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Relative intensity noise and emission linewidth of polariton laser diodes
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We study the relative intensity noise (RIN) per unit bandwidth in polariton laser diodes (LDs) for two pumping
geometries, namely, the direct electrical and the intracavity ones as originally described in I. Iorsh et al. [Phys. Rev.
B 86, 125308 (2012)], by using rate equations including Langevin noise sources that are adapted from equations
employed to describe conventional semiconductor LDs. The obtained expressions for the RIN, which can be
used for all inorganic semiconductor polariton LDs, are specifically applied to the case of III-nitride devices. It
is highlighted that for frequencies larger than the relaxation resonance frequency the expected minimum RIN of
polariton LDs—whatever the pumping geometry—is equal to the standard quantum limit ( 2hν

P0
). The general RIN

line shape as a function of frequency and optical output power is discussed for the two geometries and simplified
expressions for the RIN are given. Then a comprehensive account of the expected evolution of the linewidth
of III-nitride polariton LDs upon increasing pumping strength is also given by considering the most advanced
theories available to date. The modified Schawlow-Townes linewidth is estimated from the effective ground-state
polariton lifetime at threshold, leading to a predicted linewidth as narrow as ∼15 MHz at room temperature for
the two pumping geometries when using a consistent set of parameters for III-nitride polariton LDs.
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I. INTRODUCTION

Over the past few years, significant research effort has
been devoted to the development of low-threshold coherent
light-emitting sources that operate in the strong light-matter
coupling regime.1–5 Soon after the report of this coupling
regime occurring in suitably designed planar semiconductor
microcavities (MCs),6 where the eigenmodes are coupled
exciton-photon modes called cavity polaritons, it was indeed
recognized that such a system could allow the formation of a
polariton condensate under incoherent pumping that would be
characterized by emission properties sharing similarities with
those of conventional laser diodes (LDs) while operating well
below the Mott density.1 Though most of the studies have been
carried out under optical pumping, the realization of practical
devices will likely rely on an electrical pumping scheme. Initial
reports on electrically injected polariton devices dealt with
p-i-n light-emitting diodes (LEDs) operating in the incoherent
light emission regime, i.e., in the absence of macroscopic occu-
pancy of the ground state, that are based on the GaAs material
system.7 Lately, polariton lasing occurring under electrical
injection has been reported at cryogenic temperatures, but that
relies on a complex geometry involving high external magnetic
fields,8–10 which would prevent any practical implementation
of such devices. Though the operation of GaAs-based polariton
LEDs has been reported up to room temperature (RT),11 the
robustness of quantum well (QW) excitons in this system
is not sufficient to allow for the observation of polariton
nonlinearities at such elevated temperatures, as shown by
Saba and co-workers through experiments carried out under
resonant optical excitation.12 In recent years wide band gap
semiconductors such as GaN (Refs. 4 and 13) or ZnO (Ref. 14)
and organic molecules5 have proven to be suitable active
regions to investigate polariton nonlinearities up to RT owing
to their high exciton binding energy and large oscillator
strength. In a recent article focusing on the prospects for
the realization of polariton LDs,15 it was pointed out that
GaN-related MCs operating in the strong coupling regime

exhibit several advantages to achieve such devices. This is
supported by the recent report of blue-violet III-nitride vertical
cavity surface emitting laser (VCSEL) diodes, indicating that
significant progress has been made in terms of carrier injection
in such vertical emitting devices.16–19 However, in this latter
case it is worth pointing out that a large-threshold current
density is required to achieve coherent light emission, which
could be circumvented by the realization of polariton LDs.

Recently, we modeled the emission characteristics of
polariton LDs using a set of semiclassical Boltzmann equa-
tions, which can be applied to various types of inorganic
semiconductors, for two relevant pumping geometries that are
(i) the direct injection of electrons and holes in the strongly
coupled multiple quantum well (MQW) active region and
(ii) intracavity optical pumping via an embedded light-emitting
diode.20,21 For a consistent set of parameters corresponding
to a GaN cavity with embedded InGaN QWs, a minimum-
threshold current density Jthr,min of a few A cm−2 was derived
for the two geometries at RT and at the optimum exciton-
photon detuning δopt, leading to polariton condensation.22

Subsequently, an approximate quasianalytical model was
considered to derive solutions for both the steady-state and
high-speed current modulation of these devices.

