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Effect of gate-driven spin resonance on the conductance through a one-dimensional quantum wire
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We consider quasiballistic electron transmission in a one-dimensional quantum wire subject to both time-
independent and periodic potentials of a finger gate that results in a local time-dependent Rashba-type spin-orbit
coupling. A spin-dependent conductance is calculated as a function of external constant magnetic field, the
electric field frequency, and potential strength. The results demonstrate the effect of the gate-driven electric
dipole spin resonance in a transport phenomenon such as spin-flip electron transmission.
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I. INTRODUCTION

Since the Datta-Das spin field-effect transistor' was pro-
posed, the Rashba spin-orbit interaction (RSOI)> has attracted
considerable attention on account of its possible applications
in spintronics. The manipulation of electron spins can be
achieved via an external active control, which is the essential
requirement for spintronics devices. Interest in the RSOI as an
instrument to electrically manipulate spins in nanosystems>
has been growing since Nitta et al* showed that in an
inverted Ing 53Gag 47 As/Ing 50 Alg 48As quantum well the RSOI
can be controlled by applying a gate voltage. In general,
this control is strongly material and structure dependent,
as was demonstrated in more recent experiments on n-type
semiconductors.”'* A similar effect of electric field has also
been achieved in a p-type InAs semiconductor, as reported by
Matsuyama et al.'!

Assuming that a finger gate with dc voltage is located above
a conducting channel based on a two-dimensional electron
gas (2DEG) as shown in Fig. 1, one can see that its electric
field gives rise to a local RSOI. Under the assumption of a
stepwise RSOI, the electron ballistic transport in a quasi-one-
dimensional wire has undergone a thorough investigation. >~
In the present paper we consider an actual nonuniform electric
field produced by the dc biased finger gate that gives rise to
a nonuniform RSOI. Next, we assume that the finger gate
is also biased by time-dependent (ac) voltage that effects
in general the space- and time-dependent RSOI. Electron
transport through wires with a spin-orbit interaction subjected
to a time-periodic potential was studied in Refs. 23 and 24.

An ac biased finger gate contributes to the time-periodic
RSOI, which may give rise to many interesting effects
such as direct spin current generation.”>?” A well-known
and particularly powerful way of manipulating spins in
doped III-V heterostructures is electric-dipole-induced spin
resonance (EDSR)*-32 or gate-driven resonance’® where the
fields coherently driving the spins are electric rather than
magneticlike in standard paramagnetic resonance. Nowack
et al** observed EDSR in a single GaAs quantum dot and
found that, as expected, the Rabi frequency for spin flips
is much less than the corresponding Zeeman splitting. Kato
et al®® manipulated electron spins in a parabolic AlGaAs
quantum well by a GHz bias applied to a single gate producing
a field E(t) perpendicular to the well. Pioro-Ladriere et al.?
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studied the effect of a slanting magnetic field for the EDSR.
All these effects were predicted and observed for strongly
localized electrons. Although it is clear that the electron
spatial dynamics, e.g., in the case of a double quantum dot
it strongly changes the Rabi frequency of the EDSR,*”3® there
is no understanding of the signatures of the EDSR in the
electron transport. Here we study ballistic electron transport
in a one-dimensional (1D) quantum wire subject to dc and ac
biased finger gates and a Zeeman magnetic field to demonstrate
the role of the EDSR in the conductance of such a system.
We found that the effect leads to avoiding crossing in the
dependence of the conductance on the electron energy and ac
field frequency, or equivalently, the Zeeman splitting.

II. DESCRIPTION OF MODEL

The semiconductor structure of our interest is shown in
Fig. 1, which demonstrates that in the absence of a gate bias
the system is symmetric with respect to the z — —z reflection.
Then the system has only the Dresselhaus SOI because of the
host crystal electric field** Hp = iB(k?)[0 0y — 0y3y] over
the whole sample. Next, similar to Ref. 41, we consider the
Schottky gate above at a height / from the conducting channel
whose length L,, along the transport x axis exceeds the gate
width L, such that theirratio/ = L,,/L > 1. The electrostatic
potential of the biased metallic gate was derived by Davies
et al.*? Considering that the length of the gate is much greater
than the width of the wire we write the dc and ac gate potentials
in the following form:

Vi(x,z,t) = (Vo + Vi cos wt)p(x,2), "

1 L+x L—x
¢(x,z7) = —| arctan + arctan ,

b4 Z Z
where z originates from the gate. The gate potential produces
the nonuniform RSOI over x,**

Hg = —ia[E(e x V) — 1o(V x E)], )

where E(x,y,z,t) = —VV(x,z,t) — VVic(y). Here Vic(y)
is the lateral confining potential,¥ and the last contribu-
tion in Eq. (2) ensures the hermiticity of the RSOI. The
y-axis confinement length d is typically tens to hundreds
of nanometers. This small length establishes a corresponding
high energy gap for the transverse excitations and protects the
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FIG. 1. (Color online) (a) View of the conducting channel subject
to a dc potential of the quantum point contact gates and dc and ac
potentials of a finger gate. The inhomogeneous electric field created
by the finger gate (shown in gray) represents the scattering active
region. The distance between pairs of quantum point contacts, L,,, is
not shown here. (b) Cross section of the nanostructure. The internal
layer shows the propagation channel, k is the electron momentum,
and ¥ (z) is the wave function of the localized electron. The gates for
y-axis confinement are not presented. The details of the figure are not
to scale.

system from exciting the transverse modes. In what follows
we adopt the utmost case of lateral confinement of about
tens of nanometers in order to focus on the effects of the
ac potential for the x-axis electron transmission through the
one-dimensional quantum wire. Then we can restrict ourselves
to the ground state vy(y,z), which is a sharp function compared
to the characteristic scale along the wire L,,, which is taken to
be of the order of hundreds of nanometers.

The projection of the total Hamiltonian onto that ground
state gives us the following effectively one-dimensional
Hamiltonian:

7. / dydzyo(y.2) Ho(y.2)
= eolHy + Vo(x,t) + Hy + Hel. 3)
Here
~ 92
Hy = —a 4
Vo(x,1) = (v + v1 cos wt)p(x,z = h) )

are the dimensionless Hamiltonian of free motion of electrons
and the dimensionless potential of the dc and ac biased finger
gates, respectively. The coordinate x is measured in terms
of the gate width L and the energy is measured in units of
g0 = h?/2m*L?. The Zeeman contribution is

Hy = Bo., (6)

where B = gup Hexi/2¢0 is the dimensionless magnetic field
applied perpendicular to the wire, as shown in Fig. 1(a). Here
g is the effective g factor, and H.y, is the magnetic field. We
assume that the magnetic length is much larger than the channel
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FIG. 2. (Color online) Profiles of the dc potential ¢(x) and electric
field e(x) which define the nonuniform Rashba SOI in Eq. (8) over
the transport axis for different distances between the finger gate and
the 2DEG. The potential is measured in terms of &, given in Table I.

width d and neglect the influence of the magnetic field on the
orbital motion.

The term

~ - 1 da(x,r)
Hp =i 1oy — + oy —— 7
R wo[a(x )o,y ™ + 7% ax } @)

constitutes the time-periodic RSOI where
a(x,t) = a(vy + vy coswt)e(x), ©))
) 1 1+x 1—x ©)
e(x) = — ,
Tl h2+A+x)?  h24+(1—x)?

as follows from the dc and ac gate potentials (1). Profiles
of the dimensionless electric field e(x) are plotted in Fig. 2
for different distances 4 of the finger gate from the channel,
which shows that the RSOI mainly contributes at the edges of
the finger gate for small thickness 4.

We employ here the representation

(0 =i (10 (01
= (5 0) =l ) e i)
(10)

The anticommutator form (i /2){c&(x,7),d/3x} in Eq. (7), which
is related to the inhomogeneous Rashba field @(x,?), is often
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TABLE 1. Parameter sets of the InAs- and InSb-based heterostructures for the gate length L = 1000 A.

o B &0 _ B w/2m
Structure m*(mg) (e A?) eV A% (meV) o B g (for Hyy = 1 T) (GHz)
InAs 0.023 117 27 0.15 0.7 1.8 x 107 8 1.55 36
InSb 0.035 523 760 0.23 3 3.3 x 1073 —-10 1.26 55

adopted by a phenomenological application of the Dirac
symmetrization rule for a product of noncommuting operators
or it is taken for granted.'®*® We note here that variables
in squared brackets are dimensionless: & = (1 V x &) /80L2,
where for practical purposes we take 1 V/L as the unit of
the electric field. All distances are measured in terms of L,
the magnetic field is measured in terms of 2¢y/gup, and the
frequency w is measured in terms of gg/h, respectively. In
addition, one can see that the RSOI caused by the lateral
confinement is excluded because the electric field at the
position y = 0 of the thin wire vanishes.

