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Dynamics of dissipative multiple exciton generation in semiconductor nanostructures
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The population dynamics of single exciton and biexciton states in a simple model of a spherical semiconductor
nanostructure is modeled numerically in the presence of Coulomb coupling between single and two exciton
states and a dissipation channel in order to study the transient biexciton population that occurs in an optically
excited semiconductor nanocrystal. The results show that the system evolution strongly changes if the dissipation
is included. In a certain range of parameters, the growth of the exciton number (multiple exciton generation
process) is fast (on picosecond time scale) and the following decay (Auger process) is much slower (hundreds
of picoseconds). In some cases, the maximum occupation of the biexciton state increases when dissipation is
included. The dynamics of an ensemble of nanostructures with a certain size dispersion is studied by averaging
over the energy of the biexciton state which can be different for each single nanostructure. The validity of Markov
and secular approximation is also verified.
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I. INTRODUCTION

One of the possible ways of improving the efficiency of the
existing solar cells is to exploit the process of multiple exciton
generation (MEG) by impact ionization in semiconductor
nanocrystals (NCs).1 Such an effect consists in generation of
two or more electron-hole pairs by a single high-energy photon
and thus converts the excess above band-gap energy into
useful current. This process is enabled by Coulomb coupling
between single-pair (exciton, X) states and two-pair (biexciton,
BX) states in a NC (or, in general, between states with n

and n + 1 pairs) and consists in an intraband relaxation of
a carrier (typically an electron, due to larger energy scales
of confined states in the conduction band) accompanied by a
creation of a new electron-hole pair. In this way, the excess
energy obtained by an electron upon absorbing a high-energy
photon is not dissipated in phonon relaxation processes and
becomes available for photovoltaic conversion within a certain
time before the multiple exciton state decays via Auger
recombination to a single exciton configuration (which is
typically very long living).

The initial experimental results, showing very high values
of the quantum efficiency of photoconversion in various
systems,2–9 were subsequently reinterpreted10–14 based on the
growing understanding of the experimental difficulties that
might lead to overestimating the achieved numbers of excitons
per single absorbed photon.15–17 Nonetheless, more recent
experiments on real NC-based solar cell devices18,19 do provide
a direct proof of the usefulness of this process in solar energy
conversion. Theoretically, the description of the X and BX
spectra and the X-BX couplings that are essential for the
MEG process has been proposed using the methods of density
functional,20,21 pseudopotential,22–25 tight binding,26–29 and
k·p theory.30–32

Along with the investigation of these structural properties,
much attention has been devoted to the carrier dynamics in a
nanocrystal under optical excitation at energies high enough
to generate multiple excitons, in particular to the role of
decoherence and relaxation. These studies included dynamical
simulations of few-level models30,33 as well as of many-level
models aiming at reproducing the density of X and BX states

in the high-energy sector of a nanocrystal.29,31,34–36 In many
cases, dissipative effects are included in these models on a
phenomenological level and expressed by a number (usually
small) of dephasing rates.26,30,31,33 In this way, the multiple
exciton generation could be described as a process competing
with exciton relaxation30,31 and, in certain cases, suppressed by
coupling to the dissipative environment (typically considered
to be phonons).26

In this paper, we study the time evolution of the X-BX
system within a minimal, three-level model that accounts
both for the impact ionization and Auger recombination in
the presence of dissipation. Expressing the couplings to the
environment in a generic form in terms of a physically
motivated set of spectral densities allows us to characterize the
emerging coupling to the Coulomb-correlated X-BX eigen-
states and to discuss the dependence of the rates of various
phonon-assisted processes (relaxation and impact ionization)
on the Coulomb coupling itself. We show that, on the general
level, the dissipative impact ionization process is determined
by the same couplings to the dissipative environment as the
carrier relaxation and dephasing. Furthermore, we find out that
the system dynamics realizes various dynamical scenarios,
depending on the alignment of the X and BX levels and
on the relation between the level spacing and the spectral
properties of the coupling to the environment (in particular,
the high-frequency cutoff of the spectral density). As we
show, the presence of dissipation considerably modifies the
system dynamics and, in many cases, increases the efficiency
of impact ionization. We study also the role of the excitation
conditions (pulsed, continuous wave or incoherent thermal)
and show that the strong differences between the system
kinetics under different excitation conditions33 are washed
out by dissipation. Finally, we assess the validity of Markov
and secular approximations for the description of dissipation-
assisted impact ionization in nanocrystals.

The paper is organized as follows. In Sec. II, we define
the model (Sec. II A), describe the master equations for the
system evolution (Sec. II B), and discuss the formal structure
of the carrier-environment coupling (Sec. II C). In Sec. III,
the results of our simulations are discussed: first the dynamics
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for a single nanostructure (Sec. III A) and in an ensemble
of nanostructures (Sec. III B) is studied in the Markov limit
and then non-Markovian corrections are discussed (Sec. III C).
Finally, Sec. IV concludes the paper.