In this paper, we elaborate on the previous modeling
approach to determine the general expression for the relative
intensity noise per unit bandwidth (in dB/Hz), RIN

�f
, in polariton

LDs for the two above-mentioned pumping geometries. Such a
parameter is a recognized figure of merit for conventional LDs
as it allows to evaluate the impact of instantaneous temporal
fluctuations in the photon density, even in the absence of
current modulation. Indeed, variations in the output optical
power P0 stemming from fluctuations in the photon density
are responsible for a noise floor that can eventually have a
detrimental impact for both analog and digital applications,
e.g., in terms of bit-error rate in digital applications. To
compute RIN

�f
in polariton LDs, we first derive the expression

of the spectral density of the output power SδP (ω) using
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simplified differential rate equations written in a compact
matrix form in a way similar to that developed by Coldren
and Corzine, and we evaluate the relevant Langevin noise
source spectral densities or correlation strengths.23 RIN

�f
is then

calculated for the two pumping geometries of interest using
the same set of parameters that were considered by Iorsh et al.
at RT and at δopt.20 The results are subsequently analyzed and
critically compared with those obtained for conventional LDs
and VCSELs. Following the treatment of intensity noise, we
qualitatively discuss the expected evolution of the emission
linewidth of polariton LDs—that results from frequency
noise—by considering currently available theories that are
extrapolated to the case of III-nitride structures operating at RT.

II. LANGEVIN NOISE SPECTRAL DENSITY FUNCTION
AND RELATIVE INTENSITY NOISE

To obtain the expression of SδP (ω), we shall first consider
the rate equations describing the exciton reservoir and the
ground-state polaritons for the two pumping geometries:20

dnx

dt
= Px − nx

τx

− anx(np + 1) + ae−β�escnpnx

− bn2
x(np + 1) − cn′

enx(np + 1), (1)

dnp

dt
= −np

τp

+ anx(np + 1) − ae−β�escnpnx

+ bn2
x(np + 1) + cn′

enx(np + 1). (2)

Those simplified rate equations have been derived after careful
comparison with microscopic modeling based on a full set
of semiclassical Boltzmann equations for which analytical
solutions cannot be obtained. In particular, the a, b, and c

scattering rates, defined hereafter, are obviously closely related
to the results issued from the above-mentioned microscopic
modeling that is known to describe accurately the evolution
of the carrier densities in k space.20,24 Note that the whole
analysis can be reduced to a two-level system because the rate
equation describing the electron-hole plasma for the direct
electrical pumping geometry does not play a relevant role in
the following treatment. Here nx and np are the populations
of excitons in the reservoir and polaritons in the ground state,
respectively. τx is the exciton lifetime taken equal to 1 ns, and
τp is the lifetime of exciton polaritons in the ground state,
which is proportional to the cavity photon lifetime τcav taken
equal to 1 ps. a accounts for the acoustic and optical phonon
relaxation rates, β = 1/kBT , and �esc is the characteristic
energy splitting between the bottom of the lower polariton
branch (LPB) and states beyond the inflection point of the
LPB where zero in-plane wave-vector polaritons are scattered,
which is a quantity sensitive to the detuning.22,25 b is the
exciton-exciton scattering rate and c is the rate of exciton
relaxation mediated by free carriers. Specificities related to
each pumping geometry are contained in the parameters Px

and n′
e. Thus for the direct electrical pumping geometry,

Px = Wne-h, where W is the exciton formation rate from
the electron-hole plasma and ne-h is the electron-hole pair
population, which is proportional to the injected current I ,
and n′

e = ne-h, whereas for the intracavity optical pumping
geometry Px = ηintI/q, where ηint is the internal quantum

TABLE I. List of parameters adopted in this paper to compute
RIN
�f

in polariton LDs operating at RT (see text and Ref. 20).

Pumping geometry

Intracavity Electrical

τx (ns) 1
τcav (ps) 1
τe-h (ns) 5
	VRS (meV) 45
δopt (meV) −33 −18
|X0|2 0.20 0.31
�esc (meV) 18 12
ηint 0.9
η0 0.6
hν (eV) 2.987
S (μm2) 50 × 50
nd (cm−2) 2 × 1012

W (ps−1) 0.01
a (ps−1) 7 × 10−11 7.5 × 10−11

b (ps−1) 1 × 10−13 4 × 10−13

c (ps−1) 2 × 10−17 2 × 10−17

efficiency of the electrically pumped QWs of the LED region,
which is set to 0.9, q is the elementary charge, and n′

e = Snd ,
with S the emitting surface area and nd the density of free
carriers per unit surface obtained from the doping level in the
strongly coupled region. The normal mode splitting (	VRS) of
the present structures is taken equal to 45 meV. Justification
for the values considered for all the parameters including
parameters a, b, and c is readily available in Ref. 20 and
those values are also summarized hereafter in Table I.

