
PHYSICAL REVIEW B 88, 115406 (2013)

Rashba fields in a two-dimensional electron gas at electromagnetic spin resonance
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We present an analysis of the Rashba effects in a two-dimensional electron gas induced by the microwave
electric and magnetic fields. We show that in the frame of the Drude model the Rashba interaction can be
described by magnetic and electric corrections affecting the spin and the velocity of the electrons. We describe
the rf currents making use of the conductivity tensor formalism. The electromagnetic power absorption is obtained
as a function of the external electric and magnetic rf fields up to the second order of the Rashba parameter. The
channels of energy transfer due to Rashba field corrections are analyzed.
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I. INTRODUCTION

The spin of an electron moving in a two-dimensional (2D)
system feels an additional magnetic force arising from the
Lorentz transformation of an electric field perpendicular to the
sample plane in the presence of an asymmetric electric charge
distribution. This spin-orbit (SO) interaction, first described
by Rashba,1 allows us to explain many phenomena such as
the Dyakonov-Perel spin relaxation,2–4 spin dephasing,3 a
characteristic anisotropy of the g factor,3 and others.4 One of
the most direct exemplifications of the Rashba field is the shift
of the electron spin resonance (ESR) field when an electric
current is applied.5 Spin precession in the Rashba field has
been proposed as the main control mechanism in the seminal
concept of the Datta-Das transistor.6 A particular SO effect
appears when an rf current with a frequency corresponding to
the Larmor frequency is applied.7 In an ESR-like experiment,
spin precession can be excited by a resonant microwave
current as predicted by Rashba and Efros.8 Excitation via
this current-induced ESR can be by orders of magnitude
more efficient than the usual excitation of magnetic dipole
transitions by a microwave magnetic field.5,8 This may be of
practical importance in the context of spin manipulation.8,9

The dynamic spin-Hall effect is another effect resulting
from the current-induced spin precession10 and closely
related to the results of this paper. Recently we showed that
apart from the Rashba magnetic field, that affects the electron
spin, there appears a correction of the electric force which
influences the spatial dynamics of the electron motion.11 This
force turns out to be proportional to the time derivative of
the electron’s magnetic moment, i.e., to the frequency of the
electron spin precession in case of rf perturbation fields.11 In
this paper, extending our previous work,11 we consider electron
spin resonance induced by not only the electric, but also by
the combination of rf electric and magnetic fields, a situation
which is typical for a standard ESR experiment.

II. ELECTRON OSCILLATORY MOTION

We consider a 2D system, placed in the microwave cavity
of a standard ESR setup. The configuration is shown in Fig. 1.
The Hamiltonian describing the dynamics of one electron
between collisions with lattice imperfections is assumed in the

form

Ĥ = 1

2m∗

(
p − e

c
A

)2

+ αR

h̄μB

(
p − e

c
A

)

× n · μ − g

2
B · μ. (1)

Here p is canonical momentum, and m∗ is the effective electron
mass. The parameter αR in the second term is a material-
and sample-dependent parameter describing the magnitude
of the SO Rashba coupling where μB = eh̄/2mc, the Bohr
magneton, and μ = μBσ , the electron magnetic moment.

The last term with the g factor stands for the Zeeman energy
in an external magnetic field, B = B0 + B1(t), where B0 is
constant and B1‖ŷ is the rf magnetic field. We assume the
sample to be placed in between the nodes of the microwave
magnetic B1 and electric fields E1(t) (E1‖x̂). Thus the vector
potential A can be assumed in the form A = 1

2 B0⊥ × r −
c
∫ t E1(t ′)dt ′, where B0⊥ is the part of the field that is

perpendicular to the plane of the system, B0⊥ = n(nB0). The
Rashba term which arises in systems without mirror symmetry
can be attributed to a built-in electric field,1 directed along
the unit vector n. The Rashba SO coupling is assumed to be
much stronger than the relativistic SO coupling in vacuum (for
E1 = 1 V/cm we have (eh̄/4m2c2)E1 ≈ (10−9 − 10−8)αR/h̄,
where αR/h̄ = 4 m/s in Si/SiGe). Therefore we neglect the
relativistic SO term due to the E1.12–14

Some direct consequences of the Rashba SO coupling are
the following. The velocity of the electron,

v = ∂Ĥ

∂p
= v(p) + v(R), (2)

can be decomposed into a momentum velocity, v(p) =
(1/m∗)[p − (e/c)A], and a spin-dependent component v(R) =
(αR/h̄μB)n × μ.