II. MODEL

A. The system

The density of X states in the high-energy sector of the NC
spectrum, relevant to multiple exciton generation, is very high
and the density of BX states is even higher. Therefore, models
of carrier kinetics proposed for a description of the MEG often
attempt to include the full NC spectrum.29,31,34–36 However,
recent analysis37 suggests that the coupling between X and
BX states is restricted by selection rules that considerably
limit the number of BX states coupled to an X state. Hence,
as discussed in more detail in Appendix A, only one or a
few BX states appear in the spectral vicinity of a given X
state. Moreover, relaxation processes not related to Coulomb
couplings are essentially single-particle events, which means
that only a small subset of states can be reached by relaxation
from a given initial state. Thus, in many cases, the essential
features of the X-BX dynamics underlying the MEG can
be expected to be determined by carrier kinetics within
groups of a few states. Although the single-band model
is a crude approximation for high-energy states, including
band mixing will change neither the essential selection rules
for the X-BX coupling37 nor the overall density of the
states.

Consider an optically active (bright) excited X state of a
NC. At lower energies, other X states are present to which the
carriers can relax. For our purpose, it is sufficient to consider
one such level (hence, the possibility of relaxation between
various BX levels is neglected). We will consider situations
in which a BX state Coulomb coupled to the bright X state
is present in-between the two X states, which is a common
situation for highly excited X states, where the coupled BX
states are rather dense. Taking into account the selection rules
for interband Coulomb couplings,37 it is rather unlikely that
this BX state will also be coupled to the other, lower X
state. Therefore, for our dynamical modeling, we consider
a three-level model of a nanocrystal, as shown in Fig. 1(a),
where A and B denote the two X states, 2 is the BX state,
and the additional ground state G corresponds to the empty
nanostructure. We assume that the BX state 2 is coupled only
to the state B by a Coulomb coupling V which is taken to
be a real parameter. An example of carrier configurations
corresponding to the basis states of our model is shown in
Fig. 1(c), where the green arrows show the transitions that can
be induced by the Coulomb coupling. The Coulomb-induced
transition that increases the number of electron-hole pairs is
generally referred to as impact ionization, while the opposite
one is the Auger recombination process.

The Hamiltonian of the carrier system is then

H0 = εA|A〉〈A| + εB |B〉〈B| + ε2|2〉〈2|
+V (|B〉〈2| + |2〉〈B|), (1)

where εA, εB , and ε2 are the energies of the states A, B, and
2, respectively. The system is excited by a classical light pulse

FIG. 1. (Color online) (a) The schematic diagram of system states
and couplings. The green arrow shows the laser excitation while
the black arrows represent the environment-induced transitions. The
Coulomb coupling between X and BX configurations is shown with
a red arrow. (b) The diagram of system eigenstates with the optical
excitation paths (green) and environment-induced transitions (blue).
(c) Graphical representation of the states and processes involved,
referring to the original basis states and to the Hamiltonian in Eq. (1).

which has the frequency � close to the G ←→ B transition.
By standard selection rules, this pulse couples the ground
state only to the X states. We assume that only the state B is
bright.

In addition, the system undergoes dissipative dynamics due
to the interaction with its environment. This can be coupling
to phonons, charge fluctuations, or any other kind of external
perturbation. We assume neither any particular mechanism
of dissipation nor a specific form of the coupling to the
environment and aim at a model which is independent of
the nature of this coupling. However, since our basis states
have a definite number of particles and the Coulomb coupling
between X and BX states is included explicitly in the model,
as given by Eq. (1), only the environment-induced transitions
that appear in the absence of the X-BX coupling should be
taken into account at the level of the system-environment
Hamiltonian [see Fig. 1(a)]. It is also assumed that the BX
states Coulomb-coupled to the optically active X states can not
decay radiatively to an X state due to selection rules so that
radiative recombination from these BX states is a very slow
process. This is justified by the fact that in the transition from
the first to the second configuration in Fig. 1(c), the original
electron changes its state and the new electron-hole pair can be
created in a state which is to a large extent arbitrary. Therefore,
typically, the configuration will not involve an electron-hole
pair in states for which the optical selection rules allow a
radiative recombination.
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Thus, the interaction with the environment can be described
by the Hamiltonian

Hint = |A〉〈A|RAA + |B〉〈B|RBB + |2〉〈2|R22

+ |A〉〈B|RAB + |B〉〈A|RBA, (2)

where Rαβ (with α,β = A,B,2) are certain environment
operators with the property Rαβ = R†

βα .
The system evolution is described in the basis of eigenstates

of H0: |A〉, |+〉, and |−〉, where |+〉 and |−〉 result from the
Coulomb coupling between the X state |B〉 and the BX state
|2〉:

|+〉 = cos(θ/2)|B〉 + sin(θ/2)|2〉,
(3)|−〉 = − sin(θ/2)|B〉 + cos(θ/2)|2〉.

