magnetic field. However, at
f =4/3, if the Zeeman energy is small compared to the
anisotropy terms, and the AF state is the ground state at f = 2,
we may guess that it would be better to choose the hyperspin
states to be the ones that are represented in the AF state, that
is, K * and K’ | (we justify this below, in the section on
spin canting). Now, if we choose the spin quantization axis to
be parallel to the Zeeman field, the state with fully polarized
holes can have a lower Zeeman energy than the state with equal
populations of the two hyperspin states. Thus the Zeeman field
can now drive a phase transition between the two states.

To make this more precise, we must again consider the
anisotropy energy, which will be nonzero in both of the states
we consider. From Eq. (7), we see that the anisotropy energy of
astate at f = 4/3 is related to that of the conjugate at f = 2/3
by

E3y = E3 + (1/3)E3", (17)

Since there can be no anisotropy energy in the fully polarized
state at f =2/3, we see that anisotropy energy for the
maximally polarized state at f = 4/3 for the same value of
the magnetic field will be equal to one-third of the anisotropy
energy at f = 2. The anisotropy energy for an f = 2/3 state
with equal occupations of K 1 and K’ | would be given
by E§73 = gzP2/3 = P2/3E§n, where P2/3 is the probability
density for finding two electrons at the same position in space
in the f =2/3 state. The value of P,;3 does not depend
on the choice of hyperspin states, as the orbital part of the
wave function is determined by the SU(4) invariant part of
the Hamiltonian, and we have previously argued that the value
of P53 should be very small. Consequently, we expect that
the difference in the anisotropy energies of the maximally
polarized state and the unpolarized state at f = 4/3, given by
| P,z E5"|, will be small compared to the energy difference
due to the Zeeman field. Thus the total energy difference
between the fully polarized state and the hyperspin-balanced
state is given by the Zeeman energy, which is o« B and favors
the former, and the Coulomb energy, o B2, which favors
the latter. Consequently, there can be a transition between the
two states, with the polarized state favored at larger magnetic
fields.

In neither of these states can there be skyrmions with
negligible cost in anisotropy energy or Zeeman energy.
Therefore, both states should have a reasonable energy gap
and should lead to well established quantized Hall states at
low temperatures.

C. f=8/5 (v=-2/5)

The situation at v = —2/5 should be very similar to that at
v = —2/3. Again, we have two competing states: a balanced
state, where there are equal numbers of holesin K 4 and K’ |,
and a maximally polarized state, with all the holes in one of
the two states. As there will be essentially no probability for
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two holes to be at the same point of space in either of these
states, there will be no difference in their valley-anisotropic
energy. As at v = —2/3, the maximally polarized state will
be favored by the Zeeman energy, while the balanced state
should be favored by the Coulomb energy. Again, there can be
a transition between the two states as one varies the magnetic
field at fixed filling factor.

D. Other fractions

Quantized Hall states should be expected at many odd-
denominator “Jain fractions” in the range —1/3 > v > —2/3
according to the composite fermion picture. In particular, if
one considers the integer QH state at f = 2 as the reference
state and attaches two Chern-Simons flux quanta to each hole
inserted in that state, one expects to find quantized Hall states
at fillings v = —p/(2p £ 1), where p is an integer which
describes the total number of holes per quantum of flux in
the effective magnetic field By = B/(1 £2p). If p > 1, the
holes can be distributed in various ways between the K 1 and
K’ | states. As we found for v = —2/5 and v = 2/3, which
correspond to p = 2 with the two choices of 1, we expect
that states with different polarizations will differ very little in
their anisotropy energies, but that states with greater imbalance
will be favored by the Zeeman field, whereas states with lesser
imbalance will be favored by the Coulomb energy. Thus, we
would expect a series of phase transitions at all these filling
fractions, as discussed in Ref. 23.

A value of v that is intermediate between two Jain fractions
can be described by means of a fractional value of p. As
discussed in Ref. 23, the ground state of such a system can
be described in the composite fermion picture as state where
an integer number of composite fermion LLs are filled for
one of the two hyperspin species while there is a fractional
occupation of the highest LL for the other species. When B
is varied, phase transitions occur as the fractional occupation
shifts from one species to the other. It is also worth noting
that oscillations that may be interpreted as signatures of such
phase transitions were observed,”® even in a region very close
to v = —1/2, where quantized Hall states were not apparent.

E. Effects of spin canting

In the previous discussion, we assumed that the FQH
states with equal population of K,K’ valleys are AF. Now
we consider the effect of Zeeman interaction on such valley-
balanced states and show that it leads only to weak canting
of spins in the direction parallel to the magnetic field. This
canting changes the energy of the state very slightly and does
not influence the phase transitions between valley-balanced
and valley-imbalanced FQH states in the interval —2/3 < v <
—1/3. In this section, we also discuss possible candidate states
at filling factors —1 < v < —2/3.