The equation of the electron motion in the frame of the
Drude model in a 2D system has the form11

dv
dt

= e

m∗

(
E1 + ER + 1

c
v × B0⊥

)
− v

τ
, (3)

where the momentum relaxation time τ is assumed to be
independent of spin. The additional, spin-dependent electric
field ER arises only for the electrons with unpaired spin and it
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FIG. 1. Considered geometry: magnetic field B0 and the
microwave electric field are parallel and tilted by θ with respect to the
surface normal n. This gives an in-plane field of E1(t) = −E(t) sin θ .
The microwave magnetic field B1(t) is directed along the (in-plane)
y axis.

is given by the equation11

ER = m∗

e

dv(R)

dt
= m∗αR

eh̄μB

n × dμ

dt
. (4)

Another consequence of the Rashba coupling is that the
electron spin is affected by the SO Rashba field as well. The
latter is proportional to the electron momentum velocity:

BR = αRm∗

h̄μB

n × v(p). (5)

Taking into account that the momentum velocity v(p) varies in
time, the field which drives electron spin resonance is the sum
B1 + BR . Because both B1 and BR are in-plane vectors they
do not directly influence the electron motion. However, they
have an indirect influence on this motion through ER defined
in Eq. (4), as they drive the spin of the electron.

In the presence of the external rf electric field E1(t) =
E1ω exp(−iωt) and similarly the magnetic field B1(t) =
B1ω exp(−iωt) we assume v = v0 + vω exp(−iωt) and
μ = μ0 + μω exp(−iωt) (keeping in mind that only real parts
have a physical meaning). Then, following Lax et al.15 we
obtain from Eq. (3) the equation for the Fourier amplitude of
the oscillatory part of the electron velocity,

vω = 1

ne
σ̂ (ω)(E1ω + ERω), (6)

where n is the surface density of the free electron gas and σ̂ (ω)
is the usual conductivity tensor, determined by the sample
geometry and by the direction of B0 (B1 and BR are in-plane
vectors). For the oscillatory term, ERω, we have

ERω = −iω
m∗αR

eh̄μB

n × μω. (7)

On the other hand the equation of motion for the electron
magnetic moment results from

dμ

dt
= γ

[
g

2
(B0 + B1) + BR

]
× μ, (8)

where γ = −2μB/h̄. In linear approximation the solution
of Eq. (8), the Fourier amplitude of the electron magnetic

moment, is

μω = 1

δn
χ̂ (ω)

(
g

2
B1ω + BRω

)
, (9)

where δn [A1 in Appendix] denotes the number of electrons
that occupy spin-unpaired states. The form of the tensor χ̂ (ω)
[A2 in Appendix] assures that only the oscillatory part of
Eq. (5), BRω⊥, which is perpendicular to B0, is essential in
Eq. (8).

From Eqs. (5)–(9) one can see that the dependence of v(p) on
the rf fields, E1 and B1, is important. An approximate solution
of this problem can be obtained by subtracting v(R)

ω from both
sides of Eq. (6) resulting in

v(p)
ω = 1

ne
σ̂ (ω)

[
E1ω − neρ̂(0)v(R)

ω

]
, (10)

where ρ̂(ω) = σ̂−1(ω) is the resistivity tensor [A3 in
Appendix]. Expressing the spin-dependent component of the
velocity in Eq. (9) by the magnetic moment Eq. (8), and then
using an iteration method we get for the electrons that occupy
spin-unpaired states

v(p)
ω ≈ 1

ne
σ̂ (ω)