Here, θ is the mixing angle, defined by tan θ = 2V/(εB − ε2),
which is close to 0 for weakly mixed X and BX states and
goes to ±π/2 if a nearly degenerate pair of X and BX states is
strongly coupled. The energies of these states are E± = Ē ±
U , where Ē = (εB + ε2) /2 and U = [(εB − ε2)2 /4 + V 2]1/2.
In the eigenstate basis, the interaction Hamiltonian can be
written as

Hint =
∑

i,j=A,±
σijR̃ij , (4)

where σij = |i〉〈j | and

R̃A+ = cos
θ

2
RAB, R̃A− = − sin

θ

2
RAB, (5a)

R̃±± = 1

2
(RBB + RAA) ± 1

2
cos θ (RBB − RAA) , (5b)

R̃+− = 1

2
sin θ (R22 − RBB) , (5c)

with R̃+
ij = R̃ji . Note that due to the Coulomb-induced mixing

of the original basis states, dissipative coupling between
all the states appears, as schematically shown in Fig. 1(b).
Since the new states are eigenstates that already include the
Coulomb interaction, their occupation can not change due to
the evolution in the absence of dissipation and the average
number of excitons in the system is fixed upon excitation (see
Appendix B). The dissipative coupling to the environment
creates a mechanism for the subsequent evolution. Due to
the mixing between the X and BX states, transitions between
any pair of states become possible. On the other hand, if the
mixing is not very strong (θ � 1), then the states |+〉 and
|−〉 are close to |B〉 and |2〉 and have a predominantly X and
BX character, respectively. Hence, the dissipative transitions
change the number of electron-hole pairs. We will refer
to these transitions as dissipative impact ionization (|+〉 →
|−〉 or |A〉 → |−〉) and dissipative Auger recombination
(|−〉 → |+〉 or |−〉 → |A〉) in order to stress the role of the
environment in these processes. Note, however, that depending
on the alignment of the levels and temperature, only some
of these transitions may be efficient [for instance, the major
sequence for the level alignment as in Figs. 1(a) and 1(b) would
be |+〉 → |−〉 → |A〉], with the average number of excitons
first increasing and then decreasing.

B. Evolution: Master equation

While Markov approximation has commonly been used
to model the dissipation effect on the MEG process in
nanocrystals (often on the level of phenomenological dephas-
ing rates),29–31,33–36 its validity is not obvious for the present
system. Indeed, as observed in experiments7,38 and reproduced
by our simulations discussed in the following, only the Auger
recombination phase of the system dynamics is slow, while
the initial impact ionization dynamics takes place on much
shorter, picosecond time scales. Therefore, in this paper, we
will compare the Markovian dynamics with a more general
approach, where the reservoir memory is taken into account.
In both cases, the evolution of the system will be described
in the density matrix formalism by solving the appropriate
quantum master equation.

Thus, the starting point for our modeling of the system
evolution is the time-convolutionless master equation for the
reduced density matrix of the charge subsystem of our model
in the lowest order. In the interaction picture, this equation has
the form39

˙̃ρ = − 1

h̄2 TrR

∫ t

0
dτ [Hint(t), [Hint(τ ),ρ̃(t) ⊗ ρR]] , (6)

where Hint(t) and ρ̃ are the interaction Hamiltonian and the
reduced density matrix of the nanocrystal in the interaction
picture, ρR is the density matrix of the reservoir at thermal
equilibrium, and TrR denotes the partial trace over the
reservoir degrees of freedom. Upon substituting the interaction
Hamiltonian from Eq. (4) and taking the partial trace, this
yields39

˙̃ρ(t) = −1

2

∑
ijkl

ei(ωi−ωj +ωk−ωl )t

×�ijkl(t)[σijσkl ρ̃(t) − σklρ̃(t)σij ] + H.c., (7)

with ωi = Ei/h̄ and the time-dependent rates

�ijkl(t) = 2

h̄2 Re
∫ t

0
ds ei(ωl−ωk)s〈R̃ij (s)R̃kl〉, (8)

where R̃ij (s) denotes the operator R̃ij in the interaction
picture with respect to the reservoir Hamiltonian and we
have neglected the imaginary parts of the rates that describe
reservoir-induced energy shifts.

The reservoir correlation function (“memory function”)
〈R̃ij (s)R̃kl〉 is related to the spectral density39

R̃ijkl(ω) = 1

2πh̄2

∫
dt eiωt 〈R̃ij (t)R̃kl〉 (9)

for i,j,k,l = A,±, which fully characterizes the dissipative
coupling to the environment. In the same way, spectral den-
sities Rαβγ δ(ω) are defined in terms of correlation functions
between the operators Rαβ in the original basis [Eq. (2)]. If the
reservoir correlations decay on a certain time scale (reservoir
memory time), then, on longer time scales, the rates become
constant and equal to

�ijkl(t)
t→∞−→ �ijkl(∞) = 2πRijkl (ωl − ωk) .

Moreover, as follows from Eq. (8), in the absence of degener-
acy, the rates other than �ijji and �iijj contain an oscillating
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factor and can be assumed to be small if the separation of
the levels is large and the overall system dynamics is slow.
Therefore, it is common to use the secular approximation
where the terms containing such oscillating rates are neglected.
The rates of the type �iijj at long times are proportional to
the corresponding spectral density at zero frequency, which
vanishes in many common situations (super-Ohmic reservoirs,
including phonons, and Ohmic reservoirs at zero temperature).
Thus, one reaches the commonly used Markov approximation
with the evolution equation in the Lindblad form,39 which in
the Schrödinger picture can be written as

ρ̇ = − i

h̄
[H0,ρ] +

∑
ij

�ij

(
σjiρσij − 1

2
{σijσji,ρ}

)
, (10)

where �ij = �ijji(∞).