In order to consider the possibility of spin canting, in the
regime 1 < f < 2, we must consider states in which the spins
on the two sublattices can have orientations which are no
longer opposite to each other. We assume the sublattice spins
and the magnetic field direction to be coplanar, and we denote
by Ok and 6k the angles between the spins and the magnetic
field, so that the angle between the spin orientations is g —
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Ok . We define fx and fx to be the filling factors on the two
valleys, which, without loss of generality, we may restrict to
satisfy 0 < fx' < fx < land fx + fx = f.

We wish to understand how various terms in the energy
depend on the the angles 6x and 6. For fixed values of fx
and fx/, the SU(4) Coulomb energy will be independent of
these angles. The Zeeman energy, per flux quantum, is given
by

SZ = _EZ(fK COS 9]( + fK/ COSGK/). (18)

To evaluate the energy due to the anisotropic valley interaction,
we may make use of Eq. (16). The three terms in this equation
should all be evaluated for the same angles 6x and 6. The
term with total filling 2 — f should have sublattice fillings
(1 — fa)and (1 — fp) while the term at f = 2 must have both
hyperspin states filled. We have previously observed that the
anisotropy energy for FQH states in the range 0 < f < 2/3
should be extremely small. Therefore, we may neglect the term
with total filling 2 — f in Eq. (16) and write, for4/3 < f < 2,

EF 0k .0k) = (f — DE3"(0k .0k ). 19)

Since valley-anisotropic interaction is invariant under a uni-
form rotation of all electron spins, the anisotropy energies
can only depend on 6k — Ok, the angle between the spins.
Moreover, we may write!’

ES Ok — 6x) = —(2713) g, + g1 + cos(@x — 6x)1).
(20)

As we have assumed g < 0, this energy is clearly minimized
when g — 6k = 7, in which case we have

an -1 an
EP = —(27l3) (f — Dg. = E{ (). (21)
If fx = fx’, and E is small but nonzero, the total energy will
be minimized by a choice g = —0x = (7/2 — «), where the

canting angle « is proportional to the quantity y defined in
Eq. (8). More precisely, one finds

vf
Af -1

provided that the right-hand side is <1. If the right-hand side
of (22) is greater than 1, one finds that 6x = 6k, = 0; both
spins are aligned with the magnetic field and the state is no
longer canted. The sum of the Zeeman and anisotropy energies
for the canted state may be written as

sina = cosfg = (22)

Ezf

EM™ 4+ &, = E*}“(n) - sin &, (23)
so the decrease in energy due to the canting will be proportional
to y Ez when « is small. Since y =~ 0.1, the energy gain from
canting is indeed quite small for any valley-balanced state
(fx = fx)intherange | < f < 4/3.

If fx # fx andif y is sufficiently small, one finds that the
lowest energy state will not have canted spins but rather will
have collinear spins with6, = Oand 65 = 7 (as we assumed in
previous section). In this case, spins of electrons in the K valley
are aligned with the magnetic field, and spins in the K’ valley
point in the opposite direction, as we have assumed in our
previous discussions. The sum of the Zeeman and anisotropy
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energies for the collinear state will have the form
E™ + & = EN(n) — Ez(fx — fxo). (24)

This energy is lower than the energy of the canted state, for
sufficiently small gamma (see Eq. (23)). We find that the
collinear state, with ¢ = 0 and O, = 7, is stable if

fi— o > y 2K (25)

f—1

For a fixed value of f and y, this inequality will be
satisfied provided that fx — fx' is larger than a critical
value 8f., which, for y = 0.1 and 4/3 < f < 2, will be well
approximated by 8f. ~ yf?/(4f —4). For such states, the
phase transitions between FQH states with fx = fx and
fx # fx will occur as a function of magnetic field, very
similar to our discussion above.

For fx — fx < éf., the ground state for fixed fx, fx will
have spins that are canted from each other, and the ground-state
energy will be slightly lower than it would be for the uncanted
state. However, the qualitative behavior of the energy as a
function of fx — fx- will not be altered from that of (24): The
sum of the Zeeman and anisotropy energies will still decrease
monotonically as f4 — fp is increased. Thus, in this case we
would also expect to see the same series of transitions as a
function of magnetic field, at fixed filling factor, with at most
small changes in the locations of the transitions when one of
the states involved has f4 — fp < df..

We note that for y = 0.1 we find §f, < 0.3 for all f
in the range 4/3 < f <2, and §f, — 1 for f — 2. Thus,
at f =9/5 and f =15/3, where one expects the ground
state to have all holes in one valley, so that fx =1 and
fxr = f —1,wehavedf > §f., and the majority spins will be
fully aligned with the magnetic field, as we have assumed in
the previous sections. This will also be true for the unbalanced
states at f = 12/7 and f = 8/5, where all holes sit in one
valley. The balanced states at these filling fractions will be
antiferromagnets with spins that are only slightly canted,
which is again consistent with our previous assumptions.