Because the subsequent analysis is restricted to polariton
devices operating above the lasing threshold, the terms of
spontaneous origin can be omitted. In other words, the (1 + np)
terms appearing in the rate equations can be approximated as
np. To determine RIN

�f
, we introduce the Langevin noise sources

Fnx
(t) and Fnp

(t) as the ac driving sources for the exciton
reservoir and ground-state polariton populations, respectively.
The usual assumption of white noise is made for those sources,
which allows to make use of the differential rate equations.
The whole treatment is considered for a constant drive current
(i.e., dI = 0) so that the differential rate equations written in
compact matrix form in the frequency domain become[

γxx + jω γxp

−γpx γpp + jω

] [
nx1(ω)

np1(ω)

]
=

[
Fnx

(ω)

Fnp
(ω)

]
, (3)

where nx1, np1, Fnx
, and Fnp

correspond to the components of
the noise that fluctuate at frequency ω. Note here that20

γxx = 1

τx

+ anp∞ + 2bnx∞np∞

+ cn′
e∞np∞ − anp∞e−β�esc , (4)

γpp = 1

τp

− anx∞ − bn2
x∞ − cn′

e∞nx∞ + anx∞e−β�esc , (5)

γxp = anx∞ + bn2
x∞ + cn′

e∞nx∞ − anx∞e−β�esc , (6)

γpx = anp∞ + 2bnx∞np∞ + cn′
e∞np∞ − anp∞e−β�esc , (7)
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where the ∞ symbol accounts for the steady-state solutions for
the exciton reservoir, ground-state polariton, and electron-hole
pair populations.

This compact matrix form is identical to that of a con-
ventional semiconductor LD,23 hence we can readily express
SδP (ω) as

SδP (ω) =
(

η0hν

τp

)2

Snp
(ω)

+ 2Re

[(
η0hν

τp

)
〈np1F0〉

]
+ 〈F0F0〉, (8)

where η0 is the optical efficiency of the laser taken equal
to 0.6, Snp

(ω) is the ground-state polariton spectral density,
and F0 is the Langevin noise source for the stream of output
photons resulting from the spontaneous decay of ground-state
polaritons. This last term is accounting for the fact that the
partition noise of photons transmitted outside the cavity differs
from that of photons reflected back in. The expression of
Snp

(ω) is given by

Snp
(ω) = |H (ω)|2

ω4
R

[(
γ 2

xx + ω2
)〈
Fnp

Fnp

〉

+ 2γxxγpx

〈
Fnp

Fnx

〉 + γ 2
px

〈
Fnx

Fnx

〉]
, (9)

where H (ω) is the modulation transfer function, which is
pumping geometry dependent, and ωR is the relaxation
resonance frequency equal to

√
γpx/τp.20

In Ref. 20, it was shown that for the electrical pumping
geometry H (ω) has a complicated expression given by

H (ω) = γpx/τp(W + 1/τe-h)

γpx[W − cnx∞np∞ ] + γxxcnx∞np∞

× γpx[W − cnx∞np∞ ] + (iω + γxx)cnx∞np∞

(γpx/τp − ω2 + iωγxx)(iω + 1/τe-h + W )
, (10)

where τe-h is the lifetime of the electron-hole plasma, whereas
for the intracavity pumping geometry the expression of H (ω)
is equivalent to that of conventional LDs:

H (ω) = γpx/τp

(γpx/τp − ω2 + iωγxx)
. (11)

At this stage, to evaluate SδP (ω) for the two pumping
geometries, we need to determine the correlation strengths
between the noise sources Fnx

, Fnp
, and F0. For this purpose,

we still follow the treatment described in Ref. 23, where it is
shown that

〈FiFi〉 =
∑

R+
i +

∑
R−

i , (12)

〈FiFj 〉 = −
[∑

Rij +
∑

Rji

]
, (13)

where the R+
i and R−

i terms correspond to the rates of particle
flow into and out of the exciton and ground-state polariton
reservoirs, respectively, while Rij and Rji describe the rate
of particle flows between the two reservoirs. For the sake
of illustration, the rates into and out of those reservoirs
are displayed in Fig. 1. Using Fig. 1 together with Eqs. (12)

FIG. 1. (Color online) Flowchart reservoir model depicting the
flow of particles per unit time based on the rate equations (1) and (2)
without the terms of spontaneous origin.

and (13), we obtain

〈
Fnp

Fnp

〉 = 2np∞

τp

+ 2anx∞np∞e−β�esc ≈ 2np∞

τp

, (14)

where we used the fact that γpp = 0, which is verified when
we neglect the terms of spontaneous origin in Eq. (2). This
correlation strength is nearly equivalent to that derived for
conventional semiconductor LDs, including VCSELs, except
for the second term of the middle expression accounting for
thermal escape of ground-state polaritons from the condensate,
which is inherent to the matterlike character of those bosonic
quasiparticles:

〈
Fnx

Fnx

〉 = Px + nx∞

τx

− np∞

τp

+ 〈
Fnp

Fnp

〉
, (15)

〈
Fnp

Fnx

〉 = −〈
Fnp

Fnp

〉 + np∞

τp

. (16)

To determine SδP (ω) we also need to know the dependence
of 〈np1F0〉 and 〈F0F0〉. Transposing the development given in
Ref. 23 to the present case, we obtain

〈np1F0〉 = H (ω)

ω2
R

[(γxx + jω)〈Fnp
F0〉 + γpx〈Fnx

F0〉], (17)

where
〈
Fnp

F0
〉 = −η0

np∞

τp

hν = −P0 (18)

and 〈
Fnx

F0
〉 = 0. (19)

This latter correlation strength is equal to 0 because of the
absence of correlation between the exciton reservoir noise and
the partition noise created by the partially reflecting mirrors.

In addition,

〈F0F0〉 = hνP0. (20)

Using Eqs. (14)–(16) in combination with Eq. (9) and
Eqs. (17)–(20), we can now evaluate SδP (ω) given by Eq. (8)
for the two pumping geometries. For the intracavity pumping
geometry, we obtain

SδP,intra(ω) = hνP0

[
1 + |H (ω)|2

ω4
R

[a1 + a2ω
2]

]
, (21)
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μ

ω μ ω

FIG. 2. (Color online) Calculated relative intensity noise as a function of frequency (ν = ω/2π ) at different optical output power levels
at RT and at δopt for an InGaN/GaN MQW polariton LD with (a) electrical pumping and (b) intracavity pumping geometries, based on
the parameters given in Table I. The insets display the corresponding modulation transfer functions for the same output powers as in the
corresponding main figures.

where

a1 = 2η0

τp

[
1

2np∞

(
γ 2

xx〈Fnp
Fnp

〉 + 2γxxγpx

〈
Fnp

Fnx

〉

+ γ 2
px

〈
Fnx

Fnx

〉) − γxxω
2
R

]
(22)

and

a2 =
〈
Fnp

Fnp

〉
P0

hνn2
p∞

= 2η0

τp

(
1

τp

+ anx∞e−β�esc

)
. (23)

Once the expression of SδP (ω) is known, we can readily
determine RIN

�f
since both quantities are related by

RINintra

�f
= 2SδP,intra(ω)

P 2
0

= 2hν

P0

[
1 + |H (ω)|2

ω4
R

[a1 + a2ω
2]

]
. (24)

For this pumping geometry, we can point out the close
similarity of the RIN expression with that of conventional
LDs that only differs via the a1 and a2 coefficients.

For the direct electrical pumping geometry, the determi-
nation of the expression of the spectral density of the output
power SδP (ω) and hence that of RIN

�f
are more tedious because

of the form of the modulation transfer function, which is more
complex. We finally derive for RIN

�f
:

RINelec

�f

= 2hν

P0

[
1 + |H (ω)|2

ω4
R

[
a1 + a2ω

2 − A′ + 2η0

τp

γxxω
2
R

]]
,

(25)

where

A′ = −2
η0

τp

ω2
R

[
C1

(
C2

2 + c2n2
x∞n2

p∞ω2
)]−1[

cnxnpγxxω
4

+ (
C2C3 − C2γ

2
xx + C2C4γxx − C3C4cnx∞np∞

+C3cnx∞np∞γxx + C4cnx∞np∞γ 2
xx

)
ω2 + C2C3C4γxx

]
(26)

and

|H (ω)|2 = C2
1

(
C2

2 + c2n2
x∞n2

p∞ω2
)

(
C2

3 + γ 2
xxω

2
)(

C2
4 + ω2

) , (27)

where the expression of the Ci coefficients with i ∈ {1,4} are
given in the Appendix.

The polariton laser RIN is plotted in Figs. 2(a) and 2(b)
for the electrical and the intracavity pumping geometries,
respectively, based on the parameters listed in Table I and
using the expressions given in Ref. 20 for ne-h∞ , nx∞ , and np∞ .
It can be readily seen that as for conventional semiconductor
LDs, the expected minimum RIN of polariton LDs—whatever
the pumping geometry—is equal to 2hν