C. Environment: Spectral densities

Obviously, the spectral densities defining the transition rates
are related to those in the original basis. In particular,

R̃−++−(ω) = 1
4 sin2 θ [R2222(ω) − R22BB(ω)

−RBB22(ω) + RBBBB(ω)], (11)

R̃A±±A(ω) = 1
2 (1 ± cos θ ) RABBA,

with Rjiij (ω) = Rijj i(ω).
It is clear that the relevant spectral densities R̃ijji de-

scribing the transitions between Coulomb-correlated X-BX
configurations are combinations of the spectral densities Rαβγ δ

that describe dephasing and intraband relaxation between
X and BX states. Interestingly, the transition between the
two Coulomb-mixed states, that is, the impact ionization
process, described by R̃∓±±∓ is entirely related to the diagonal
couplings between the original states and the environment.
Obviously, the corresponding rate vanishes for small X-BX
mixing as θ2 ∼ [V/(εB − ε2)]2. On the other hand, the tran-
sition to the other X state A (relaxation or impact ionization)
is governed by the off-diagonal couplings, which are related
to intraband relaxation between these states. If the diagonal
and off-diagonal couplings are of similar magnitude (as it is
the case, e.g., for carrier-phonon couplings), then the impact
ionization and Auger recombination are formally suppressed
by a factor sin2 θ or sin2 θ/2 as compared to relaxation.
However, as we will show in the following, what really matters
is the frequency dependence of the reservoir spectral density
which can make the impact ionization process favorable,
depending on the X-BX level alignment.

The details of the system-environment coupling may vary
for different nanocrystal systems and, to our knowledge
no general microscopic theory has been proposed for its
exact treatment. Hence, in most of our simulations, we
take the spectral densities in the original basis in the sim-
plest Ohmic form Rαβγ δ(ω) = aαβγ δ [nB(ω) + 1] J (ω), where
J (ω) = (J0ω/ω0) exp[−(ω/ω0)2] (see Sec. III C for compari-
son with a super-Ohmic case).

Here, nB(ω) is the Bose distribution function, J0 is the
overall magnitude of the dissipation, and ω0 is the cutoff
frequency. In the simplest case of lowest-order acoustic
phonon processes, ω0 is on the order of R/c, where c is the
speed of sound, which yields a value on the order of ps−1. This

can be different if multiple-phonon processes are included. The
values of the coefficients aαβγ δ follow from the physical nature
of the carrier-environment coupling: the spectral densities
Rααββ(ω) result from diagonal couplings between the carriers
and their environment. It seems reasonable to assume that
these couplings are at least approximately proportional to the
charge density (this is true, e.g., for carrier-phonon couplings
as well as for Coulomb couplings to fluctuating background
or impurity charge). Thus, typically, R22 = 2RBB and, in
consequence, a22BB = aBB22 = 2, a2222 = 4, and aαβγ δ = 1
otherwise.

As we will show, the dissipative X-BX dynamics that results
in MEG depends to some extent on the excitation conditions.
Nevertheless, instead of including the electromagnetic field
explicitly in our simulation we note that the excitation may
fall essentially in three classes: a short (spectrally broad)
pulse excites an optically active (bright) X state, a long
(spectrally narrow) pulse excites selectively an eigenstate
of the system, and broad-band thermal radiation excites an
incoherent mixture of system eigenstates, proportionally to
their overlap with the bright X state (see Appendix B for
details). Thus, as the initial state we take the state |B〉,
corresponding to an ultrafast coherent excitation (a broad-band
laser pulse), a pure |+〉 or |−〉 state for a narrow-band
laser pulse, or a mixture of the eigenstates |+〉 and |−〉,
corresponding to incoherent excitation by thermal radiation.

III. RESULTS

A. Markovian kinetics in a single system

Several parameters play a crucial role in the system
kinetics: the energy differences between the X state A, the
excited state B, and the BX state 2, the Coulomb coupling
between the X and BX states, and the parameters governing
the dissipative relaxation process (the magnitude J0 and the
frequency cutoff ω0). In this section, we study this kinetics for
various alignments of the states, assuming fixed values of the
dissipation parameters J0 = 1 ps−1, ω0 = 2 ps−1 and compare
the results to the case without dissipation. We assume the
value of the interband Coulomb coupling V = 1 meV which
is typical for the X-BX coupling in a nanocrystal of 3-nm
radius.37

In the absence of Coulomb coupling, there is no mechanism
for a transition to the BX state (this state is completely
decoupled), hence, only relaxation between the states B and
A takes place. This is shown in Fig. 2 (the dynamics in this
case is independent of the excitation conditions). In this case,
the BX state is indeed never occupied and the total number
of excitons Nx remains equal to one. The only process is the
intraband occupation transfer from the initial state B to the
dark X state A.