Now we turn to the discussion of filling factor interval 1 <
f < 4/3. First, we note that the above picture might change
completely if one considers filling factors where f is very
close to 1. In this case the right-hand side of (22) may exceed
unity, so for fx = fx, the canted state will be replaced by
a ferromagnetic state, where the spins are fully aligned with
the magnetic field and the valley state is a singlet. For the
spin-aligned state, one finds

E™ 4+ & = E¥(n) —2(f — g (2n13) ™ — fEz.  (26)

If y = 0.1, however, the state with fx = fx will be fully
polarized only for f — 1< 1/39, and the canting angle
will be relatively small (cos6x < 1/2) for filling factors as
closeto 1 as f—12>1/19. A state with maximum valley
polarization, i.e., fx = 1 and fx- = f — 1 should have fully
aligned spins, for any value of f — 1. We have previously
noted that for typical experimental parameters, the lowest
energy electronlike excitations should be skyrmions with a
small number of electrons in the minority valley and a small
number of overturned spins. Therefore, it seems likely that the
ground state at a very small positive value of f — 1 will be
a state which is partially valley polarized and partially spin
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FIG. 1. (Color online) (a) Chemical potential x as a function of carrier density n at magnetic fields B = 2.5, 5, and 10 T. The energy gap
is given by the difference between minimum and maximum chemical potential. (b) Step in chemical Ay at filling factor v = 0 as a function of
magnetic field. (c) Step in chemical at filling factor v = —1 as a function of magnetic field. The red curves in panels (b) and (c) are fits with
B2 scaling: Ay = (23.1B'?> — 11.1) meV forv =0and A = (8.5B"? — 1.8) meV for v = —1.

polarized. However, the ground state under these conditions
would be a Wigner crystal rather than an FQH state.

At filling factor f = 6/5, we expect that there should be
a valley-balanced ground state with fx = fx’, whose spatial
wave function would be the particle-hole conjugate of the
valley-singlet state at f = 4/5. However, we expect that the
occupied hyperspin states at f = 6/5 would be different,
leading to a weakly canted AF state rather than a spin aligned
state (as for f = 4/5). In principle, for large values of B, there
could be a series of transitions to states with fx — fx # 0.
However, it is likely that the Coulomb cost for such states
will be high, and we would not expect to see such states
for reasonable values of the magnetic field. At present no
experimental observation of an FQH state of any type has
been reported at f = 6/5.

We note that the parameter y will be increased if one
applies a magnetic field parallel to the graphene sheet that
is large compared to the perpendicular field. For sufficiently
large values of y we expect that in all states with v < 0,
the electrons in the zeroth LL will all have spins completely
aligned with the magnetic field. In this case, one would expect
that particle-hole symmetry is restored between states f and

2 f.

VI. DISORDER EFFECTS

The energy gap E, of a quantized Hall state may be defined
as the energy cost to add a quasiparticle and a quasihole very far
apart. In the limit of vanishing disorder, the energy gap may be
obtained from incompressibility or transport measurements. In
transport measurements, the low-temperature behavior of the
longitudinal conductivity o,, is thermally activated, varying
as e~ E«/?sT Measurements of the compressibility using an
SET (Refs. 21 and 23) should show a discontinuity Au in the
electronic chemical potential equal to E, e/e* at the quantized
Hall density, where ¢*/e is the charge of the quasiparticle in
units of the electron charge. (For all cases considered here,
e/e* is equal to the denominator of the filling fraction f.)

The effects of disorder on various types of measurements
are only partially understood, even in the much studied case
of GaAs systems. In principle, any amount of disorder should
lead to a finite density of localized states in the energy gap,

so that d it /dn should be finite even when n coincides with an
ideal quantized Hall value, and the associated jump in p should
occur over a finite range of densities, inversely proportional to
du/dn. Moreover, the peaks and valleys in © on the two sides
of the quantized Hall density, which would be sharp cusps in
the ideal system, are typically rounded over a similar finite
density range. In a SET measurement, the width of this range
can be minimized, and the slope, d it /dn, can be maximized, by
placing the SET at a location that is relatively free of disorder.

The behavior of duu/dn described above can be seen in
panel (a) of Fig. 1 below, which shows data for a suspended
graphene sample near v = 0, at three values of B. Qualitatively
similar behavior is seen in SET measurements near other
quantized Hall states in graphene, as well as in GaAs. However,
we do not have a good quantitative understanding of the
density of states in the gap or of the extent of rounding in any
of these cases.

The effects of disorder on transport measurements are even
more difficult to interpret. For an integer quantized Hall effect,
in a system of noninteracting electrons, one might expect to
see activated behavior at low temperatures, determined by
a mobility gap, i.e., the energy difference between extended
states in the filled and empty LLs. However, in an interacting
electron system, or in the presence of phonons, one would
expect that the conductivity will be described by variable range
hopping at the lowest temperatures. Activated behavior is
typically seen in experiments over an intermediate temperature
range, typically about a factor of two in temperature, but the
interpretation of the activation energy, and its relation to the
energy gap of an ideal system are not at all clear.*>

Disorder effects in graphene may be particularly important,
and may present special features, in the cases where the low-
energy charged excitations are large-area valley skyrmions.
Below, we explore the effects of disorder on quantum Hall
states in graphene at different filling factors (both integer and
fractional).