P0
, i.e., to the standard

quantum limit, also called shot noise floor. This is the case
for the high-frequency range, i.e., for frequencies well above
the relaxation resonance frequency. However, contrary to
conventional LDs where the excess intensity noise is mostly
dominating in the vicinity of ωR at high output powers, an
excess noise is still present at low frequencies (ω < 0.1ωR),
whose origin will be briefly commented on hereafter. For
the electrical pumping geometry it can also be seen that
for high optical output power levels, a shoulder (i.e., extra
noise) is present on the low-frequency side of the resonance,
which is inherited from the nonconventional line shape of
the modulation transfer function [cf. the inset of Fig. 2(a)].
In this latter geometry, the peculiar line shape of H (ω)
is also responsible for a sharp decrease in the RIN above
ωR—whose slope increases with output power—leading to
a much faster convergence toward the shot noise level than
under the intracavity pumping geometry, which exhibits a
behavior closer to that of conventional semiconductor LDs
with a RIN that falls off at high frequencies at 20 dB/decade
before reaching the shot noise level. Note also that the damping
of the RIN peak is much more pronounced for polariton LDs
having a direct electrical pumping geometry than for the
intracavity one. Finally, unlike conventional LDs, the RIN
peak gets narrower with increasing optical output power,
which is likely due to the absence of an equivalent gain
suppression factor in our modeling.23,26 Indeed, in order to
model properly the operating behavior of this former type of
devices, the damping factor, which enters in the expression of
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the modulation transfer function, includes a phenomenological
expression for the gain accounting for saturation phenomena
via a gain suppression factor.23 This decrease in the gain
with increasing current induces a broadening of |H (ω)|2 and
hence of the RIN peak, as can be directly inferred from
Eq. (24), which is, as we pointed out, fairly similar to that of
conventional LDs. The main underlying physical phenomenon
responsible for saturation is usually ascribed to intraband
carrier relaxation, which leads to a sublinear increase in the
intracavity photon density for large currents.27 In the case of
the modeling of polariton LDs, intraband carrier relaxation
is at the heart of the semiclassical Boltzmann equations that
are computed to derive the evolution of the carrier densities
along polariton branches as a function of the pumping rate.
Such an effect is thus phenomenologically included in the rate
equations (1) and (2), but contrary to the case of conventional
LDs it does not induce a broadening of the line shape of the
RIN peak with increasing optical output power. However, at
this stage we cannot fully discard the contribution of other
phenomena that could also induce a behavior similar to that
observed for conventional LDs. In particular, it was highlighted
by Tassone and Yamamoto that heating of excitons in the
reservoir above threshold would decrease the exciton-exciton
scattering efficiency, which would subsequently induce an
incomplete clamping of nx .28 Such an effect could manifest
itself in polariton LDs in a way similar to gain suppression in
conventional LDs.

In order to get more insights into RIN
�f

, we should notice
that the expression for the RIN derived for the intracavity
pumping geometry can be further simplified when considering
the power dependence of the a1 and a2 terms [cf. Eq. (24)].
This simplification step is much easier to perform for this
latter pumping geometry compared with the electrical one
because the modulation transfer function is identical to that
of conventional LDs. In this latter case, when only keeping
terms in a1 and a2 that depend on P0, we obtain

RINintra,approx

�f
= 2hν

P0
+ |H (ω)|2

ω4
R

〈
Fnp

Fnp

〉 2

n2
p∞

(
1

τ 2
x

+ ω2

)
.

(28)

The suitability of this simplified expression for the RIN
in polariton LDs having the intracavity pumping geometry
is illustrated in Fig. 3(a), where an excellent agreement is
observed between Eqs. (24) and (28) at low output power
levels. When setting ω = 0 in Eq. (28), we obtain

RINintra,approx

�f
(ω = 0)

= 2hν

P0
+ 2hν

P0

[
2

ω4
R

(
1

τp

+ anx∞e−β�esc

)
η0

τpτ 2
x

]
, (29)

where the second term on the right-hand side decreases as
1/P 3

0 since ω4
R ∝ P 2

0 . Consequently, this term will rapidly
drop below the shot noise floor with increasing power. From
Eq. (29), we therefore expect a low-frequency RIN

�f
converging

toward the shot noise level. Obviously this is not the case,
as can be seen in Figs. 2 and 3(a), because of an irreducible
offset introduced by the terms contained in the expression of a1

[Eq. (22)]. All of them being of similar weight, except for the

very last one (∝ ω2
R) that can be neglected, a tractable analytic

expression of the RIN at large optical output powers cannot
be readily derived from Eqs. (22)–(24). Finally let us recall
that for this specific geometry, the reported high-frequency
behavior of the RIN likely should be affected by the cutoff
frequency of the pumping LED, which was shown to amount
to 3.2 GHz for the set of considered parameters.20

As briefly mentioned above, at first sight such a simplified
treatment cannot be easily carried out for the electrical pump-
ing geometry due to the complexity of the modulation transfer
function. However, when applying Eq. (28) to this geometry
with the proper set of parameters, a reasonable agreement
is achieved between the exact and the simplified expressions
for RIN