{
[Î − �̂E(ω)]E1ω

− ̂(ω)[Î − �̂B(ω)]
g

2
B1ω

}
, (11)

where the dimensionless operators are �̂E(ω) =
α2

Rm∗(δn)−1(h̄μB)−2ζ̂ (ω)n̂σ̂ (ω), and �̂B(ω) =
α2

Rm∗(δn)−1(h̄μB)−2n̂σ̂ (ω)ζ̂ (ω), and ̂(ω) =
neαR(δn)−1(h̄μB)−1ζ̂ (ω) with ζ̂ (ω) = ρ̂(0)n̂χ̂ (ω). Here
we use n̂ = −iσy , proportional to the Pauli spin matrix,
instead of the vector product operator “n×” (keeping in mind,
that for arbitrary orientation of the space n̂ should change sign
under the space inversion).

For Si/SiGe the transverse spin relaxation time T2 is of the
order of 10−7–10−6 s, and the corrections �̂E and �̂B at the
resonant frequency ω = ωL are of the order of m∗α2

RT2/h̄
3 ≈

3 × (10−3 − 10−2). The factor ̂ is then of the order of
1.5 × (10−5 − 10−4). Thus the influence of the magnetic field
B1 on the electron momentum velocity can be negligibly
small when compared to the electric field E1. However,
even if the electric field is absent, the in-plane oscillatory
magnetic field causes a momentum current j(p)

ω = δnev(p)
ω ≈

−(δn/n)σ̂ (ω)̂(ω)[Î − �̂B(ω)](g/2)B1ω. This current must
be distinguished from eddy currents as the latter are caused by a
magnetic field perpendicular to the sample plane. The current
derived here appears only if some of the electrons occupy
spin-unpaired states. In the opposite case, we obviously have
�̂E = �̂B = ̂ = 0 and j(p)

ω = nev(p)
ω = σ̂ (ω)E1ω.

III. ELECTROMAGNETIC ABSORPTION

The power dissipation due to the microwave field per
electron can be obtained from the time derivative of the
Hamiltonian (1):

P (t) = ∂Ĥ

∂t
= eE1v − g

2
(dB1/dt)μ. (12)
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The time averaged value of P , lim
T →∞

T −1
∫∫ T

0 P (t)dt can

be expressed by its Fourier components as

Pω = P (E)
ω + P (M)

ω = e

2
Re(E∗

1ωvω) + ω

2

g

2
Im(B∗

1ωμω). (13)

For the electrons occupying spin-paired states the velocity
component vω in the first term of Eq. (13) is defined by Eq. (6)
without the spin-dependent correction ER , while the second
term does not exist. Taking this into consideration, we get for
the total electromagnetic power absorption (i.e., by unit area
of the sample) the following equation:

P (tot)
ω = 1

2
Re[E∗

1ω · σ̂ (ω)E1ω] + 1

2

δn

n
Re[E∗

1ω · σ̂ (ω)ERω]

+ ω

2

(
g

2

)2

Im[B∗
1ω · χ̂(ω)B1ω]

+ ω

2

g

2
Im[B∗

1ω · χ̂(ω)BRω], (14)

where the first two terms correspond to the Joule heat accom-
panying the spin-independent electric current jω = σ̂ (ω)E1ω,
and the Rashba current jRω = σ̂ (ω)ERω, respectively. (Notice
that jω 	= nev(p)

ω and jRω 	= nev(R)
ω as v(p)

ω , in general, is spin
dependent.) The last two terms describe magnetic absorption.
The first of them coincides with the classical expression, while
the second one is a contribution due to the Rashba magnetic
correction. The second and the fourth terms in Eq. (14)
approximated up to the second order of the Rashba parameter
αR are the sum of a “magnetoelectric” term:16

δP (1)
ω = m∗

ne

αR

h̄μB

ω

2

g

2
Im[E∗

1ω · σ̂ (ω)n̂χ̂ (ω)B1ω

+ B∗
1ω · χ̂(ω)n̂σ̂ (ω)E1ω], (15)

and

δP (2)
ω =

(
m∗

ne

)2(
αR

h̄μB

)2
ω

2
Im

[
E∗

1ω · σ̂ (ω)n̂χ̂ (ω)n̂σ̂ (ω)E1ω

− ne

δnm∗

(
g

2

)2

B∗
1ω · χ̂ (ω)n̂σ̂ (ω)ρ̂(0)n̂χ̂(ω)B1ω

]
,

(16)

where the magnetic term [second one in Eq. (16)] in the case
of the same value (in eV/cm) of E1ω and B1ω is about seven or-
ders smaller [0.05h̄T2/τ