The spin- and valley-polarized states that are predicted
for various filling fractions in the range 0 < f < 1 imply
spontaneous breaking of a continuous SU(2) valley symmetry.
As a result, these states will have low-energy Goldstone
modes, and they will be very sensitive to a valley-selective
disorder potential. By the Imry-Ma argument,* arbitrarily
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weak disorder will destroy the long-range valley order, and a
ground state with spatially varying valley polarization should
form. The precise nature of the textured ground state and the
structure of low-energy excitations depend on the dominant
type of the valley-selective disorder. However, generally
such textured ground states will have low-energy charged
excitations. This can significantly reduce the robustness of
a quantum Hall state, or even completely destroy it.

In contrast, valley-singlet states at 0 < f <1 (f =
2/5,2/3, and 4/9) do not have a spontaneously broken
symmetry. Therefore, they should be fairly robust: Weak
valley-selective disorder might slightly reduce the value of
the energy gap and might introduce isolated localized states in
the gap, but should not change the nature of the ground state.

Intherange 1 < f < 2, we find two types of quantized Hall
states; both types turn out to be insensitive to weak disorder.
First, states with unequal populations of the two valleys have
a spontaneously broken valley symmetry, but the anisotropy
energy reduces this from a continuous SU(2) symmetry to a
discrete Z(2) symmetry. The electron spins in the majority
and minority valley states are aligned, respectively, parallel
and antiparallel to the external magnetic field, so there will be
no Goldstone mode associated with either the spin or valley
degree of freedom. For states with a spontaneously broken
Z(2) symmetry, the Imry-Ma argument suggests that disorder
is marginal in two dimensions. Although domains should be
induced, in principle, by any amount of disorder that couples
to the difference in populations of valleys K and K’, the size of
such domains should be exponentially large when the disorder
is weak, so domain walls should be few and far apart.47

Second, for states with equal population of valleys K and
K’, we expect that the ground state will be a CAF state,
where the spins have a spontaneously broken U(1) symmetry
in the plane perpendicular to the magnetic field. This broken
symmetry gives rise to a gapless mode in the spin sector, but
the perpendicular spin component would not couple to disorder
produced by adatoms, impurities, or strains. (In addition, even
if one produces a skyrmion in AF spin order by forcing
the direction of AF order to wrap around the unit sphere,
such a skyrmion would not carry an electric charge.) The
broken valley symmetry in an AF state is again pinned by
the valley-anisotropic terms, so that only a Z(2) symmetry is
spontaneously broken. Thus, there are no Goldstone modes
in the valley sector, so there would be no charged skyrmions
with large area and low energy. Moreover, since the K and
K’ electron populations are equal, the broken Z(2) symmetry
should not couple to potential fluctuations that break the valley
symmetry.

Because of this, all fractional states in the interval 1 < f <
2, both valley-unpolarized and partially valley-polarized states,
should be robust in the presence of weak disorder. For the case
of valley-polarized states, spatially varying configurations of
the order parameter can be created only if the disorder becomes
stronger than valley anisotropy, and the valley-unpolarized
states should be even more robust.

We focus now on the valley-polarized states with filling
fraction 0 < f < 1, which are most susceptible to valley-
selective disorder. It is convenient to specify the orientation
of the valley polarization by a unit vector n(r) in pseudospin
space, whose components describe the normalized expectation
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value of the operators &T(r)filﬁ(r), fori = 1,2,3. We distin-
guish two types of valley-selective disorder: (i) an in-plane
random field that couples to n, and/or n,, and therefore mixes
valleys K,K’, and (ii) a random field that distinguishes the
two valleys and therefore couples to n,. The first type of
disorder could arise from adatoms situated at the center of
hexagons or on hexagon sides in graphene lattice (e.g., various
metallic adatoms). The second type of disorder may stem from
adatoms that are situated on the sites of graphene lattice (e.g.,
H adatoms) or from vacancies. Alternatively, such disorder
can arise due to random short-range strain;!2 such strains are
present in graphene on SiO, substrates, but probably are less
important in suspended graphene. Due to the different origins
of two disorder types, one or the other will likely prevail in
any experimental situation.

Assuming that the spin degree of freedom is frozen by
the Zeeman interaction, we can write an effective energy
functional for the SU(2) valley order parameter n(r):

H = %/dr[Vn(r)]2 + f/dth(l')lu(l')

+f / drh.(r)n(r), 27)

where n; = (n,,n,). We have introduced an explicit factor f
in front of the random potential terms to emphasize that the
coupling to the order parameter for a state that is fully valley
polarized should be proportional to f for a fixed value of B.

We assume that the random fields h, %, have short-range
correlations on the scale of the magnetic length. This is
obvious for the case when disorder is due to adatoms, and
it may be correct in many cases for local strains produced by
inhomogeneities in the coupling to a substrate. Thus, we may
write

(ha() =0, (ha(Dhe(r) = Vinimy 180 — 1), @ = x,y,
(28)
(h(r) =0, (A () (") = V§imp S(r — 1), (29)

where nimp . and nimp | may be interpreted as densities of
the two types of impurities and V; represents the root-mean-
square value of the coupling to a single impurity. The quantity
Vo has dimensions of an energy, and it will be proportional
to the density of magnetic flux, B/®. Strictly speaking, Vj
should be different for different types of impurities, but we may
ignore this distinction without consequence for the following
discussion.