�f
—especially at low output power—as can be seen in

Fig. 3(b), meaning thereby that the qualitative evolution of
the latter is, as could be anticipated, governed by the same
parameters. Contrary to the intracavity pumping scheme a
slight difference can be noticed for the high-frequency tail
of the RIN peak, whatever the output power level. In fact, it
can be shown that it arises from an extra term that is given in the
following improved expression for RIN

�f
under direct electrical

pumping that is also displayed in Fig. 3(b):

RINelec,approx

�f

= 2hν

P0

{
1 + |H (ω)|2

ω4
R

[〈
Fnp

Fnp

〉 η0

τpnp∞

(
1

τ 2
x

+ ω2

)

− 2η0

τp

C4
(
ω2

R − ω2
)
ω2ω4

R

ω4
RC2

4 + ω2C2
1 (cnx∞np∞ )2

]}
. (30)

III. EMISSION LINEWIDTH

Let us now discuss the expected evolution for the emission
linewidth (γpolLD) of a realistic polariton LD such as considered
so far, i.e., for a device operating at RT, as a function of the
pumping strength Px . Note that the goal of this section does
not consist in providing a detailed account of the calculation of
γpolLD that would require a proper quantum optics treatment—
which is clearly beyond the scope of the present work—but
it rather aims at pointing out the critical parameters that will
likely affect γpolLD based on available theories and experiments
mostly carried out at low temperature on mature systems.

During the past decade or so, several theoretical approaches
have been considered that address the linewidth problem of an
optically pumped polariton laser, many of them making an
obvious parallel with semiconductor laser theory.28–34 Those
theoretical treatments usually rely on the derivation of the
power/emission spectrum that is obtained by taking the Fourier
transform of the two-time correlation function of the amplitude
of the lower polariton ground state, for which the temporal
fluctuations are accounted for by random phase fluctuations
in the same way it is done for conventional lasers.35 Because
the above-mentioned analyses are performed by considering a
noise-free pump, they can be readily extended to the present
electrical injection case. In the limit where the condensate
is still weakly populated, those theories converge toward a
Schawlow-Townes limited linewidth, i.e., in the noninteracting
limit the latter is expected to evolve proportionally to the

115305-5
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FIG. 3. (Color online) Calculated RIN as a function of frequency (ν = ω/2π ) at two different optical output power levels (low and high)
at RT and at δopt for an InGaN/GaN MQW polariton LD for (a) the intracavity pumping geometry using Eqs. (24) (black lines) and (28) (red
lines) and (b) for the direct electrical pumping geometry using Eqs. (25) (black lines), (28) (red lines), and (30) (blue dashed-dotted lines). See
text for details.

inverse of the number of condensed particles.28,31,34,36 Note
here that number fluctuations are also responsible for an
enhancement of the linewidth in the same way it occurs in
semiconductor LDs,37 leading to

γpolLD = γST(1 + α2), (31)

where γST is the Schawlow-Townes linewidth and α2 is
the linewidth enhancement factor due to the carrier noise
contribution induced by the amplitude to phase coupling
terms. However, other parameters have been shown to impact
on the γpolLD(Px) evolution, which are stemming from the
interacting nature of polaritons. Thus it was first worked
out by Tassone and Yamamoto,28 and then by Porras and
Tejedor,29 that a self-phase modulation term, which is not
present in conventional lasers, should lead to a significant
decoherence process in the polariton condensate and hence to
a significant increase in the polariton laser linewidth with in-
creasing pumping strength. This increase was shown to remain
negligible compared with the Schawlow-Townes linewidth
provided Vintnp∞|X0|2 
 γST,28,29 where Vint ∼ 6EB

Xa2
B/S is

the self-interaction occurring in the ground state—which is
known to be responsible for the blueshift of the polariton
branches—with EB

X the QW exciton binding energy, aB the
effective Bohr radius, and |X0|2 is the excitonic fraction of
ground-state polaritons.24,28,38 At this stage, it is worth pointing
out that this additional term was first credited to be responsible
for the agreement between theory and “early” experiments
as the latter displayed a net increase in the linewidth above
the condensation threshold of optically pumped MCs that
was ascribed to the exciton-exciton mediated interaction
occurring in the condensate.3,4,39–41 However, it turned out
that this qualitative agreement was purely fortuitous since
initial linewidth measurements led to an overestimate of this
parameter due to the significant intensity noise fluctuations
of the pump lasers. The true emission linewidth associated
with polariton condensates was only made accessible thanks
to the use of semiconductor laser diodes free from intensity

