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Band nesting and the optical response of two-dimensional semiconducting
transition metal dichalcogenides
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We have studied the optical conductivity of two-dimensional (2D) semiconducting transition metal
dichalcogenides using ab initio density functional theory. We find that this class of materials presents large
optical response due to the phenomenon of band nesting. The tendency towards band nesting is enhanced by the
presence of van Hove singularities in the band structure of these materials. Given that 2D crystals are atomically
thin and naturally transparent, our results show that it is possible to have strong photon-electron interactions even
in 2D.
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Semiconductor transition metal dichalcogenides (STMDC)
are a family of crystals with a chemical formula MX2 where
M = W, Mo, Ti, Zr, Hf, Pd, Pt, and others, and X = S, Se,
Te,1–3 which can exist in a two-dimensional (2D) structure
consisting of one layer of transition metal atoms sandwiched
by two layers of chalcogens, all in hexagonal sublattices. They
have two known structural polytypes, trigonal prismatic (T)
and octahedral (O), which can be distinguished by the relative
stacking of the chalcogenide layers. Most 2D STMDC have
band gaps in the visible range, between 1 and 3 eV, and have
been the subject of study in the last few years4,5 since the
emergence of the field of 2D crystals.6 Because of these band
gaps, in a technologically interesting range, these materials are
being considered for a new generation of 2D transistor, sensor,
and photovoltaic applications.

It was discovered recently7 that these materials have strong
optical properties even when they are only three atoms thin.
This is rather surprising because atomically thin films like
these, only tens of angstroms in thickness, are naturally
transparent and we would not expect a strong photon-electron
coupling a priori. In this paper, we show that this extraordinary
optical response is due to the phenomenon of “band nesting,”
namely, the fact that in the band structure of these materials
there are regions where conduction and valence bands are
parallel to each other in energy. Band nesting implies that
when the material absorbs a photon, the produced electrons and
holes propagate with exactly the same, but opposite, velocities.
We find that band nesting is present in the band structure
of all these materials. Furthermore, the existence of strong
van Hove singularities (VHS) facilitates the phenomenon of
band nesting. In two-dimensional materials, the band nesting
results in a divergence of the joint density of states, leading to
very high optical conductivity. We present calculations of the
optical response of the 2D STMDC with X = S, Se, illustrating
how it is enhanced by the phenomenon of band nesting.

Band nesting

In semiconductors, the band gap plays an important role
in what concerns optical absorption. It defines the threshold
after which there is absorption of electromagnetic radiation,
by the promotion of an electron from the valence band to the
conduction band. But, the largest absorption is usually not

at the band-gap edge; it is often considered to be in a VHS
in the electronic structure. These correspond to singularities
in the density of states; if at a given point of the reciprocal
space there are VHS both in the conduction and the valence
bands, there will be a singularity of the optical conductivity.
Yet, this coincidence normally happens only at high-symmetry
points, and there are very few in the Brillouin zone (BZ). A
particular case is the extended van Hove singularity (EVHS)
in that these are single-band saddle points with a flat band in
one of the directions.8

The optical conductivity of a material can be written as

σ1(ω) = κ2(ω)ωε0 ,

where κ2(ω) is the imaginary part of the relative electric per-
mittivity, ω is the frequency of the incoming electromagnetic
radiation, and ε0 is the vacuum permittivity. In the optical
dipole approximation, we can write

κ2(ω) = A(ω)
∑
v,c

∫
BZ

d2k
(2π )2

|dvc|2δ(Ec − Ev − h̄ω). (1)

The sum is over the occupied states in the valence band (v)
and the unoccupied states in the conduction band (c) with
energies Ev and Ec, and includes implicitly the sum over
spins A(ω) = 4π2e2/(m2ω2) (e is the electric charge and m

the carrier mass), dvc is the dipole matrix element. The integral
in (1) is evaluated over the entire 2D BZ. If we consider cuts
S(E) of constant energy E, E = h̄ω = Ec − Ev , in the band
structure, we can write

d2k = dS
d (Ec − Ev)

|∇k(Ec − Ev)| ,

and the integral in (1) can be rewritten as

κ2(ω) = A(ω)
∑
v,c

1

(2π )2

∫
S(ω)

dS

|∇k(Ec − Ev)| |dvc|2.

Notice that the strong peaks in the optical conductivity will
come from regions in the spectrum where |∇k(Ec − Ev)| ≈ 0.
If dvc varies slowly over these regions (so that there is a gradient
expansion), we can write

κ2(ω) ≈ A(ω)
∑
v,c

|dvc|2ρvc(ω),
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FIG. 1. (Color online) Band structures, and DOS of TiS2 and ZrS2 (group 4A sulphides), MoS2 and WS2 (group 6A sulphides),
and PdS2 and PtS2 (group 8 sulphides). The arrows indicate the transitions corresponding to the first prominent peaks in the optical
conductivity.

where

ρvc(ω) = 1

(2π )2

∫
S(ω)

dS

|∇k(Ec − Ev)|
is the joint density of states (JDOS).