Following the Imry-Ma argument, the disorder potential
will destroy long-range valley order by creating domains. The
domain configuration is determined by the disorder realization,
and the structure of domains depends on the dominant type
of disorder. The typical domain size £ can be estimated by
noting that the energy gained due to the adjustment of the
order parameter to the local disorder configuration, Egis ~
S Vo§ \/Mimp, should be comparable to the stiffness energy ~ p;.
[Notice that because of SU(2) symmetry, the order parameter
varies on the scale £.] Thus, the typical domain size, given by

ps 1

= AL «/nimp’

(30)
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is proportional to the valley stiffness py, and inversely propor-
tional to the filling fraction. Here 7y = max(Rimp,z»Rimp, L)-

Let us consider two limiting cases: (1) Rimp, 1 >> Rimp,;, that
is, in-plane disorder dominates, and (2) njmp, 1 <K Rimp,;, the
random /. field dominates. The two cases are characterized
by different symmetry and different structure of the textured
ground state, as discussed below. However, in both cases there
are low-energy excitations.

To gain some intuition about case (1) (dominant in-plane
disorder), let us first completely neglect /.. In this case,
the order parameter in different domains will be pointing
predominantly in-plane. This will lead to the formation of
vortices, where the order parameter rotates by 2. At the vortex
cores, the order parameter must tilt out of the xy plane. Given
the n, - —n, symmetry of the Hamiltonian, there are two
degenerate configurations of the order parameter for a single
vortex (n, at the vortex core can be either positive or negative).
Such configurations correspond to oppositely charged merons
with charge +e/2. This has two implications. First, the
textured ground state has some density of frozen charges
of each sign. Second, for an isolated vortex, changing the
charge from positive to negative sign costs no stiffness energy.
It should be noted, however, that the precise configuration
of the order parameter will be determined by the balance
between stiffness energy, disorder, and long-range Coulomb
interaction.

A weak random £, field will pin the direction of the n,
component in the meron cores in accordance with the local
disorder configuration. As a result, the meron and antimeron
states will no longer be degenerate, but rather will be separated
by a small energy difference. The precise value of this
energy difference will depend on the local disorder and on
the Coulomb interaction with nearby frozen charges. Due
to randomness, the energy difference will be distributed in
some energy interval (—E; Eg); almost certainly, Eg, will
be much smaller than the skyrmion energy in a clean system,
E?k = 4mp,;. As we discuss below, this may strongly enhance
the compressibility of certain fractional states, such that they
will appear to be fragile or absent in experiments.

Let us define a net skyrmion density N (r) as the difference
in the number of negative and positive merons per unit area.
If we assume that the energy differences for converting a
positively charged skyrmion to a negative one are uniformly
distributed in the interval (— E; Eg), we find that the energy
cost to produce a net imbalance in the density of positive and
negative merons should be given by

K 2
Ewm=3/mmm a1

where K can be estimated in terms of the typical energy of a
single extra skyrmion and the typical size of a single domain,

K ~ EgE2.

The chemical potential p for electrons is defined as the
derivative of the total energy with respect to electron number,
after subtracting any contribution from the interaction of the
electrons with a macroscopic electrostatic potential. If we
assume that fluctuations in the electron density arise purely
from fluctuations in the skyrmion density, and are given by
on = (e*/e) Ny, then we obtain an inverse compressibility
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given by

du e?
%~Emﬁ (32)

Taking into account Eq. (30), we rewrite the above equation as
du e’

@ PEx
dn V02n imp

f 2 6*2 :
Noting that E5; = Cps, where C is a small numerical constant,
we obtain the final form of inverse compressibility,

(33)

2 3
an e i
fZe*z.

This simple result allows us to make predictions regarding
the sensitivity of different ferromagnetic states at 0 < f < 1
to disorder. For example, let us compare the integer state
f =1 (which is observed experimentally in compressibility
measurements) to the fractional state f = 1/3 (which is
absent). The f =1 is characterized by valley stiffness p, =
€2/16+/27l, while f = 1/3 state has a stiffness which is
approximately 12 times smaller®®*® (note, however, that this
number should be viewed only as an estimate, due to large
finite-size effects in numerical calculations®®>?). Therefore,
the ratio of the inverse compressibility for these two states is
given by

34
dn Voznimp ( )

dp/fdn)l;= 12°
(du/dn)ly=13 81

Thus, in the disordered case the skyrmion contribution to
compressibility is much smaller for the integer state f = 1;
this is due to the large valley stiffness of this state, which
gives rise to large domains and smaller density of frozen
charges and low-energy excitations. This explains why the
disorder-induced low-energy skyrmions may suppress the
f = 1/3 state in experiment, but not the f = 1 state.