The variation of the state occupations and the average
number of excitons in the presence of a realistic Coulomb
coupling is shown in Fig. 3 for the case of coherent ultrafast
excitation. Under these excitation conditions, the initial system
state is |B〉, hence Nx = 1. When the bright state |B〉 and the
BX state |2〉 are close to each other [Figs. 3(a) and 3(b)],
the Coulomb interaction leads to strong mixing of the states
|B〉 and |2〉. As a result, transitions between the resulting
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FIG. 2. (Color online) The variation of the state occupations NA,
NB , and N2 and the average number of excitons Nx in the absence of
Coulomb coupling at T = 0 K.

eigenstates are efficient, which means that the dissipative
impact ionization is very fast as manifested by the rapid
growth (below 1 ps) of the occupation of the state |2〉 and
the corresponding increase of the average number of excitons
(the lower eigenstate is still predominantly biexcitonic). Since
the initial state |B〉 is a superposition of system eigenstates,
there is an intense oscillation at the beginning of the process,
but its amplitude goes to zero in about 10 ps. Later on, the
system relaxes to the state |A〉, which corresponds to the Auger
recombination. The BX state decays in this process on a time
scale of about 150 ps. The slow rate of the Auger process is
due to the relatively large energy distance to the state A, which
makes the relaxation to this state ineffective.

For another configuration [Figs. 3(c) and 3(d)], when
the BX state is shifted closer to the state |A〉, the relax-
ation behavior does not change significantly. However, the
maximum occupation of the state |2〉 is much lower. This
results from the larger energy spacing between the states
which is beyond the frequency cutoff of the spectral density,
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FIG. 3. (Color online) The occupations of the system states (right
panels) and the average number of excitons (left panels) for two
possible alignments of the energy levels at T = 0 K. In the left panels,
the average number of excitons in the case without dissipation is also
shown (green lines). Coherent ultrafast excitation is assumed here.

which considerably suppresses the relaxation to the state |−〉
which is a predominantly BX state. Thus, in the competition
between the impact ionization (transition to the state |−〉
or, almost equivalently, to the BX state |2〉) and the usual
relaxation (transition to |A〉), the latter starts to dominate.
In addition, the similar energy spacings εB − ε2 and ε2 − εA

make the Auger recombination from the state 2 to the state A

much more effective in comparison to the impact ionization.
In this case, the oscillation amplitude decays in a slightly
longer time of a few tens of picoseconds. In both of these
configurations, the impact ionization competes strongly also
with the Auger recombination, the latter being faster in the
second configuration.

In the absence of dissipation, J0 = 0, for both the above-
mentioned configurations, the average number of excitons
oscillates constantly [green lines in Figs. 3(a) and 3(c)].
However, as one could expect, the amplitude of the oscillation
is different for various configurations due to different degrees
of mixing between the eigenstates. Note that for the first
alignment [Figs. 3(a) and 3(b)], the number of excitons
generated in the presence of dissipation is larger than that
achieved without dissipation (taking the average of oscillation
in both cases).

At higher temperatures [Fig. 4(a)], the relaxation dynamics
does not change considerably, but the oscillations decay in a
shorter time. The final average number of excitons goes up at
higher temperatures because of nonzero thermal occupations.

Under incoherent excitation, according to the Fermi golden
rule, the system eigenstates are excited proportionally to their
coupling to the light, that is, to the admixture of the bright
state |B〉. Since in the presence of the Coulomb coupling, the
eigenstates |+〉 and |−〉 are superpositions of the original X
state |B〉 and BX state |2〉, they are characterized by the average
number of excitons between 1 and 2. The system dynamics in
this case, shown with the red line in Fig. 4(b), is very similar to
that following a coherent excitation, but no oscillations are seen
since no coherence between the eigenstates is present. There
is again a strong competition between the impact ionization,
the X relaxation, and the Auger recombination. As a result,
the occupation of the BX state again grows rapidly and then
decays completely on a longer time scale.

Under these excitation conditions, in the absence of dissipa-
tion, the average number of excitons would remain constant,
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excitons without dissipation. Level alignment as in Figs. 3(a) and 3(b).
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but in the presence of dissipation it increases considerably
to a maximum value and then decays. It is clear that the
maximum average number of excitons resulting from the
dissipative MEG dynamics in this case exceeds that following
the excitation in the absence of dissipation. This is due to the
dissipative transition to the predominantly biexcitonic state
|−〉, which develops on a time scale much shorter than the
subsequent Auger transition to the lowest state |A〉.

It can be seen by comparing Fig. 4(b) (red line) and Fig. 3
that for incoherent excitation, the value of the average number
of excitons is equal to the mean value of the oscillations that
could be seen in Fig. 3. The same holds true also for the other
level alignments, not shown in Fig. 4.

