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We theoretically investigate the influence of lattice distortion effects on possible topological phases in
(LaNiO3)2/(LaAlO3)N heterostructures grown along the [111] direction. At the Hartree-Fock level, topological
phases originate from an interaction-generated effective spin-orbit coupling that opens a gap in the band structure.
For the unstrained system, there is a quadratic band touching at the � point at the Fermi energy for spin-unpolarized
electrons and Dirac points at K, K′ at the Fermi energy for fully spin-polarized electrons. Using density
functional theory we first show that the quadratic band touching and Dirac points are remarkably stable to
internal strain-induced out-of-plane distortions and rotations of the oxygen octahedra, which we compute. The
lack of a gap opening implies that the mean-field predictions for topological phases for both the polarized and
unpolarized systems are little affected by internal strain and lattice relaxations. On the other hand, we also discuss
two types of lattice distortions, which have an important effect on the electronic structure. First, an external strain
imposed along the [001] cubic direction can open a gap at the � point, thereby stabilizing a trivial insulating
phase in the spin-unpolarized system. However, it leaves the Dirac points intact. As a result, the Hartree-Fock
calculation for an effective model using parameters relevant to LaNiO3 finds that symmetry-breaking strain favors
a phase with polarized orbitals and antiferromagnetic spin order, but leaves earlier predictions for a zero-magnetic
field topological quantum Hall state essentially unchanged. Second, we identify a possible breathing distortion
of the oxygen cages stabilized by correlation effects. Such a distortion opens a gap at the Dirac points and we
demonstrate that it would compete with the topological phase in the fully spin-polarized system. Taken together,
our results suggest that distortion effects in thin films grown along the [111] direction in perovskites have rather
different consequences as compared to those grown along [001].
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I. INTRODUCTION

The experimental discovery of two-1–3 and three-
dimensional4–6 topological insulators has intensified the study
of time-reversal preserving and time-reversal breaking topo-
logical phases.7–9 From a practical standpoint it is important
to identify new materials with topological properties10–19 and
better understand the role that interactions may play in driving
conventional and exotic topological phases if the full potential
of these materials is to be realized in applications.20–33

Because of the intrinsic role that interactions play in the
physics of transition metal oxides they have emerged as an
important frontier in topological insulator research.34–45 An
especially promising area in the search for topological phases
is the interface of correlated oxides,46–51 in part due to the
large degree of tunability in such systems, but also because the
interface is a natural physical structure in devices. Independent
of the interest in topological phases, oxide interfaces have
proven to be an intrinsically rich system for realizing correlated
phases.52–61

Because of their relative abundance (and therefore relatively
low cost) and wide range of electronic phases, transition
metal oxides with the perovskite structure ABO3, where
A is usually a rare-earth element, B is a transition metal,
and O is oxygen, have undergone intensive study. The
undistorted perovskite has a relatively simple cubic structure
with natural cleave planes along the [001] and equivalent
directions, which makes it a natural direction for growth.
However, experiments on thin films grown along the [001]
direction show significant and sometimes anisotropic (with

respect to compression and stretching) lattice strain effects
on the electronic properties.52–62 While such strain-induced
electronic effects may turn out to be important for some
applications,63,64 it is crucial to pursue alternate material
growth routes, such as interface/thin film growth along the
[111] direction, to better understand the relation between strain
and electronic structure, and to identify cases where strain
effects appear to be minimal.65–67

Already, a number of theoretical studies suggest that thin
films, particularly bilayers and trilayers, grown along the [111]
direction under conditions of minimal strain are promising
for realizing topological phases.46–51,68 The first experimental
searches in (LaNiO3)2/(LaAlO3)N have been undertaken,69

but so far have provided inconclusive results for the presence
of topological phases. In addition to the topological phases
addressed here, other theoretical studies have considered
the [111] interface/thin films in the limit of strong electron
correlations where a local moment model is a natural starting
point.70,71 Further experimental studies on different materials
have shown growth in the [111] direction in perovskites is
achievable in spite of its highly polar nature.72–74

Of particular importance for topological phases in the
(LaNiO3)2/(LaAlO3)N heterostructures grown along [111]
is the electronic structure of the eg bands (the nominal
charge of the Ni is 3+, which leads to a t6