Turning now to case (2) above, where h, is the dominant
random anisotropy term, we first note that, neglecting in-plane
disorder completely, the Hamiltonian (27) is characterized by a
U(1) symmetry with respect to rotations of the order parameter
in the xy plane. This symmetry reflects the fact that the energy
does not change if we globally change the relative phase of
K and K’ states, such that if «(r)|K) + B(r)|K’) is a ground-
state configuration for a given order parameter, then «(r)|K) +
e'?B(r)|K’) is also a ground state. An important difference
compared to case (1) is that in the ground state there are no
textures and charge excitations: The order parameter rotates
only along some meridian of the Bloch sphere, not enclosing
any area (such that topological index of the order parameter
configuration is zero). However, the nonuniform configuration
of the order parameter in the ground state will be favorable for
low-energy meron-antimeron pairs, where phase ¢ rotates in
different directions in neighboring domains. Therefore, low-
energy excitations are expected in this limit as well.

It is also worth noting that if small niyp, 1 is added, larger
superdomains will be formed in which the order parameter has
a preferred component in the x-y plane. Such superdomains
will enclose many domains with preferred n, orientation. As a
result, nonzero density of charges will be introduced in the
ground state. It is not obvious whether the lowest-energy

~21. (35)
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excitations will be textures in “small” domains, the size of
which is set by 7y, ., or the merons-antimerons forming in
“large” domains, the size of which is set by nimp, 1 . In either
case, we expect that these excitations will have much lower
energy than EY,.

The discussion above suggests that in the limiting cases
when one kind of disorder dominates, there are low-energy
charged excitations. In the intermediate regime, the textured
ground state will have a certain density of charges (on the order
of an electron charge per domain). Although it is difficult to
make any quantitative prediction, it is reasonable to expect that
the energy cost for creating skyrmions will be greatly reduced
as well in this case.

At this point, we are unable to say whether the enhanced
compressibility caused by skyrmions in the presence of disor-
deris strong enough to account for the strong suppression of the
FQH states with odd-numerator filling fractions in the range
0 < f <1 in the SET measurements reported in Refs. 21
and 23. We also have little information about the mobility of
these skyrmions, so it is difficult to estimate their contribution
in transport measurements. Nevertheless, the apparent absence
of an FQH signature at f = 1/3 in transport measurements is
striking, and it seems likely that this absence is also due to the
presence of low-energy skyrmions at this value of f.

It is also worth noting that suppression by disorder of quan-
tum Hall states with a spontaneously broken symmetry has
been observed in other multivalley systems.**=! For example,
in the AlAs-2D electron system, which is characterized by
a double valley degeneracy, the measured activation energy
gaps of certain fractional states in valley-symmetric case can
be reduced by a factor of 15 compared to the case when valley
symmetry is broken by strain.*’ It should be noted, however,
that the quantum Hall ferromagnet in AlAs has a lower,
Z, symmetry compared to the quantum Hall ferromagnet in
graphene at 0 < f < 1, with the easy-valley anisotropy being
generated by the asymmetry of the band structure.’”> This
may change the structure of domains, domain walls, and their
excitations, compared to the case of graphene. We also note
that experiments on Si (111)°° and Si (100)°' have observed
FQH states at various fractions, almost entirely with even
numerators. However, a strong FQHE state has been reported
at v = 1/3 in at least one experiment on Si (100).%

VII. EXPERIMENTAL MEASUREMENT OF ENERGY
GAPSATvy=0ANDv = -1

Below, we present experimental measurements of the
energy gaps of the broken-symmetry states at filling factors
v = 0 and —1 in suspended graphene. We extract these energy
gaps using a scanning SET. Details of the device fabrication
and the measurement technique are provided in Ref. 21.
Briefly, we use a back gate to modulate the carrier density
in the graphene and monitor the resulting change in current
through the SET to measure the local chemical potential
w. This is accomplished using a dc feedback technique to
maintain constant current through the SET; the change in
sample voltage required for this feedback provides a direct
measure of the chemical potential of the graphene.

Figure 1(a) shows the chemical potential as a function of
carrier density at several representative magnetic fields. As
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the chemical potential approaches v = 0, it first decreases,
then abruptly rises, and finally declines again before stabiliz-
ing. The regions of decreasing chemical potential (negative
compressibility) are understood®* to arise from electron-
electron interactions, which become especially pronounced
at the low electron and hole densities surrounding v = 0.
Similar behavior occurs for v = —1 (data not shown). The
energy gaps at v =0 and —1 are defined as the difference
between the minimum and maximum chemical potential
around each incompressible state, and they are plotted
as a function of magnetic field in Figs. 1(b) and 1(c),
respectively.

The magnitudes of the energy gaps are significantly larger
than has been previously reported,* which reflects both the
high sample quality and also the low dielectric environment
of suspended graphene. At B =12 T the gap at v = —1 is
comparable to the theoretical skyrmion gap A,—_| = % ~
23 meV, estimated for dielectric constant ¢ = 5.24. Energy
gaps at both filling factors are well modeled by B'/? scaling
(red fits), consistent with expectations for interaction-driven
states. Both fits, however, require subtraction of a constant
quantity, giving negative intercepts of a few meV. A negative
intercept in the measured energy gap may arise in part from
disorder broadening of the cusps in chemical potential,>
although we note that the v = 0 offset of —11.1 meV implies
significantly larger disorder than was estimated for other
samples with comparable quality.>”

We would like to attribute the difference in energy gaps
between v = 0 and v = —1 to the effects of skyrmions, which
occur in the latter case. According to mean-field theory,
neglecting the effects of valley anisotropy and Zeeman energy,
the energy gaps for creating a single electron or hole should
be equal at these filling factors. However, as discussed above,
the lowest energy charged excitations at v = —1 should be
large-area valley skyrmions, which lead to an energy gap that
is one-half the single-electron gap. At v = 0, we expect that
large-area skyrmions will be suppressed due to the effects of
valley anisotropy. The fact that the observed energy gaps at
v = 0 are more than twice the energy gaps at v = —1 may
well be due to effects of residual valley-selective disorder,
which would affect the skyrmions at v = 1 most strongly, as
discussed above.