Under the third possible excitation conditions, when a
spectrally narrow light field is used, a light beam is tuned
to excite just the state |−〉 or |+〉 (see Appendix B for details).
These two cases are also shown in Fig. 4. One can see that
the only difference between this excitation regime and the
incoherent one is the behavior of the BX occupation at the
very beginning of the evolution, which can easily be explained:
Since the energy of the state |+〉 is higher than the energy
of the state |−〉, starting with the state |+〉 will cause the
transition from |+〉 to |−〉, which results in a rapid growth of
the average exciton number. Also, when starting with a mixture
of these states, as is the case for incoherent excitation, such an
initial relaxation takes place. After this initial redistribution,
the occupations of the states do not depend on the initial
conditions. This is in contrast with the case without dissipation
where the average number of excitons remains about 1.4 and
1.6 in the case of starting from |+〉 and |−〉, respectively, in
accordance with the composition of these eigenstates in terms
of the X and BX states. Obviously, no oscillations can be
observed in the evolution of the system which was initially
prepared in one of the eigenstates |+〉 or |−〉.

In order to understand the dependence of the observed
dynamics on the energy spacing between the levels, we will
now discuss the case when the energy differences between the
states are larger than the set of parameters in Fig. 3.
The dissipation parameters J0 and ω0 are kept unchanged.
The results of the simulations are shown in Fig. 5. The
increase of the number of excitons now appears in a shorter
time interval (about 10 ps). If the state |2〉 lies close to the
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FIG. 5. (Color online) The average number of excitons for two
alignments of the energy levels in the case of increased energy
difference between the states at T = 0 K. The upper envelope of the
oscillations of the average number of excitons in the case without
dissipation is also shown (green dotted line). Coherent ultrafast
excitation is assumed here.

state |B〉 [Fig. 5(a)], because of the large energy difference
between the states |+〉, |−〉, and |A〉 (beyond the cutoff energy
h̄ω0), the rate of the Auger recombination is decreased as
compared to the previous case and the BX occupation persists
much longer. The oscillation amplitude is much lower than
in the previous case (due to a smaller mixing between the
X and BX states) and decays rapidly (in a few ps). As it is
depicted in Fig. 5(b), when the BX state gets closer to the state
A, the maximum achievable number of excitons decreases
dramatically. Besides, oscillation amplitude decays in a much
longer time of a few hundreds of picoseconds. The achieved
number of excitons is much lower than in all the previously
discussed cases.

Our results, for all level alignments, are qualitatively in
agreement with the experimental results7,38 that show an
asymmetric peak in which an ultrafast (a few picoseconds) rise
due to the impact ionization process is followed by a slow (a
few hundreds of picoseconds) decay due to Auger relaxation.

B. Ensemble-averaged kinetics

In a realistic sample, one deals with an ensemble of
nanocrystals with a certain size dispersion. To obtain the
dynamics for the whole nanocrystal ensemble, we average
our results over the energy of the BX state |2〉 which can
be different for each single nanocrystal. We use a Gaussian
distribution for the value of ε2:

f (ε2) = 1√
2πσ

e− 1
2 ( �E

σ
)2
, (12)

where �E = ε2 − ε20 and σ is a standard deviation, while
keeping εA and εB constant.

The results are shown in Fig. 6 for different sets of
parameters. In Figs. 6(a) and 6(c), we fix the mean BX energy
ε20 at 4 meV and the energy εB at 4.5 meV above εA and
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FIG. 6. (Color online) The variation of the average number of
excitons as a function of time at three different temperatures. Left
panels: for two different values of σ . Right panels: for two different
energies of the BX state for σ = 1 meV. (a), (b) T = 0 K; (c), (d)
T = 50 K. Ultrafast excitation conditions are assumed here.
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show the results for three different values of σ . In Figs. 6(b)
and 6(d), a small standard deviation σ = 1 meV is chosen and
the results for two different level alignments are shown.

Comparison of Fig. 6 with Figs. 3 and 4 shows that a
small inhomogeneity of the level alignment in the ensemble
[red lines in Figs. 6(a) and 6(c)] does not change the overall
system dynamics. The amplitude of the oscillations at T =
0 is reduced due to ensemble dephasing, but the average
trend is almost exactly the same. This is true for all the
level alignments studied here, and at all temperatures, as
can be seen in Figs. 6(b) and 6(d). On the other hand,
increasing the inhomogeneity reduces the amplitude of the
initial peak of the average number of excitons, in particular
at higher temperatures, and leads to a nearly featureless time
dependence of this quantity after the initial ultrafast growth.
For larger inhomogeneities, also the overall (long-time) value
of the average number of excitons is reduced. This suppression
of impact ionization in the ensemble in our model is due
to the fact that in a strongly inhomogeneous ensemble the
contribution from nanostructures with very distant levels
becomes larger.

C. Non-Markovian corrections

In this section, we consider some further technical aspects
of the modeling of the exciton-biexciton dynamics. We assess
the corrections due to the reservoir memory (beyond the
Markov approximation) and briefly discuss the differences
between Ohmic and super-Ohmic reservoir models.