2ge
1
g electronic

configuration). Here, the growth direction enters in an im-
portant way: the two Ni ions of the LaNiO3 bilayer form a
buckled honeycomb lattice, which gives rise to features in
the band structure known from graphene and other hexagonal
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systems.46 In particular, in the simplest tight-binding model for
an undistorted lattice, there is a flat-band touching a (locally)
quadratically dispersing band at � at an energy corresponding
to the Fermi energy of spin-unpolarized electrons at quarter
filling.46,47,49 The flat-band touching point is robust within
density functional theory (DFT) with the local density ap-
proximation (LDA) for an undistorted lattice,48 and plays a
key role in abetting interaction-driven topological phases at
weak coupling.24,47,49,75,76 On the other hand, the electronic
structure also features linear touching points (Dirac points)
located at the corners K and K′ of the hexagonal Brillouin
zone. They are at an energy relevant for the fully spin-polarized
system at quarter filling. Such a ferromagnetic state is indeed
found within LSDA + U and Hartree-Fock for certain values
of interaction parameters.48,49 Though the Dirac points are
not perturbatively unstable to interactions in two dimensions,
topological phases can result from a gap opening beyond a
critical interaction strength.22,24,75

In this paper, we investigate how robust the electronic
structure of the (LaNiO3)2/(LaAlO3)N system is against
various lattice distortions and how potential topological phases
are affected by such perturbations. We carry out this study
using DFT with LDA and generalized gradient approxi-
mation (GGA), which are believed to provide reasonably
accurate results for the band features of metallic LaNiO3.
Electron-electron interaction effects are discussed both within
LSDA + U and within the Hartree-Fock approximation using
the LDA band structure as input. While Hartree-Fock theory
is not expected to provide a quantitatively accurate description
of LaNiO3, our focus here is on the specific issue of whether
the previously identified instabilities towards an insulating
topological phase in the presence of interaction47–49 persists
under DFT-computed band structure with internal and external
lattice strain in the thin-film geometry. On this question,
Hartree-Fock theory should be more reliable; in model Hamil-
tonian systems, functional renormalization group studies (a
complimentary unbiased approach) support the Hartree-Fock
mean-field predictions of interaction-generated topological
phases.22,77

One of our main results is that the quadratic band touching
at the � point and the Dirac points at K, K′ are remarkably
stable to internal strain in [111]-grown films. To show this
we compute the fully relaxed lattice structure, corresponding
oxygen tilt angles, and resulting band structure. By fitting to
a tight-binding model, we see that hopping parameters are
uniformly reduced by roughly 10–15%, but there is little
other change to the band structure. This small change to
the kinetic energy results in a very small numerical change
to the previously obtained Hartree-Fock phase diagrams.48

The central conclusion of our study of internal strain on
the (LaNiO3)2/(LaAlO3)N system is that it has negligible
effects on the results previously obtained for the unstrained
system.47–49 In particular, earlier proposals47–49 for topological
phases in the (LaNiO3)2/(LaAlO3)N system are essentially
unaffected.

On the other hand, we also identify lattice distortions which
do have an important effect on the electronic structure. First,
we show it is possible to forcefully push the system to open
a gap in the band structure from an externally applied strain
along the [001] cubic direction. We find this opens a gap at

the � point but leaves the Dirac points intact. For this case,
we also did a tight-binding fit and computed a Hartree-Fock
phase diagram similar to those in Refs. 47–49 to determine
how the gap opening from strain influences the tendency
towards realizing interaction-generated topological phases.
We find the gap at the � point suppresses the generation of
topological phases at weak coupling (small Hubbard U ) but
leaves the topological phase predictions over the parameter
regime relevant to (LaNiO3)2/(LaAlO3)N (where the Dirac
points are relevant) essentially unchanged. The main effect
of the externally imposed strain along [001] is to produce an
orbital polarization, which then favors an antiferromagnetic
spin order. This effectively expands the region of the phase
diagram for antiferromagnetism.

Second, within the LSDA + U , we identify a breathing
distortion of the oxygen cages surrounding the Ni ions. This
distortion breaks the inversion symmetry, which renders the
two Ni sites on the buckled honeycomb lattice inequivalent. On
the basis of an effective tight-binding model we demonstrate
that such a distortion competes with a potential topological
phase in the fully spin-polarized system.