The values of the quantities necessary to describe the trans-
port are collected in Table I. To be specific, we consider typical
Rashba and Dresselhaus SOI constants, effective masses, and
g factors for the InAs- and InSb-based heterostructures.**+’
As seen from the table, the Dresselhaus SOI can be neglected
in these semiconductor structures even at rather weak applied
fields. In addition, we present the characteristic Zeeman field
and frequency corresponding to &g for the finger gate length
L = 1000 A.

We begin with a stationary transmission for v; = 0 and
B = 0 and assume solely for this example that the gate covers
the entire channel, that is, [ = 1. In this geometry we achieve
the resonance transmission when the electron energy matches
the corresponding eigenenergy of the gated wire channel.
Assuming that the Rashba coupling is homogeneous over
the wire, we seek a solution in the spatial form of exp(ikx)
and obtain eigenenergies eo(k> — &>v}/4) and eigenfunctions
et sin(k,x), where k, = mwn. Moreover, the wire is sub-
jected to the homogeneous potential vy according to Eq. (1).
Therefore the eigenenergies of the closed 1D wire with a
homogeneous RSOI become

~2.2
6, ~ 80<v0 +atn? - “4U0>. (11)

As a result, we show the resonance peaks of the transmission
which follow these eigenenergies of the 1D Rashba box (11)
as dashed lines in Fig. 3. For @ = 0 the resonant transmission
through it demonstrates linear behavior with vy [Fig. 3(a)].
For @ # 0 the behavior of the eigenenergies of a closed wire
with vy is parabolic [Fig. 3(b)]. Respectively, the resonance
behavior of the Rashba wire demonstrates similar behavior as
shown in Fig. 3(b) for @ = 0.75.

In full agreement with the rigorous results in Refs. 48,49,
the numerically calculated spin polarization

p_ G611ty -Gp—-Gy
G +Gn+G11+Gyy

12)

vanishes because of the single-channel transmission in the 1D
wire.

III. ac ASSISTED SPIN-DEPENDENT
ELECTRON TRANSMISSION

Here we consider the spin-dependent transmission of
electrons through the 1D wire subjected to a dc and ac
potential of the finger gate (1). Before providing a detailed
numerical analysis, we address qualitatively an important
question regarding whether a spin polarization can appear in
this situation in the absence of an external magnetic field. For
stationary single-channel transmission in the quantum wire the
RSOI cannot give rise to spin polarization.**4** However, the
ac time-periodic RSOI (8) opens additional spin-dependent
channels of electron transmission at the Floquet quasienergies
& +nw,n =0, =1, .... Numerical calculations in Refs. 26
and 46 show the spin polarization for the case of the stepwise
time-periodic RSOI. We argue that there is no spin polarization
for smooth space behavior of the time-periodic RSOI, at least
for zero Dresselhaus SOIs. Indeed, for that case the only spin
component in the RSOl is o, = o, which is preserved for
transmission. Then, as Eq. (3) shows, the electron transmission
with spin o = 1(1) is not mixed with the transmission with
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FIG. 3. (Color online) Conductance G44 of the 1D wire vs inci-
dent energy E and dc potential applied to finger gate (1) vy for vy = 0,
h=0.1,] =1.(a)a = 0 and (b) @ = 0.75. The incident energy and
gate potential are measured in terms of &y. Eigenenergies of the closed
1D Rashba wire (11) are shown by the dashed white lines.
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o = —1({). From Eq. (3) it follows that the electron transmis-
sions with spin o = =£1 differ by only half of the time period
7 /w. Therefore, after a time average of the conductances, G,
do not depend on o while there is no conductance G, _,
with spin flipping. Thus this simple consideration proves
that the spin polarization (12) equals zero. Below we show
that numerical computations agree with that consideration for
smooth space behavior of the time-periodic RSOI.