In Fig. 7, we compare the simulation results for one selected
set of system parameters obtained from the Lindblad equation
(red solid lines) and from the non-Markovian TCL equation
(blue dashed lines). As one can see in Fig. 7(a), at zero
temperature the corrections to the Markovian dynamics are
rather small and essentially amount to a reduced amplitude
of the oscillations observed during the first few tens of
picoseconds after the excitation. Both the time-averaged value
of this oscillating exciton number as well as the long-time
asymptotics are nearly the same in both cases. We have found
that the difference between the Lindblad and TCL results is
due to initial damping within a few picoseconds from the
initial time, while the subsequent evolution is characterized by
the same exponential damping of the oscillations and decay
of the populations in both cases. This initial damping is due
to the fact that the short-time values of the non-Markovian
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FIG. 7. (Color online) Comparison of the simulation results using
different Markovian and non-Markovian approximations. (a) T =
0 K and (b) T = 30 K.

damping rates involve interaction with the whole reservoir
spectrum, while in the Markov limit only the resonant modes
are involved, corresponding to the relatively low values of the
spectral density in its high-energy tails in the present case.

A similar comparison for T = 30 K, presented in Fig. 7(b),
shows a larger difference between the Markovian and non-
Markovian modeling results. Now, the Markov approximation
overestimates the damping of the initial oscillations and yields
a higher number of excitons. However, the latter depends on
the level alignment: we have observed an opposite situation for
smaller interlevel spacings (not shown here), which suggests
that this difference may average out in an inhomogeneous
ensemble of nanostructures.

So far, in all our simulations we have assumed a reservoir
with Ohmic spectral characteristics [J (ω) ∼ ω at ω → 0].
This is the standard choice for generic modeling of the
dynamics of an open quantum system in the absence of any
detailed knowledge about the particular reservoir in question
and has also been employed in some studies of the dissipative
MEG process.36 However, some specific reservoirs are known
to have other spectral characteristics. In particular, the three-
dimensional acoustic phonon reservoir shows a super-Ohmic
behavior with J (ω) ∼ ω3 at ω → 0. This leads to vanishing
spectral densities R(ω) at ω = 0 and, in consequence, to
suppression of a subset of damping rates in the long-time
limit. In order to assess the role of the chosen model of the
reservoir, we have performed simulations for the same system
as discussed above but with a super-Ohmic spectral density
J (ω) = J0(ω/ω0)3 exp(−ω2/ω2

0). We have found that non-
Markovian corrections are much smaller in the super-Ohmic
case and both the average trend of the evolution of the exciton
number as well as the long-time value are nearly the same in
the Markovian and non-Markovian approaches, in contrast to
the Ohmic model (especially at higher temperatures).

IV. CONCLUSIONS

We have formulated and studied a few-level model of
dissipative exciton-biexciton kinetics and relaxation dynamics
following a photon absorption in a semiconductor nanostruc-
ture, which reflects some of the essential features of multiple
exciton generation by impact ionization in nanocrystals. We
have accounted for the interaction with the reservoir by
introducing a physically motivated set of spectral densities
which allowed us to relate the impact ionization and Auger
relaxation rates to the diagonal and off-diagonal carrier-
reservoir couplings, respectively, and to highlight the role of
the interband Coulomb coupling for the magnitudes of the
rates governing these two processes.

With this model, we have solved the Markovian quantum
master (Lindblad) equation to investigate the impact of
dissipation on the evolution of the single exciton and biexciton
occupations. We have shown that the system evolution strongly
changes if the dissipation is included. In many cases, the
maximum average number of electron-hole pairs (i.e., the
efficiency of the MEG process) is increased if dissipative
transitions are allowed and can be close to 2. Thus, dissipation
can play a constructive role in the MEG process and is not
necessarily a competing factor.26,30,31 In a certain range of
parameters, the growth of the exciton number is very fast
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(on picosecond time scale) and the following decay of the
biexciton population (Auger process) is much slower (on the
time scale of hundreds of picoseconds), which means that
such a dissipative dynamics following an ultrafast excitation
can not be excluded based on the observed very fast time
scale of the process.3 In addition, the differences between
the system dynamics under various excitation conditions,
which are present in the dynamics of an isolated nanocrystal,
are washed out by fast reservoir-induced dephasing. We have
verified also that similar dissipation-related features in the
system kinetics are observed in an inhomogeneous ensemble
of nanocrystals.

We have studied also the sensitivity of the modeling results
to various formal characteristics of the model. We have shown
that the dynamics depends on the alignment of the levels with
respect to the position of the high-frequency cutoff of the
reservoir spectral density. The simulated dynamics depends
also to some extent on the chosen class of the reservoir
models, but the observed differences between the Ohmic and
super-Ohmic models are mostly of quantitative character and
change neither the qualitative features of the dynamics nor
the quantitative expectations for an overall MEG yield in a
nanocrystal ensemble. We have investigated also the role of
non-Markovian corrections to the system dynamics. Although
the evolution found from non-Markovian equations differs in
some cases from that obtained in the Markov limit, these
discrepancies mostly have the form of oscillations that are
present only during the first few tens of picoseconds after
excitation and are not expected to affect the overall quantitative
predictions for the MEG yield.

ACKNOWLEDGMENT

This work was supported by the TEAM programme of the
Foundation for Polish Science co-financed from the European
Regional Development Fund.