Our paper is organized as follows. In Sec. II we describe our
density functional theory calculations for the lattice distorted
(LaNiO3)2/(LaAlO3)N system. In Sec. III we present the tight-
binding fit to the DFT results, and in Sec. IV we give the
Hartee-Fock calculations for the distorted system. We discuss
promising experimental approaches for observing topological
phases in oxide heterostructures in Sec. V and finally conclude
in Sec. VI.

II. DFT RESULTS

A. Details of the calculation

We have studied the electronic structure of the
(LaNiO3)2/(LaAlO3)10 supercell (see Fig. 1) using density
functional theory78,79 (DFT) within the local density approx-
imation (LDA)79 and the generalized gradient approximation
(GGA) with the Perdew-Becke-Erzenhof parametrization, as
implemented in the Vienna ab initio simulation package
(VASP).80 We used the projector augmented wave pseudopo-
tentials for all our calculations.81 A plane-wave cutoff energy
of 600 eV and a 6 × 6 × 6 k-point grid was chosen for
integrating over the Brillouin zone. The energies are converged
to within 10−6 eV/cell and all forces to within 0.004 eV/Å.
The pseudocubic in-plane lattice constant for the unstrained
supercell was chosen as 3.79 Å, which corresponds to the
experimental pseudocubic lattice constant of bulk LaAlO3.
We performed full atomic relaxation and optimized over
the out-of-plane lattice constant of the supercell. To treat
correlation effects within DFT, we also performed LSDA + U

calculations for the fully relaxed system within a simplified
rotationally invariant scheme.82 We used an effective local
interaction parameter Ueff = 5.74 eV.48,83

Since the lowest energy configuration of the lattice is
one with relatively little change from the ideal configuration
(especially as measured by changes in the band structure), we
also considered a symmetry-breaking strain along [001], which
does have a significant influence on the band structure. The
LDA band gap for LaAlO3 in our calculation is Eg ≈ 3.8 eV
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Cubic [111] direction

(a) Supercell

(b) Octahedral tilts and
rhombohedral cell angle

(c) View along [111]

FIG. 1. (Color online) (a) Supercell used in the density functional
theory calculations reported in this work. Octahedral rotations are
shown. Red spheres represent oxygen atoms, and green spheres repre-
sent La atoms. Nickel atoms sit at the centers of the octahedral oxygen
cages. (b) The pattern of the octahedral tilts present in the fully relaxed
structure and a sketch of the rhombohedral cell angle α. (c) A view
along the [111] direction showing the octahedral rotations. Because
the octahedral rotations preserve the trigonal point group symmetry,
the quadratic band touching and Dirac points are preserved. This, in
turn, implies the predictions for interaction-driven topological phases
in the (LaNiO3)2/(LaAlO3)N system remain qualitatively unchanged.
As we discuss, a symmetry-breaking external strain is required for a
qualitative change.

(experimental value Eg = 5.6 eV84). As expected, this wide
band gap leads to a strong confinement of the electronic
degrees of freedom in the LaNiO3 bilayer.48 Physically, then,
the role of the LaAlO3 capping layers is simply to provide a
vacuum for the LaNiO3 bilayer. Without the capping layers, the
bilayer would not be stable and would be difficult to manipulate
experimentally.

Although we are studying a three-dimensional (3D) system
formed by a supercell with a large period along the [111]
direction, the strong quantum confinement of the conduction
electrons to the LaNiO3 bilayer implies a negligible kz

dependence of the electronic structure. The system is therefore
quasi-2D and we present band structures in the hexagonal 2D
Brillouin zone for kz = 0.