The procedure for calculating the electron transmission
through the time-periodic potential (photon-assisted transmis-
sion) is well described in literature.’*>> The approach can be
developed to account for the spin component for the stepwise
behavior of the time-periodic perturbation.?®*® There are two
time-periodic contributions. The first is periodic oscillation of
the potential of the ac biased finger. That effect was considered
in many papers in the stepwise behavior of the time-periodic
potential.**323% The second contribution is the time-periodic
of the RSOI which was considered also for the stepwise
behavior in the RSOI.?6:46

We use the tight-binding approximation to calculate the
conductance through the space- and time-dependent profiles
of the potential. % In the leads where there is no SOI the

PHYSICAL REVIEW B 88, 115302 (2013)

wave functions can be written as>*>%-6!

left:

V0= 2 oty

—i(et+mw)t i o
[am,O(Saa’el 0J + rmo’cf/e_l /n]]’

right:
e—i(s+mcu)t o
jo(l) = —————Imoo’ lMJv 13
Viel) mZ 2t "7 4
where
&+ mw = —2cosk,, plk,)=0de/dky,. (14)

Here we imply that the electron incidents from the left lead
with energy ¢ and spin o and reflects and transmits with energy
¢ + mw and spin state o’ with corresponding reflection and
transmission amplitudes r,, ,,+ and f,, ,,/, respectively. We
assume that the Zeeman and Rashba fields affect the conduct-
ing electron in the 1D wire only. In the 1D wire of length
L = agN with coordinate x; = aoj, j = 1,2,...,N, we split
the Schrodinger equation according to Eqgs. (3)—(8) as follows:
(1) on the left side of the wire,

(8 + mw)l/fm,OJ + I/fm,fla + tl//m,la = 07

(15)
(& + mo)Wm 16 + 1¥mos + Ym2o — U1¥m 1o — Vikt(Ymi110 + Ym-1.10) = 0;
(2) inside the wire,
wm,‘ lo + 1// Jj—lo — Zwm, jo
(8 + mw)wm,ja + ths maé 22— ujl/fj,ma - Uluj(llfj,m-kla + I//j,m—lo) - BI//m,j,—a
0
—i&O'U()Ej lﬁm,jJrla - '(pm,jfla _ i&ovlej 1//m+l,j+la + Wmfl,ijla - merl,jfla - wmfl.jflzr _ O, (16)
2ay 2aq
(3) on the right side of the wire,
(8 + mw)wm,Na + 1/fm,Nfla + twm,NJrla - Ul”N(‘/’erl,Na + wmfl,NJ) - vO”Nwm,Na = O,
a17)

Here u; = ¢(x;,h) and e; = e(x;). We implied the hopping
matrix element ¢ < 1 between the leads and the 1D wire that
simulates the quantum point contacts. In what follows we take
t = 0.5 and the ratio [ = 4.0.

We define the transmission (reflection) probability as a ratio
of output current flow at the right to the input current flow
where the current flow is

eh

Jjaa’ = JOIm[I/f;(ijwLI,U’]s Jo= om*L’ (]8)
Here ~~ = (a)/2rr)f02”/w ---dt. Substituting Egs. (13) into
Eq. (18) we obtain the dimensionless conductance
sin Re(kp) oo |*
Goy = Z # (19)

sin k()

m

That expression reduces to the standard expression for the
conductance in the continuum approximation.>* Taking the
real part of k, in the nominator of Eq. (19) assures that

(8 + ma))l//m,NHa + wm,N+2a + twm,Ntf =0.

the Floquet states with quasienergies € + mw beyond the
propagation band having an imaginary wave vector k,, cannot
participate in the conductance.

IV. NUMERICAL RESULTS

In our numerical computations we chose the numerical
lattice unit ap = 0.01. For the dimensionless energies of
electron ¢ ~ 100 the characteristic wavelength is of the order
1, which greatly exceeds ag. The next condition for ay is that
ag < Ax, where Ax is a characteristic scale over which the
potential and electric field of the finger gate undergo sharp
changes, as shown in Fig. 2. This scale is close to the distance
h between the gate and the channel. Therefore the condition for
the numerical lattice unitis ay << h, which is satisfied also if we
take i = 0.1. There is also the condition for the dimensionless
frequency w > v; /M, where 2M + 1 is the number of Floquet
states.>>* In numerics we consider only the minimal case
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FIG. 4. (Color online) Conductance G4 vs incident energy and
frequency of the ac potential for one gate with the parameters vy = 1,
vy =025,/ =4.(a)@ = 0and (b) & = 1. The solid red circles mark
the eigenenergies of the closed 1D wire.