The points where ∇k (Ec − Ev) = 0 are called critical
points (CP) and they can be of several types. If ∇kEc =
∇kEv = 0, we have either a maximum, a minimum, or a saddle
point in each band; this usually occurs only at high-symmetry
points. These points often receive more attention because they
are easy to pinpoint by visual inspection of the band structure,
and give rise to singularities in the DOS. On the other hand,
the condition ∇k (Ec − Ev) = 0 with |∇kEc| ≈ |∇kEv| > 0,
that is band nesting, gives rise to singularities of the JDOS

and therefore to high optical conductivity. Notice that this
condition differs from an EVHS (Ref. 8) in that the latter
refers to saddle points in one band, with a flat band in one of
the directions, while here it is determined by the “topographic”
difference between the conduction and valence bands. In the
case of two-dimensional materials, a saddle point of Ec − Ev

gives rise to a divergence of the optical conductivity, whereas
in three-dimensional (3D) materials it merely gives rise to an
edge with (E − E0)1/2 dependence, in first approximation.9

I. METHOD

We performed a series of density functional theory (DFT)
calculations for the STMDC family using the open source
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code QUANTUM ESPRESSO.10 We used norm-conserving, fully
relativistic pseudopotentials with nonlinear core-correction
and spin-orbit information to describe the ion cores.11 The
exchange correlation energy was described by the generalized
gradient approximation (GGA), in the scheme proposed by
Perdew, Burke, and Ernzerhof12 (PBE). The integrations over
the Brillouin zone (BZ) were performed using a scheme
proposed by Monkhorst-Pack13,14 for all calculations except
those of the density of states, for which the tetrahedron
method15 was used instead. We calculated the optical con-
ductivity directly from the band structure.16 It is well known
that GGA underestimates the band gap,17 and hence the optical
conductivity shows the peaks displaced towards lower energies
relative to actual experiments. However, their shapes and
intensities are expected to be correct.

We assert the importance of including spin orbit interaction
by performing full relativistic, noncollinear calculations.18,19

Significant spin-orbit splittings in the range 50 to 530 meV
can be obtained in these crystals and can be measured using
current spectroscopic techniques. Still, spin-orbit interaction
is ignored in most of DFT calculations.20–23 In our case,
even for light transition metals, such as Ti, we can have a
spin-orbit splitting of the order of 40 meV, which can be
easily measured. The trigonal prismatic (T) geometry does not
have inversion symmetry, and has a considerable spin-orbit
splitting, especially around the high-symmetry point K . The
octahedral structure (O) has inversion symmetry, and therefore
no spin-orbit splitting can be observed [E(k,↑) = E(k,↓)].
This results from the inversion symmetry of the energy
bands in the reciprocal space, which implies that E(k,↑) =
E(−k,↑) and E(k,↓) = E(−k,↓), while time-reversal sym-
metry (preservation of the Kramers degeneracy) requires that
E(k,↑) = E(−k,↓).

II. RESULTS

A. Band-structure calculations

Calculations of the electronic structure were performed for
all 2D MX2 with X = S, Se, for both the trigonal prismatic
and octahedral structures. Amongst these, we found 11 to be
semiconductors. Unless otherwise stated, we will only show
results for the lowest-energy structures for each compound,
which are the T structure for MoX2 and WX2 and the O
structure for TiX2, ZrX2, PtX2, and PdX2. However, the
same analysis can be extended to the metastable structures
as well.

The electronic band structures and density of states (DOS)
of TiS2, ZrS2, MoS2, WS2, PtS2, and PdS2 are shown in Fig. 1.
It is useful to compare the results for dichalcogenides with
M belonging to the same group of the periodic table, which
usually have the same lowest-energy structure type and have
similar features in the band structure close to the gap. The
same can be said of MS2 and MSe2 for the same transition
metal. However, T and O structures, even of the same material,
are very different. Nevertheless, all of them present van Hove
singularities of Ec, Ev or both, including saddle points which
give rise to sharp peaks in the DOS.

We start by analyzing the band structure of WS2, one of
the most studied STMDC. At the K point, where the direct

FIG. 2. (Color online) Real part of the optical conductivity of 2D
transition metal disulphides.

gap is smallest, the van Hove singularities are the minimum of
Ec and maximum of Ev , and therefore only give rise to steps
of the DOS. These steps are low compared to the sharp peaks
originating on the very flat bands near the conduction band
minimum between the M and the 	 points (see point marked
as G in Fig. 1), which is not a high-symmetry point. Still, the
singularity of the DOS itself is not sufficient to explain the high
absorption peak that can be seen in the optical conductivity (see
Fig. 2).

In order to identify the origin of the largest peak at low
energy (at 2.56 eV), we analyze the energy difference between
the lowest unoccupied band and the highest occupied band,
Ec − Ev1 (the index of Ec will be omitted for simplicity),
together with its gradient, along the high-symmetry lines
of the Brillouin zone (Fig. 3). We find the gradient to be
very low between the 	 and the 
 points (corresponding
to transitions signaled in Fig. 1) which is the first large
optical conductivity peak at 2.56 eV. It is also small near
the right arrow of Fig. 1, at around 2.7 eV. We define the
regions where this band nesting occurs using the criteria
|∇k(Ec − Ev)| � 1 eV/(2π/a) (where 2π/a is the modulus
of the reciprocal lattice vector).