2mc2 ≈ 6 × (10−8 − 10−7)] than the
electric term [first in Eq. (16)] at the resonance condition [for
Si/SiGe the momentum relaxation time τ � 10−11 s is much
shorter than T2 ≈ (10−7 − 10−6) s]. The electric term is about
two hundred times bigger (eταR/h̄μB ≈ 2.1 × 102) than the
magnetoelectric one. The first term of the Eq. (16) has been
recently explored as a resonant SO correction to Joule heat.11

We note that if the sample is placed at the node of the electric
or magnetic field then the magnetoelectric signal cannot be
observed (δP (1)

ω = 0) for any orientation of the sample. But
then there appears the possibility of separate observation of
magnetic or electric signals corresponding to the appropriate
term of δP (2)

ω . In Figs. 2–4 the characteristic features of the
signals δP (1)

ω and δP (2)
ω for the resonant frequency ω = ωL

and for different mobilities are shown. In our calculations we
have assumed a real Fourier amplitude of the electric field
E1ω = [E · sinθ,0] and a pure imaginary amplitude (due to the
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FIG. 2. (Color online) Angular dependence of magnetoelectric
δP (1)

ω signal normalized by E B sin θ .

phase shift) of the magnetic field, B1ω = i[0,B]. The tensors
χ̂ (ω) and σ̂ (ω) are defined in the Appendix and n̂ = −iσy .

From Eqs. (5), (10) it follows that the electric field induces
a Rashba field, so we can expect that some part of the absorbed
electric energy due to the first term in (13) is transferred by the
Zeeman channel. In fact, using the oscillatory part of Eq. (3)
in the two cases, spin dependent for δn and, respectively, spin
independent for n − δn electrons (per cm2), and performing
the summation of P (E)

ω in Eq. (13) over the occupied electron
states due to these two cases,∑

P (E)
ω = e

2

∑
Re(E∗

1ωvω)

= e

2

∑
Re[E∗

1ω(ne)−1σ̂ (ω)(E1ω + ERω)]

= e

2

∑
Re[(E∗

1ω + E∗
Rω)(ne)−1σ̂ (ω)(E1ω + ERω)]

+ ω

2

∑
Im(B∗

Rωμω), (17)

(the first sum on the right-hand side for the case of ERω = 0
over n − δn electron states and for nonzero ERω over δn states,
while the second sum only over δn states) we get∑

P (E)
ω = n − δn

2n
Re[E∗

1ωσ̂ (ω)E1ω]

+ δn

2n
Re[(E∗

1ω + E∗
Rω)σ̂ (ω)(E1ω + ERω)]

+ δn
ω

2
Im(B∗

Rωμω), (18)

where we have used the relation −(e/2)Re(E∗
Rωv(p)

ω ) =
(ω/2)Im(B∗

Rωμω).
In analogy to Eq. (20) we obtain for the magnetic absorption

[the second term of Eq. (13)],∑
P (M)

ω = ω

2

g

2

∑
Im(B∗

1ωμω)

= δn
ω

2

g

2
Im

[
B∗

1ω(δn)−1χ̂(ω)

(
g

2
B1ω + BRω

)]

= ω

2
Im

[(
g

2
B∗

1ω + B∗
Rω

)
χ̂(ω)

(
g

2
B1ω + BRω

)]

+ δn
e

2
Re(E∗

Rωvω). (19)
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FIG. 3. (Color online) Angular dependence of electric-dipole
ESR δP (2)

ω signal normalized by E2sin2θ .

So, apart from the pure magnetic absorption we can separate
some energy transfer by Joule heating due to the Rashba elec-
tric field correction ERω influencing spin-unpaired electrons.
Thus we assume the current jω = δn

n
σ̂ (ω)ERω in the case of

the absence of external rf electric field E1ω. This current is
induced by the in-plane oscillating magnetic field B1 so it is
not an eddy current.