APPENDIX A: EXCITON AND BIEXCITON STATES

To give an example of the relative arrangement of BX
and X states, we have used a simple model of a spherical
semiconductor nanostructure to calculate the spectral positions
of BX states relative to selected X states to which they are
coupled by interband Coulomb matrix elements. We have
chosen two single exciton states and found biexciton states
that are coupled to these X states and are energetically close to
them. The results are shown in Fig. 8, where we plot the energy
difference between the BX states and the selected X states as a
function of the nanostructure radius. The quantum numbers for
the X states, shown in the figures, are the same for the electron
and the hole. These results were obtained using a simple
model of a spherical nanocrystal: First, the electron and hole
states were found within the single-band envelope-function
approximation. Next, Coulomb corrections were included in
the lowest order following the model of Ref. 40. Finally, the
Coulomb coupling between the X state and all the BX states is
calculated within the envelope-function approach as proposed
in Ref. 37.
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FIG. 8. (Color online) Relative energy of BX states in vicinity
of selected bright X states with quantum numbers as indicated as a
function of the nanostructure radius around R0 = 3 nm. The numbers
on the right denote degeneracy.

As one can see, even though the density of BX states in a
nanocrystal in a relevant energy sector is very high, only a few
of them are coupled to a given bright X state and lie in the
vicinity of the X state.

APPENDIX B: INITIAL STATES AND
EXCITATION CONDITIONS

In this Appendix, we derive the state occupations after
optical excitation under various excitation conditions. First,
we consider the interaction between a strong coherent field
(as a pulsed excitation treated classically) and our three-level
system. A single-mode radiation source, such as a laser,
will produce an electromagnetic wave with amplitude E0(t)
and frequency �, E(t) = E0(t) cos �t . The interaction Hamil-
tonian between this electromagnetic wave and our system
is

Hint = −d · E(t) = f (t) cos �t(|G〉〈B| + H.c.), (B1)

where we defined f (t) = −d · E0(t). In the eigenbasis
(|+〉,|−〉) and in the rotating-wave approximation, we
have

Hint = 1

2
f (t)

(
|G〉〈+|ei�+t cos

θ

2

− |G〉〈−|ei�−t sin
θ

2
+ H.c.

)
, (B2)

where �± = � − E±
h̄

is the detuning from the transition
energy. The system state after the optical pulse up to the second
order in E0(t) is

ρ = ρ0 − i

h̄

∫ ∞

−∞
dt [Hint,ρ0]

− 1

2h̄2

∫ ∞

−∞
dt

∫ t

−∞
dτ [Hint [Hint,ρ0]] , (B3)

where ρ0 = |G〉〈G|. The occupations of the |+〉and |−〉states
appear in the second-order term, assuming a Gaussian enve-
lope for f (t),

f (t) = 1√
2πτ

e− 1
2 ( t

τ
)2
, (B4)
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one finds the density matrix elements corresponding to the
coherent excitation in the form

〈±|ρ|±〉 = 1√
2πτ

1± cos θ

2
e−τ 2�2

± ,

(B5)
〈+|ρ|−〉 = 〈−|ρ|+〉 = − 1

2
√

2πτ
sin θe− τ2

2 (�2
++�2

−),

where τ is the pulse duration.
In the case of a narrow-band excitation condition, when

�±τ � 1, all the exponents in Eq. (B5) vanish except for
the one corresponding to �± = 0. Thus, the only nonzero
element will be 〈−|ρ|−〉 or 〈+|ρ|+〉 corresponding to the
laser tuned to �− or �+, respectively. On the other hand, for
a broad-band excitation condition (short pulse), �±τ � 1, all
the exponents in Eq. (B5) are almost equal to 1. After inverting
Eq. (3) and substituting to Eq. (B5), one finds 〈B|ρ|B〉 = 1 and
〈2|ρ|2〉 = 0. Hence, under these conditions, only the state |B〉
is excited. Note that this selective excitation condition requires
only that the spectral width of the pulse is smaller than the
energy separation between the two states, which is achievable
already for picosecond pulses, still quite short compared to the
typical time scales of the X-BX dynamics.

Second, let us consider broad-band thermal radiation. Since
we discuss time-resolved dynamics, we understand this as an
excitation with a short pulse of incoherent (thermal) light.
Then, an incoherent mixture of system eigenstates is excited,
so that there is no coherence between the |+〉 and |−〉 states.
The interaction Hamiltonian is described by

Hint = d · E =
∑
kλ

gkλ(bkλ + b
†
kλ)

[
|G〉〈A|

+ cos

(
θ

2

)
|G〉〈+| − sin

(
θ

2

)
|G〉〈−| + H.c.

]
, (B6)

where bkλ and b
†
kλ are photon annihilation and creation

operators, respectively. The occupation of the system states
resulting from this kind of excitation are proportional to the
corresponding transition states, which can be found using the
Fermi golden rule. Since the states |+〉and |−〉 are very close
compared to the photon energy, the difference in the photon
density of states and coupling magnitude is negligible and one
finds, up to a constant,

〈±|ρ|±〉 ∼ 1± cos θ

2
, 〈+|ρ|−〉 = 〈−|ρ|+〉 = 0.
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