In contrast to our compressibility measurements, the energy
gaps of integer states at v =0, £1 extracted in previous
transport experiments with graphene on SiO, substrate,>
suspended graphene,”’ and graphene on BN* were all well
below theoretical estimates. The following values of the energy
gaps were reported: A,—; ~ 100 K at B =30 T (Ref. 56);
Ay=1 10K at B =12T (Ref. 57), and A,y ~ 500 K at
B=35T, A\—_; =~50K at B=21T (Ref. 4). Moreover,
a linear, rather than square-root, scaling of A,_y with per-
pendicular magnetic field was found in Ref. 4. We believe
that the smaller magnitude of the energy gaps, as well as
their different scaling with magnetic field, stem from the
fact that the activation gap, obtained from transport mea-
surements, is typically strongly reduced by disorder effects.
The activation gap should be interpreted as the mobility gap,
which depends on the disorder strength and type, rather than
a thermodynamic gap in a clean system which is predicted
theoretically.
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VIII. SUMMARY AND DISCUSSION

In summary, motivated by the puzzling results of recent
experiments,?’21-23 we studied fractional and integer quantum
Hall states in the zeroth LL of monolayer graphene. We argued
that the behavior at filling factors —2 < v < land —1 < v <
0 is markedly different, owing to the different importance
of short-ranged valley-anisotropic interactions. Qualitatively,
one should think about fractional states at —2 < v < —1 as
electrons added to vacuum (empty LL). Since correlations
in fractional states are such that the probability to find two
electrons at the same point is negligible, the short-range
valley-anisotropic terms do not play any role, which leads
to an SU(2)-symmetric effective Hamiltonian. In contrast,
fractional states at —1 < v < 0 should be viewed as resulting
from adding holes to the v = 0 state. Even though holes stay
away from each other, they still interact with the background
imposed by the v = 0 state, which breaks SU(2) symmetry.

The SU(2) valley symmetry at —2 < v < —1 has two main
consequences. First, fractional states with odd numerators
must occur via spontaneous breaking of SU(2) symmetry. As
a result, there are gapless neutral Goldstone modes that cor-
respond to fluctuations of the valley polarization. The charge
excitations are valley skyrmions, which have lower energy
than the quasielectron/quasihole excitations. Furthermore, the
SU(2) symmetry of the Hamiltonian makes odd-numerator
states very susceptible to weak disorder, which destroys the
long-range valley order and introduces a certain density of
skyrmions and antiskyrmions in the ground state. In this
case, the energy of adding another skyrmion/antiskyrmion is
expected to be strongly reduced compared to the clean system.
The lower energy skyrmion excitations and strong sensitivity
to disorder make the odd-numerator states at —2 < v < —1
very fragile.

Second, it is likely that at filling factors with even numer-
ators in the interval —2 < v < —1 ground states are SU(2)-
symmetric valley singlets. In these states the lowest energy
charged excitations are quasielectrons/quasiholes which can
have either valley index, but are spin-aligned, and skyrmions,
if they exist, would be energetically costly due to Zeeman
energy. The valley-singlet states are not sensitive to weak
valley symmetry-breaking disorder (since they cannot take
advantage of adjusting valley polarization according to the
local disorder configuration, unlike odd-numerator states).
Thus, even-numerator states are expected to be quite robust.

In the interval of filling factors —1 < v < 0, the valley and
spin symmetries are broken by valley anisotropies and Zeeman
interaction, which makes both odd- and even-numerator states
robust and leads to multiple phase transitions between states
with different degrees of spin and valley polarization. The v =
0 state is a canted AF state, in which states |Ks), |K’s’) with
nearly opposite spins s,s’ in the xy plane, slightly canted in
the z direction, are occupied. The v = —1/3 state is a partially
valley- and spin-polarized Laughlin state of holes |K |) (or
|K" ])) formed on top of a state with s = 1 ,s'= |, which
optimizes the combination of valley anisotropy and Zeeman
energy.

At v = —2/5 and —2/3 there are two competing states: a
canted AF state with equal valley occupation (which can be
thought of as a singlet state of holes on top of v =0 state),
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and a partially polarized state with unequal valley and spin
occupations. While anisotropy energy is very close in these
competing states, the polarized state can take advantage of
the spin Zeeman energy by aligning spin direction of the
majority component with the magnetic field. At low magnetic
fields, Zeeman energy is negligible, and the states with equal
occupation of two valleys, favored by the Coulomb interac-
tions, are expected to be ground states. At higher fields, when
Zeeman interaction becomes increasingly important compared
to the difference of Coulomb energies of the competing states,
a phase transition into a partially polarized ground state is
expected. Similarly, at other filling factors at —1 < v < 0,
we expect phase transitions between composite fermion states
with different degrees of spin and valley polarization.