B. Fully relaxed system: LDA/GGA

In order to study lattice relaxation effects, particularly
the effect of the the oxygen octahedral tilts within the
superlattice,85 we compute the electronic structure of a fully
relaxed system of the (LaNiO3)2/(LaAlO3)10 superlattice.
Both LaAlO3 and LaNiO3 have a rhombohedral perovskite
structure in the ground state with a tilted AlO6 and NiO6

octahedral network in which alternating octahedral cages
undergo rotations about the [111] axis with the same angle

but opposite sign, see Fig. 1(b) (in the Glazer notation, such
a distortion is denoted by a−a−a−). At low temperature, the
rhombohedral cell angle α [Fig. 1(b)] in LaAlO3 and LaNiO3 is
found to be 60.1◦ and 60.8◦, respectively.86,87 Both these values
are very close to cubic symmetry (which would correspond
to α = 60◦) and in our calculations we neglected the small
deviations from this ideal value.

The rotations of the octahedral oxygen cages are among
the most important lattice distortion effects in perovskites.64

In both LaAlO3 and LaNiO3, the tilts are described by a
rotation angle φ around the cubic [111] direction. Because the
direction of rotation alternates between neighboring octahedra
[see Fig. 1(b)] the idealized cubic unit cell is doubled in
bulk. However, the size of the unit cell for the studied [111]
superlattice is not affected by the tilts. Experimentally, the tilt
angle φ is found to be 5.74◦ in LaAlO3

86 while in LaNiO3

it is found to be 9.2◦.87 In our calculations, we start with
a (LaNiO3)2/(LaAlO3)10 superlattice with initial octahedral
tilt angles φ = ±6◦ uniformly throughout the structure (with
opposite signs on neighboring octahedra). We then let the
atoms relax to their minimal energy position and optimize over
the out-of-plane lattice constant of the supercell while fixing
the in-plane lattice constant at LaAlO3 (3.79 Å). The optimized
out-of-plane lattice constant was found to be 25.70 Å within
LDA and 26.40 Å within GGA. For comparison, the value of
an ideal cubic system with a0 = 3.79 Å would be 4

√
3a0 =

26.26 Å. In addition, we have also verified that an initial
breathing distortion, where the volume of neighboring oxygen
cages alternates, relaxes back to a nonbreathing structure.

The LDA out-of-plane relaxation is illustrated in Fig. 2
where the separation between neighboring oxygen layers is
shown. There is a compression near the interface between
LaAlO3 and LaNiO3, and an expansion within the LaNiO3

bilayer. This is in accordance with the fact that the pseudocubic
lattice constant of LaNiO3 is slightly larger (3.85 Å) than that
of LaAlO3.

The layer-resolved angle of the rotations of the octahedral
oxygen cages as obtained within LDA is shown in Fig. 3.
It monotonically interpolates between φ ≈ 7.2◦ in LaAlO3

and φ ≈ 9.3◦ in LaNiO3 for the LDA calculation. While the
computed value for LaNiO3 is very close to the experimental
bulk value (9.2◦), the rotation angle in LaAlO3 is slightly
higher than both the experimental (5.7◦) and the LDA value
obtained in Ref. 84 (6.1◦). However, Ref. 84 uses an LDA

2.12

2.13

2.14

2.15

2.16

oxygen layer

ox
yg

en
la

ye
r

se
pa

ra
ti

on
[Å

]

(LaNiO3)2

(LaAlO3)5(LaAlO3)5

FIG. 2. Separation between neighboring oxygen layers in the
fully relaxed (LaNiO3)2/(LaAlO3)10 superlattice. The results are
obtained within the LDA approximation to DFT.
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FIG. 3. Layer-resolved octahedral rotation angles for the
(LaNiO3)2/(LaAlO3)10 supercell. The results are obtained within the
LDA approximation to DFT. As Fig. 4 shows, these rotations do not
lift the quadratic band touching at the � point or the Dirac points at
K, K′ in the Brillouin zone.

optimized smaller lattice constant (3.74 Å) to better match
the experimental value. Because we are using the actual
experimental lattice constant (3.79 Å), the tilt angles are
slightly overestimated by our LDA calculations.

Our results for the fully relaxed band structure in the
quasi-2D Brillouin zone are shown in Fig. 4. Overall, we find
little variation between LDA and GGA and the band structure
is close to the band structure of the unrelaxed system discussed
previously.48 Moreover, both the quadratic band touching at
the � point as well as the linear band crossing at the K and K′
points in the unrelaxed system are preserved in the fully relaxed
system. As a result, earlier predictions for topological phases
based on an interaction-induced gap opening at the � point
(or at the Dirac points in a fully spin-polarized system) are
essentially unaffected by the lattice relaxation.47–49 However,
fully relaxing the structure results in two quantitative changes
as compared to the ideal structure.48 First, there is an overall
reduction of the eg band width. Second, the band gap of
the LaAlO3 increases by about 0.8 eV. We found that both
changes are predominantly because of the rotations of the
oxygen octahedra.