M = 1 to reduce the time of the numerical calculations, which
means the region of small frequencies w < v; is excluded from
consideration.

A. Conductance in ac and dc biased wire

Figure 4 shows the electron conductance of quantum wire
subjected to a single finger gate that is dc and ac biased for
the RSOI constant « = 0 [Fig. 4(a)] and o = 1 [Fig. 4(b)],
respectively. Figure 4 presents the conductance for the incident
energies substantially exceeding the effective potential barrier
height. Switching off the ac potential, v; = 0, one obtains
the resonance transmission for & ~ g,, where g, are the
eigenenergies of the closed wire with an applied dc potential.
For v; = 0 they are given by Eq. (11). These eigenenergies are
marked in Fig. 4 by solid red circles. The resonance positions,
howeve, are slightly shifted because of the openness of the
1D wire. Then the application of the ac potential gives rise

to the quasienergies ¢, + \/21)% + w?>® The coincidence in
these quasienergies with the basic eigenenergies &, results
in avoiding crossing, as seen from Fig. 4(a). Note because
of the even symmetry of the potential ¢(x,z) relative to an
inversion of the x axis the only Floquet states that avoid the
basic energies are the ones which have the same parity, i.e.,
n=n+2,n+4,...,asseen from Fig. 4(a).

Switching on the RSOI induced by the dc and ac elec-
tric fields gives rise to the alternate selection rules of the
avoiding crossing of the Floquet states. The time-periodic
term %{&(x),k}cos wt in the Rashba Hamiltonian (7) is

PHYSICAL REVIEW B 88, 115302 (2013)

odd with respect to the x inversion. Therefore it mixes the
neighboring eigenstates with the opposite parity of the closed
wire while the time-periodic potential vi¢(x)coswt term
mixes the eigenstates with the same parity. As a result we
obtain the avoiding crossings of nearest neighbor resonances
shown in Fig. 4(b). With the growth of the potential amplitude
vo the avoiding crossings occur irrespective of the selection
rules that give rise to more complicated frequency behaviors
of the conductance.

Itis possible to exclude the time-periodic perturbation of the
potential by applying two finger gates symmetrically disposed
up and below the conducting layer. Then the electron system
experiences only the time-periodic RSOI. In general, their
spin-dependent transport is similar to that in the case of a single
ac biased single gate, but the effects of avoiding crossings are
much stronger due to the doubling of the electric field affected
by the RSOL.

B. ac affected spin resonance for transmission in magnetic field

Now we apply the magnetic field perpendicular to the
quantum wire as shown in Fig. 1(a). For the case of the dc
potential the term (6) obviously gives rise to the Zeeman
splitting of the energy levels of the wire. Respectively, the
resonance transmission follows these split energy levels, as
shown in Fig. 5. For « = 0 the conductance simply follows the
magnetic field, as seen from Fig. 5(a), while the RSOI leads
to_avoiding crossing behavior of the conductance because of
[Hr,Hz] # 0, as seen from Figs. 5(b)-5(d).

The most important point is that the last term in the
Hamiltonian (3) has similar effects as the radio-frequency
magnetic field directed crossing to the constant Zeeman field.
Therefore we can expect signatures of spin resonance for
o ~ B with spin inversion.?8-3

We take B =5, which is shown by the dashed line in
Fig. 5(c). Figure 6(a) shows the conductance G4, versus
energy and frequency of the ac potential with the RSOI
@ = 1. For @ =0 this conductance is zero and therefore
is not presented. One can see that the basic resonances in
conductance follow the RSOI and Zeeman split eigenenergies,
which are shown in Fig. 5(c) as open circles. However, there is
a fine structure of the conductance in the form of avoiding
crossings where the Floquet resonances cross the basic
resonances, which are marked in Fig. 5(c) by the open circles.
That indicates spin resonances for swiping the frequency of
the ac potential. Figure 6(b) shows the conductance Gy,
for the fixed frequency of the ac potential w = 10 versus
incident energy and an external constant magnetic field applied
perpendicular to the transport axis x. Similar to the case in
Fig. 6(a), we see the self-avoidance of the Floquet resonances
with the basic Zeeman peaks of the conductance shown in
Fig. 5(d). Therefore this result shows spin resonances affected
by the ac potential for swiping of the external magnetic field.