An interesting result can be obtained from Eq. (17).
Combining this equation with the oscillatory part of Eq. (3)
we get∑

P (E)
ω = n

m∗

2
〈|vω|2〉 1

τ
+ δn

ω

2
Im(B∗

Rωμω), (20)

where 〈X〉 means the average value of X over all occupied
electron states.

So, the electric power absorption is equal to the oscillatory
kinetic energy of the electron gas (there is a misprint in Ref. 5
in the bracket sequence) transferred to the environment in the
time τ and partially, due to the Rashba rf field, via the Zeeman
channel.17 As was discussed in our previous work5 the Joule
heat (kinetic energy of the electron gas) must be received from
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FIG. 4. (Color online) Angular dependence of the magnetic δP (2)
ω

signal normalized by B2.

the system to be dissipated by Rashba magnetic resonance. The
minimum at θ ≈ 78◦ in Fig. 3 corresponds to the coincidence
of the cyclotron frequency, ωc cos θ , and the Larmor frequency
ωL (maxima of the conductivity tensor elements) and thus
it corresponds to the maxima of the received Joule heat.
Looking at Fig. 4 we suppose that there exists an analogous
transfer of energy from the Zeeman reservoir to the Joule heat
due to the Rashba field ERω as in Eq. (19). Unfortunately
we cannot derive the equation analogous to Eq. (20), so we
cannot say anything about the role of kinetic energy in this
transfer.

IV. CONCLUSIONS

We analyze the Rashba effects in the frame of the Drude
model which is extended by the electron spin dependencies.
We have previously shown11 that at electron spin resonance
induced by a pure electric rf field some part of the Joule heating
can be identified with magnetic absorption due to Rashba mag-
netic field correction. Here we demonstrate (in analogy), that in
the case of pure magnetic rf field a part of the magnetic absorp-
tion may be identified with Joule heating due to Rashba electric
field correction. We show, however, that an in-plane pure
magnetic field can induce an in-plane electric current. This
effect must be distinguished from the Faraday induction which
requires perpendicular magnetic field inducing eddy currents.

APPENDIX

Number of electrons in spin-unpaired states (A1). The
surface density of electrons in spin-unpaired states is δne ≈
D(E)μBB0, where D(E) = m∗/πh̄2 is the density of states
for 2D electron gas. The magnetization of the electron gas is
Mω = δn · μω.

The susceptibility tensor (A2). This 2D tensor connects
the in-plane coordinates of the Rashba field with the in-plane
coordinates of the magnetization Mω.

χ̂ = 1

2

[
(χ+ + χ−) cos2 θ −i(χ+ − χ−) cos θ

i(χ+ − χ−) cos θ χ+ + χ−

]
,

In the rotating coordinate system (x̂ ± iŷ)/
√

2 (with ẑ
parallel to B0) χ̂ is diagonal with the components χ± =
∓γM0/(ω ∓ ωL + i/T2) and Eq. (8) has the simple form
μω± = (δn)−1χ±(ω)( g

2 B1ω± + BRω±), where for the vector
μω (and likewise for B1ω and BRω) μω± = (μωx ∓ iμωy)/

√
2.

The static magnetization M0 = χ0B0 is defined by the Pauli
paramagnetic susceptibility constant which for a 2D electron
gas is equal to χ0 = D(E) · μ2

B . The Larmor frequency is ωL =
γgB0/2.

The resistivity tensor (A3). The 2D conductivity
tensor for the configuration shown in Fig. 1 is σ̂ (ω) =
σ0[Î (1 − iωτ ) − iσ̂yωcτ cos θ ] /[(1 − iωτ )2 + ω2

cτ
2 cos2 θ ],

where σ0 = ne2τ/m∗ is the Drude conductivity,
ωc = −eB0/m∗c > 0 is the cyclotron frequency, and σ̂y

is the Pauli spin matrix. The resistivity tensor ρ̂(ω) is then
ρ̂(ω) = σ−1

0 [Î (1 − iωτ ) + iσ̂yωcτ cos θ ].
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