The robustness of the touching points are understood from
symmetry considerations. Both the ideal and the relaxed
structure have the trigonal point group symmetry D3d with a
C3 axis along the [111] direction and three C ′

2 axes in the plane
perpendicular to [111]. The C ′

2 axes lie in the oxygen layer,
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(a) (b)

Γ ΓΚ Μ Γ ΓΚ Μ

LDA GGA

FIG. 4. DFT band structure of the fully relaxed
(LaNiO3)2/(LaAlO3)10 system within (a) LDA and (b) GGA.
Crucially, the quadratic band touching at the � point as well as the
linear crossings at K and K′ are preserved.

which is sandwiched between the two Ni layers. D3d permits
two 2D irreducible representations and hence the twofold
degeneracies at � are protected by the trigonal symmetry.
Furthermore, under inversion symmetry, kx → −kx , ky →
−ky , and kz → −kz so that the dispersion for kz = 0 is
inversion symmetric in the 2D Brillouin zone, too. Hence, the
quadratic band touching point is stable: it does not split into
four Dirac points under symmetry-preserving perturbations.
The symmetry group for the K and K′ points is C3v , which also
permits a two-dimensional irreducible representation. Thus,
the Dirac points at half filling are protected by the trigonal
symmetry as well. Note the difference to Bernal stacked bilayer
graphene, which also has the D3d point group symmetry.88

There, as opposed to the LaNiO3 bilayer, the quadratic band
touching point occurs at the K and K′ points whose little group
is C3v and allows for the splitting into four Dirac points without
breaking the symmetry.88

C. Fully relaxed system: LSDA + U

We now briefly discuss correlation effects within the
LSAD + U scheme. For bulk nickelates, it is known that
LDA/GGA + U wrongly predicts a ferromagnetic ground
state not seen in experiments. For example, LaNiO3 is
a paramagnetic metal but a ferromagnetic ground state is
found for a typical value of U ∼ 6 eV.83 A similar problem
occurs for insulating nickelates such as LuNiO3, which are
antiferromagnetic in the low-temperature regime but, again,
DFT + U (and even DFT + DMFT89) predicts a ferromagnetic
ground state. Although the magnetism in our [111] sandwich
structure can differ from bulk, in view of these problems
known for the bulk systems, the DFT + U predictions for the
magnetism should be taken with caution.

Performing the LSDA + U calculations for the fully relaxed
[111] sandwich structure, we find a fully polarized ferro-
magnetic ground state, similar to the ideal system discussed
previously.48 What is interesting about the scenario of a fully
polarized ferromagnet is that the Fermi energy is placed right
at the Dirac points of the majority band. This opens the
possibility for unusual interaction-driven phases, as discussed
previously.48,49

As opposed to the LDA, we find that the LSDA + U

sustains a breathing distortion where the volumes of the
oxygen cages in the first Ni layer are reduced as compared
to the volumes of the octahedra in the second Ni layer. This
distortion breaks the inversion symmetry, which opens a gap
at the Dirac points. The resulting band structure is shown in
Fig. 5. The two Ni atoms now have different magnetic moments
amounting to 0.96μB and 1.24μB , respectively (μB is the
Bohr magneton), with the larger moment being surrounded
by the larger oxygen cage. Interestingly, the difference in
the total number of d electrons between the two Ni sites is
very small and amounts to roughly 0.01. We also note that
the orbital polarization is vanishingly small. The possibility
that a breathing distortion is stabilized in insulating rare-earth
nickelates has been considered previously.83,89,90 It is also a
subject of great interest in thin films, where strain and quantum
confinement may favor such a distortion for LaNiO3 (which
is metallic and undistorted in bulk).58,91 In Sec. III C we
argue that such a breathing distortion can be modeled as a
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FIG. 5. (Color online) The band structure of the fully relaxed
(LaNiO3)2/(LaAlO3)10 system within the LSDA + U , which predicts
a fully polarized ferromagnetic ground state. A gap opens at the Dirac
points as a consequence of a breathing distortion, which reduces the
volume of the oxygen cage on one sublattice while it increases it
on the other sublattice. Solid lines are the majority, dashed lines the
minority bands.