An interesting feature of the transmission in a nonzero
magnetic field, where the time-reversal symmetry is broken,
is the difference between two spin-flip channels, that is,
Gy, — G,y It is presented in Fig. 7 and corresponds to G4
in Fig. 6. Although this difference is small, being of the
order of 0.1 of G4, and appears mainly in the anticrossing
spin-flip domains of Fig. 6, its nonzero value is the qualitative
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FIG. 5. (Color online) The stationary spin-dependent conduc-
tances G, vs magnetic field and energy for (a) @ = 0, (b) @ = 0.25,
and (¢), ()@ =1.vy = 1.

manifestation of the broken time-reversal symmetry, and, as
a result, of the possible generation of finite spin polarization
[see Eq. (12)].

V. SUMMARY AND DISCUSSION

We studied the effects of dc and ac biased finger gates
on the resonant transmission of an electron through a 1D
quantum wire. The potential and the electric field of the gate
are local, as shown in Fig. 2. The ac field of the gate forms
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FIG. 6. (Color online) The ac affected conductance G4, (a) vs
incident energy and frequency of the ac potential when the magnetic
field B =5 is applied perpendicular to the wire and (b) vs incident
energy and external magnetic field for w = 10. The parameters are
v=1v=025I=4a=1.

30 0.01
(a) w% )V
820 . 3
0
10 A .
?25 130 135 . 140 e
. - mm0.01
b A
20( )

m X M K | ' 0
10| *
W M

) YA

0.01

‘?20 130 140 150 160

€

FIG. 7. (Color online) The difference G, — G4 vs incident
energy and frequency of the ac potential when the magnetic field
B = 5 is applied perpendicular to the wire and (b) vs incident energy
and an external magnetic field for v = 10.
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a time-periodic Rashba SOI which can cause spin flip for
the electron that is transmitted through the gated channel.
This results in different features in the spin-flip electron
conductance G4, such as the Floquet satellites and self-
avoiding crossing of resonances, while the basic resonances
follow the eigenenergies of a closed 1D wire subject to a
dc potential, a Zeeman magnetic field applied across to the
wire, and a static RSOI. The simplest resonance-induced
transition corresponds to the matching of the frequency-
dependent Floquet resonance peak with the basic resonance
peak corresponding to the Zeeman splitting. That results in a
spin resonance that is similar to that formulated by Rashba and
Efros when the time-periodic electric field gives rise to a spin
flip in a constant magnetic field with spatially uniform spin-
orbit coupling.®® As can be seen in Fig. 6, the characteristic
static dimensionless magnetic field and gate frequency in our
model consideration are of the order of 10. According to Table I
these numbers correspond to 10 T and a few hundreds GHz
(in the upper range of the microwave radiation), respectively.
In addition, the characteristic required electric fields are of
the order of 10* V/cm. In practice, these parameters are
strongly system dependent and the effect, studied here only
semiquantitatively, can be possibly observed at lower fields and
frequencies.

As additional conclusions, we would like to comment on
the possibility of producing spin polarization in an electron
single-channel transmission by the ac field. As it was argued
in Sec. III, the time-periodic Rashba SOI cannot lead to
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spin polarization for the transmission through a 1D wire at
B = 0. This result agrees with our computer simulations but
disagrees with the numerical results of Ref. 46 where a spin
polarization around 0.2 was found for zero Dresselhaus SOIs,
B = 0. An origin of the difference is related to the coordinate
dependence of the finger gate field. Numerical calculations
show a tendency for decreasing the spin polarization with
decreasing the simulation lattice constant ag and increasing
the height &, when the electric field and potential become
smooth. At agp < h the spin polarization becomes negligibly
small. Thus the stepwise approximation of such a nonuniform
RSOI conceals a danger for numerical computations based on
finite difference schemes.

The manifestation of the electric dipole spin resonance in
the ballistic transport through a one-dimensional channel can
help in the design of devices with a spin transport controlled
by an electric field in quantum nanoscale and mesoscopic
systems.
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