fluctuations on the ns time scale, leading to a coherence time of
120–150 ps in a CdTe MC at cryogenic temperatures.36 Recon-
ciliation between theoretical estimates31,33,34 and experimental
results36 has been obtained via the proper consideration of
fluctuations in the number of condensed particles. The impact
of the latter is minimized by the replacement of ground-state
polaritons escaping from the cavity by high energy lower
polaritons. It was shown that the likely related physical
mechanism not only originates from stimulated scattering
of polaritons from the reservoir but also from nonresonant
polariton-polariton scattering processes between the ground
state and lower polariton excited states (a priori not belonging
to the reservoir).31,33,34,36 The important related aspect is that
the time evolution of the ground-state Hamiltonian occurs
at a much slower rate than the cavity loss rate, thereby
allowing keeping a significant coherence degree that can be
directly inferred from the measured decay time τ (2)

c of the
second-order (intensity) correlation function g(2)(τ ).36 When
including such scattering processes, Haug and co-workers34

showed that the linewidth formula retained a form similar to
Eq. (31), where α2 = (�ω


)2, with �ω is the frequency shift

associated with phase fluctuations, and  the decay rate of the
density fluctuations, which is slowed down due to the above-
mentioned nonresonant scattering term. Let us note here that
such an evolution of the linewidth does apply to the case of
planar microcavities, i.e., in the limit of a large surface emitting
area S. However, for sufficiently small mesa structures the
energy gap between the polariton ground state and the first
excited states can become larger than the energy broadening. In
this latter case, the weight of the nonresonant scattering terms
is expected to be quenched, thereby leading to a significant
linewidth reincrease with increasing pumping strength.28,34

Note also that for small mesa structures corresponding to small
cavity mode volumes, i.e., volumes close to the cube of the
emission wavelength, one might potentially expect the Purcell
effect to affect in some ways the linewidth of polariton LDs
due to the enhancement in the spontaneous emission rate of
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excitons. However, as far as III nitrides are concerned, carrier
injection in microcavity pillars of reduced diameter, i.e., of
dimension close to a micron or even lower, has remained
relatively unexplored so far and hence the suitability of such a
geometry should be first investigated.

Now that we have recalled the impact of the main terms
governing γpolLD, we shall extrapolate their impact on III-
nitride polariton LDs operating at room temperature. First, at
a given temperature the impact of the self-phase modulation
term is expected to be less pronounced in such devices than
in their arsenide and telluride counterparts owing to the
much smaller size of the Bohr radius in III nitrides, i.e.,
the magnitude of Vint should be smaller than in those two
other systems, a comparison already invoked by Kasprzak and
co-workers when discussing the differences between CdTe-
and GaAs-based MCs.40 Note also that in III-nitride MCs,
recent observations indicate that the LPB blueshift is not only
due to the polariton-polariton interaction but also to saturation
effects,25,42 which means that in this system a direct estimate
of the injected carrier density will not be straightforward. In
addition, it was shown that at RT the δopt value, corresponding
to the minimum pumping strength required for condensation
whatever the pumping scheme—namely, an optical22,25 or
electrical20 one—is negative, meaning thereby that ground-
state polaritons are more photonlike than at cryogenic temper-
atures, where it was shown that δopt ∼ 0, whatever the material
system.22,25,43,44 As a consequence, the RT excitonic fraction
will be smaller than at cryogenic temperatures. Overall this
should limit the magnitude of Vintnp∞|X0|2 in III-N polariton
LDs. Here we recall that the observed shift of δopt toward
negative δ values with increasing temperature was shown to
arise from both a decrease in the relaxation time due to a
faster relaxation dynamics,22,45 and thermal detrapping effects
from the bottom of the trap formed in momentum space by the
LPB.22,46 Note that this latter aspect is not included in currently
available emission linewidth theories of polariton condensates
since they only focus on the low-temperature case. As far
as the impact of disorder is concerned, it was highlighted
by Whittaker and Eastham31 that the emission linewidth of
polariton condensates might enter into the motional narrowing
regime, leading to very long coherence times in MC systems
characterized by a low photonic disorder. Though in early
III-N MCs grown on a c-plane sapphire substrate the in-plane
cavity disorder was known to play a major role,47 the present
III-N polariton LDs would be grown on freestanding GaN
substrates,20 leading to a much better uniformity, as can
already be anticipated from the characterization of defect-free
nearly lattice-matched InAlN/GaN distributed Bragg reflectors
(DBRs)48 and empty cavities using such DBRs.49

In order to be more quantitative and thus provide the readers
with some numbers for the III-nitride material system, we can
give an expected estimate for γST. To this end, we make use
of the effective ground-state polariton lifetime at threshold
(τ ′

p), which can be connected to γST in the very same way as
it is done for conventional semiconductor LDs.23 Using the
rate equation (2), i.e., that including the terms of spontaneous
origin, we can extract the expression of τ ′

p, which is given by

1

τ ′
p

= 1

τp

− [
a(1 − e−β�esc ) + cn′

e∞ + bnx∞
]
nx∞ , (32)