bond-order wave in an effective model, which only includes
the eg orbitals. This provides an alternative perspective to the
commonly used one, which treats the oxygens explicitly.83,89,90

In addition, on the basis of this effective model, we also argue
that such a breathing distortion would in general compete with
a topological phase predicted to occur in the ferromagnetic
phase for certain parameters within Hartree-Fock.

On the other hand, to the best of our knowledge, there
are presently no experimental indications for inequivalent
Ni sites66 and the experimental relevance of the theoretical
observation of a breathing distortion is currently unclear. In
view of this uncertainty, we postpone a detailed study of
the interplay between structural distortion and correlation
effects. In Sec. IV, instead, we again discuss the possible role
of interactions using the Hartree-Fock approximation for an
effective multiorbital model. This approach allows us to map
out a larger parameter regime (which also includes external
strain) and to access a larger range of possible phases.

D. Symmetry-breaking strain along [001]: LDA

The main conclusion of our DFT calculations for the
fully relaxed system is that the crucial band features favoring
interaction-driven topological phases at the Hartree-Fock level
remain intact. In this section, we invert the question: What type
of lattice distortion can open a gap in the band structure at �

(and the Dirac points in the fully polarized system) and thereby
compete with possible topological phases?

We find that we are able to open a gap at the � point with
a strain applied along the [001] direction (though the Dirac
point remains for the studied range of strain), which breaks
the rotational symmetry about the [111] direction. Specifically,
we impose the following lattice strain on the system and then
compute the resulting band structure:

a1 = a0(1 − μx)i, a2 = a0(1 − μx)j,

a3 = a0(1 + x)k, (1)

where ai are the lattice vectors under strain in the three
cubic directions, i,j,k, a0 = 3.79 Å is the undistorted lattice
constant, x is the fraction of the lattice lengthening or

Γ ΓΜ1 Κ Μ2 Κ’

E
−

E
F

[e
V

]

x = 0.01

E
−

E
F

[e
V

]

x = 0.05

Γ ΓΜ1 Κ Μ2 Κ’

(a) (b)

FIG. 6. (Color online) The band structure of the [001] strained
(see text) for (a) x = 0.01 and (b) x = 0.05. Note that a strain of
x = 0.05 opens a sizable band gap at the � point but a Dirac point
remains close to K′. The inset shows the special points in the Brillouin
zone.

contraction in the k direction, and μ = 0.24 is the Poisson’s
ratio for LaAlO3.92 The band structures for x = 0.01 and
x = 0.05 are shown in Fig. 6. Because strain along the [001]
direction breaks the trigonal symmetry, we show both K and
K′ points as well as two different M points. In terms of the
reciprocal lattice vectors G1 and G2, these points are given
by M1 = G1/2, K = (2G1 + G2)/3, M2 = (G1 + G2)/2, and
K′ = (G1 + 2G2)/3.

In Fig. 7 we plot the orbital-resolved local density of states
(LDOS) for a [001] strained LaNiO3)2/(LaAlO3)10 system
with (a) x = 0.01 and (b) x = 0.05. We find no symmetry
breaking in the LDOS for the two Ni sites, suggesting they
are equivalent sites under the [001] strain. The external strain
splits the energy of the two eg orbitals and induces an orbital
polarization. For the strongly strained case with x = 0.05 a
gap in the LDOS at the Fermi level is noticeable, which is
consistent with the gap at 1/4 filled for spin-unpolarized eg

bands in Fig. 6. It would be interesting to see if this large
orbital polarization persists in a more careful treatment using
strongly correlated methods that explicitly include the oxygen
orbitals,93 as to the best of our knowledge this issue has not
been addressed in the [111] growth direction.

E [eV]

L
D

O
S

[a
.u

.]

(a)
x = 0.01

E [eV]

L
D

O
S

[a
.u

.]