By contrast, no phase transitions are expected at filling
factors v = —4/3 or 8/5, because these states are valley
singlets and are spin polarized along magnetic field such that
they take maximum advantage of the Zeeman energy. At filling
factors v = —14/9, — 11/7, and —7/5, phase transitions are,
in principle, possible: At low B, minimally spin- and valley-
polarized states are favored by the Coulomb interactions (these
correspond to filling lowest possible CF levels), while at high B
maximally spin-polarized states will be favored by the Zeeman
interaction.

The above picture is consistent with recent
experiments.zo’m’23 First, odd-numerator  states  at
—2 < v < —1 were either completely absent or very weak
in both compressibility?!>* and transport measurements.?’
This is likely due to effects of disorder, which greatly
increases compressibility. We believe that the reduction of
gaps due to skyrmions alone is not sufficient to completely
suppress odd-numerator states at —2 < v < —1. The robust
even-numerator singlets have been seen,”’ and no phase
transitions as a function of field have been observed at this
point. Second, robust odd- and even-numerator states have
been seen at —1 < v < 0 (Refs. 21 and 23), and a series of
phase transitions as a function of magnetic field have been
observed at all filling factors except for v = —1/3.

Turning to integer states, we argued that at v = 0, the
elementary charged excitations could be a single electron or
hole, or could be a small skyrmion, which would have a similar
energy cost. At v = —1, we argued that the negative charged
excitation could be a large-area valley skyrmion or a small-area
spin skyrmion, while the positive (holelike) excitation should
be a large-area valley skyrmion, which would reduce the size
of the gap relative to that at v = 0. Effects of disorder should
further reduce the measured energy gap at v = —1 relative to
that at v = 0. This might explain the observed differences in
the chemical potential jumps at these two filling factors, which
are shown in data reported in this paper.

Although we have assumed above that the parameters g
and g, fall in the range where v = 0 state is in the AF phase,
our principal conclusions will be unchanged if the ground state
were the Kekule phase or the CDW phase. The main difference
is that there would be no canted states in these cases. The states
for0 < |v| < 1 would always have a majority spin parallel to B
and a minority spin in the opposite direction if the populations
are unequal.

Throughout the paper we have assumed the valley-sensitive
interactions to be instantaneous in time. For phonon-mediated

115407-15



ABANIN, FELDMAN, YACOBY, AND HALPERIN

interactions, this is correct to the extent that the phonon
frequency is large compared to the Coulomb exchange
energy within a LL. Retardation effects could lead to cor-
rections to our result that the energy of states with |v]| <
1 should be independent of the orientation of the valley
polarization ().

Finally, we note that phase transitions between fractional
states with different degree of spin or valley polarization were
studied theoretically,’®®" as well as observed experimentally
in GaAs (Refs. 61-70) and AlAs (Refs. 49 and 71) 2D electron
systems. In the former case, the phase transitions are driven
by the Zeeman interaction, while in the latter case they are
driven by the valley anisotropy which is tunable by strain.
The key difference of graphene compared to GaAs- and AlAs-
based systems is the fact that the valley anisotropy arises due
to short-range interactions, rather than from single-particle
effects. Because of that, the effective symmetry depends very
sensitively on the filling factor, as we discussed above.

IX. FUTURE DIRECTIONS

Further insights into the nature of fractional states in the
zeroth LL of graphene can be obtained from experiments with
parallel magnetic field. At a fixed perpendicular magnetic field,
it should be possible to observe phase transitions at various
filling factors in the interval —1 < v < 0 as a function of
parallel field component. Moreover, the dependence of the
energy gaps on the parallel field should reveal the spin structure
of excitations at different filling factors.

In the future, it would be also interesting to study the
fractional QHE in higher LLs of monolayer graphene. Owing
to the different structure of LL wave functions, the effective
interactions will be different compared to the zeroth LL in
graphene and to GaAs. This will change the phase diagram
of fractional states, as well as their energy gaps. Valley
anisotropies in higher LLs in monolayer graphene will be
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different from the zeroth LL, which may completely change
the valley and spin structure of the fractional states.

Furthermore, new effective interaction regimes are realized
in related materials, such as bilayer graphene, which will
almost certainly lead to interesting phenomena in the FQH
regime. Theoretical studies suggest that band structure
tunability in bilayer graphene may allow one to tune effective
electron interactions by applying perpendicular electric field.”?
This can be used to stabilize the desired fractional states and
induce phase transitions between them. Additional tunability
can be achieved by changing the dielectric environment of the
sample.”?

Finally, another promising direction is to study the struc-
ture of the FQH edge states in graphene. Owing to the
atomically sharp confinement,’* it is possible to avoid edge
reconstruction.”” A recent theoretical study’® suggests that
this might enable the observation of universal Luttinger liquid
behavior at the edges of FQH states.
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