 = 
= 

= 

 = 

γ
μ

FIG. 4. (Color online) Evolution of the modified Schawlow-
Townes linewidth of polariton LDs at optimum detuning as a function
of temperature for the electrical (red dots) and the intracavity (black
dots) pumping geometry. See text for details.

where the second term on the right-hand side of Eq. (32)
is obviously the equivalent for the cavity polariton case to
the product of the confinement factor with the group velocity
and the material gain per unit length in VCSELs. It describes
the increase in the ground-state polariton lifetime resulting
from the efficient relaxation of excitons from the reservoir
that will compensate for polariton losses. The modified
Schawlow-Townes linewidth formula when accounting for the
1/2 correction factor23 is then such that

γST = h

4πτ ′
p

. (33)

The evolution of γST for the two pumping geometries we
consider for III-N polariton LDs is displayed in Fig. 4 at the
optimum detuning as a function of temperature. Note here
that the exact behavior reported for temperatures below 200 K
should only be considered as indicative because electrically
injected devices become progressively less efficient with
decreasing temperature. This is especially true for III-nitride
based devices if we take into account the large activation
energy (EA) of Mg, which acts as a deep acceptor (EA ∈
110–190 meV),50 hence leading to a significant decrease in
p-type conductivity when lowering the temperature, which
is also due to the concomitant decrease in hole mobility. In
particular, the impact of EA was neglected in the semiclassical
Boltzmann treatment, leading to the rate equations (1) and
(2).20 Provided linewidth enhancement effects do not play a
significant role, which should be the case at least at cryogenic
temperatures according to the most recent theories,31,34,36 it is
predicted that the linewidth of III-N polariton LDs could be
as narrow as 5.7 × 10−2 μeV, i.e., 14 MHz at RT. The slightly
narrower linewidth predicted for the direct electrical pumping
geometry, 5.7 × 10−2 vs 7.3 × 10−2 μeV (18 MHz) for the
intracavity one, is likely inherited from the strong dependence
of the effective ground-state polariton lifetime given by
Eq. (32) on the term proportional to the exciton-exciton
scattering rate. The latter is slightly larger for the direct
electrical pumping geometry compared with the intracavity
one (cf. Table I), which is inherited from the δopt value that
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is closer to zero detuning with this geometry (cf. Table I and
Ref. 20). Qualitatively we can understand that when going
toward more positive detunings, the critical density leading
to condensation increases,22 hence nx∞ , which subsequently
implies an overall decrease in 1

τ ′
p

( 1
τp

being already smaller) and

thus in γST. At such a preliminary stage, we can state that those
linewidth values for both pumping geometries should compare
favorably with respect to those reported for VCSELs.51,52

IV. CONCLUSIONS

In summary, we have carried out an analysis of the relative
intensity noise per unit bandwidth in polariton LDs for two
relevant pumping geometries, namely, the direct electrical and
the intracavity ones, in the framework of a theoretical treatment
adapted from that applied to conventional semiconductor LDs
using rate equations including Langevin noise sources. The
resulting general expressions can be applied to all inorganic
semiconductor polariton LDs, but numerical calculations have
been performed in the specific case of III-N devices. It was
shown that in the high-frequency range the expected minimum
RIN of polariton LDs—whatever the pumping geometry—is
equal to the standard quantum limit ( 2hν

P0
). The general line

shape of the RIN as a function of frequency and optical
output power has been discussed for the two geometries
and approximate (simplified) expressions for the RIN have
been given. We have then addressed the expected evolution
of the emission linewidth of those devices by considering
the most advanced theories available to date. The modified

Schawlow-Townes linewidth has been estimated from the
effective ground-state polariton lifetime at threshold leading to
a predicted linewidth as narrow as ∼15 MHz at RT for the two
pumping geometries when using a consistent set of parameters
for III-nitride polariton LDs.
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APPENDIX

Hereafter we give the explicit expression of the Ci coeffi-
cients appearing in Eqs. (26), (27), and (30):

C1 =
γpx

τp

(
W + 1

τe-h

)
γpx(W − cnx∞np∞ ) + γxxcnx∞np∞

, (A1)

C2 = γpx(W − cnx∞np∞ ) + γxxcnx∞np∞ , (A2)

C3 = γpx

τp

− ω2 = ω2
R − ω2, (A3)

and

C4 = W + 1

τe-h
. (A4)
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13G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, and N. Grandjean,
Appl. Phys. Lett. 93, 051102 (2008).

14Y.-Y. Lai, Y.-P. Lan, and T.-C. Lu, Appl. Phys. Express 5, 082801
(2012).
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