We explored all the BZ to find the extent of the band nesting.
Figure 4 shows |∇k (Ec − Ev1) | for WS2. The large white areas
close to 
 are the areas where band nesting occurs for these
two bands.
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FIG. 3. (Color online) Difference Ec − Ev and the modulus of its
gradient for monolayer WS2, TiS2, and ZrS2 in the high-symmetry
path (Ref. 24). Ev1 indicates the highest occupied band, while Ev2

indicates the energy of the second highest occupied band. a is the
lattice constant.

The band nesting can also be observed for other bands,
as for example for the transitions between the second highest
band and the conduction band (Ec − Ev2), also illustrated in
Fig. 1. For example, the 2.96 eV peak in optical conductivity
results mostly from contributions of other bands. The band
structures of the other trigonal prismatic compounds WSe2,
MoS2, and MoSe2 display similar band nesting.

The band nesting is also present in the band structure of
octahedral polytype compounds. Figure 1 shows the band
structure and DOS of O-TiS2 single layer. This material exists
in the bulk in the octahedral form, and was predicted to be
an energetically stable semimetal.20 However, our calculations
show that it is an indirect band-gap semiconductor, with a small

FIG. 4. (Color online) Map on the BZ of |∇k (Ec − Ev1) | for
WS2. a is the lattice constant. In the 	-M line, ∇k (Ec − Ev1) is
undefined due to band crossing.

gap. Experimentally, the bulk form of TiS2 is a very narrow
band-gap semiconductor25,26 (Eg ≈ 0.3 eV). This value is
probably underestimated due to the semilocal approximation
used for the exchange and correlation energy functional. We
also note that, since there is no spin-orbit splitting, all the bands
shown are degenerate, and so contribute doubly to the DOS.

Following the same reasoning we used for the trigonal
prismatic materials and analyzing the energy gradients (Fig. 3),
we notice that |∇k (Ec − Ev) | � 1 eV/(2π/a) in the regions
corresponding to the arrows of Fig. 1. There is another band
below, and very close in energy to, the highest occupied band,
which is also plotted in Fig. 1. Since it has transition energies
very close to the ones from the highest occupied band, it mostly
reinforces the peaks due to the band nesting. All the three
transitions have similar energies, being the strongest near M

at 1.5 eV; the others contribute to the large broadening of the
peak in the optical conductivity (Fig. 2).

We analyze the extent of this band nesting over the BZ by
plotting |∇k (Ec − Ev1) | for TiS2 (Fig. 5). In white we have
the zone corresponding to values less than 1 eV/(2π/a). It
can be seen that band nesting extends significantly beyond the

FIG. 5. (Color online) Map on the BZ of |∇k (Ec − Ev1) | for
TiS2. a is the lattice constant.
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high-symmetry lines. The larger the area, the more intense the
absorption peak is expected to be.

Another element of this family, ZrS2, behaves in a similar
way. ZrS2 has the same octahedral structure and the same
number of valence electrons as TiS2. But, in this case, the gap
is much wider (Fig. 1).

The transitions marked by the arrows in Fig. 1 correspond
to regions where the gradient of Ec − Ev1 is small (Fig. 3).
Hence, the absorption is very high at these energies, as can be
seen in Fig. 2. There, we have two very close peaks, forming
a very broad peak. They correspond to a transition at the M

point with an energy E = 2.0 eV, and the transition indicated
by the letter A with an energy E = 2.2 eV. The transitions at B
(E = 1.88 eV) also give some contribution to the broadening
of the peak in the optical conductivity. The transition at M

is even stronger than for TiS2. Both TiS2 and ZrS2 have
absorption at lower energies than that corresponding to these
transitions, but the intensity is almost an order of magnitude
smaller. It is interesting to note that TiS2 and ZrS2 have a larger
optical conductivity than the corresponding systems based on
W or Mo.

We have verified all these results for all elements of the
2D STMDC that include WS2, WSe2, MoS2, MoSe2 in the
trigonal form, and TiS2, ZrS2, ZrSe2, PdS2, PdSe2, PtS2, PtSe2

in the octahedral form, and the band nesting is qualitatively the
same. The only variation that we find is quantitative, namely,
the intensity of the optical response changes from system to
system (Fig. 2 shows that the high peaks near the absorption
edge are about half as high for PtS2 and PdS2 as for TiS2, for

example). However, band nesting is present for all members
of this family of 2D materials.

III. SUMMARY

In conclusion, we have shown that all 2D STMDC
display band nesting in large regions of the Brillouin zone.
This feature of their band structure leads to a large op-
tical response and peaks in the optical conductivity. The
octahedral compounds TiS2 and ZrS2 are amongst those
with largest band-nesting regions. The trigonal prismatic
systems, which lack inversion symmetry, also have strong
nonlinear optical response. This result indicates that despite
their thickness, these materials present strong photon-electron
coupling. The existence of large electron-photon interaction
in 2D opens up the possibility to exciting opportunities for
basic research as well as for applications in photonics and
optoelectronics.
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