(b)
x = 0.05

FIG. 7. (Color online) The orbital-resolved local density of states
(LDOS) for a [001] strained (LaNiO3)2/(LaAlO3)10 system near the
Fermi energy E = 0 for (a) x = 0.01 and (b) x = 0.05. Only the
dominant contribution from the eg orbitals is shown. We find no
symmetry breaking for the two Ni sites in terms of the LDOS, which
are numerically identical. The strain induces an orbital splitting and
significant orbital polarization of the eg orbitals.
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III. EFFECTIVE TIGHT-BINDING MODELS

For comparison among the unrelaxed, fully relaxed, and
[001] strained systems, we perform a tight-binding fit to both
the fully relaxed system and the [001] strained system. We find
there is little difference in the fitting parameters between the
fully relaxed system and the undistorted system the authors
previously studied,48 while there is a significant difference for
the strained system in which a gap opens at the � point. In
Sec. IV we will compute a Hartree-Fock phase diagram for
the tight-binding model with interactions for the case of strain
along [001].

A. Fitting for the fully relaxed system

We begin with the fully relaxed system for which the
quadratic band touching at the � point is preserved. Following
Ref. 48, we consider a tight-binding model based only on the
nickel eg orbitals that includes nearest-neighbor hopping via
the oxygen p orbitals and also second-neighbor hopping via
the oxygen p orbitals. We find a better fit can be obtained
by including the small differences in the hopping to outer
versus inner oxygen atoms.48 Assuming trigonal symmetry
is preserved (a result consistent with our fully relaxed DFT
results), we take the nearest-neighbor Slater-Koster parameters
for hopping along the z direction to be described by the matrix

t̂z = −
(

t 0

0 tδ

)
(2)

in the basis (dz2 ,dx2−y2 ). Here t includes predominantly the
hopping via the intermediate oxygen while tδ arises from the
direct overlap and is small. We set tδ = 0 in the following.
Assuming that the nearest-neighbor hopping in the x and y

directions are equivalent to the hopping along the z direction,
we obtain the corresponding matrices by a rotation of the
eg-orbitals around [111] by ±2π/3. The matrix for the rotation
by 2π/3 is

R̂ =
(

−1/2
√

3/2

−√
3/2 −1/2

)
. (3)

As a result, we find

t̂x = R̂T t̂zR̂, t̂y = R̂T t̂xR̂. (4)

The Slater-Koster parameters for second-neighbor hopping
via two intermediate oxygen atoms define the matrix

t̂xy = −
(

t ′/2
√

3�/2

−√
3�/2 −3t ′/2

)
. (5)

The parameters take into account the lowest-order processes
for second-neighbor hopping. The off-diagonal entries propor-
tional to � are allowed in the bilayer system discussed here (as
opposed to a perfect cubic system) because the two possible
paths connecting second-neighbor transition-metal ions are
not equivalent: they either involve inner or outer oxygens.48

Note that t̂xy is not symmetric if � �= 0, which means that
there is an associated direction for the hopping. We use the
convention that t̂xy denotes the hopping of an electron along a
second-neighbor bond, which is reached by first following the
y axis and then the x axis of the cube. By rotating the orbitals,

TABLE I. Parameters obtained in tight-binding fits to the eg

DFT band structure of the unrelaxed and fully relaxed twelve-layer
superlattice shown in Fig. 8.

Fit t [eV] t ′ [eV] � [eV] EF [eV]

Unrelaxed (LDA)48 0.598 0.062 −0.023 −0.693
Fully relaxed (LDA) 0.541 0.045 −0.017 −0.641
Fully relaxed (GGA) 0.508 0.046 −0.016 −0.593

we also obtain the second-neighbor hopping along the other
directions:

t̂yz = R̂T t̂xyR̂, t̂zx = R̂T t̂yzR̂. (6)

Including the above introduced hopping matrices, the gener-
alized tight-binding model now takes the form

H0 =
∑
r∈A

∑
s

∑
u=xyz

( 
d†
s,r t̂u


ds,r+eu
+ H.c.)

+
∑
r∈A

∑
s

∑
u=xyz

( 
d†
s,r t̂u,u+1 
ds,r+eu−eu+1 + H.c.)

+
∑
r∈B

∑
s

∑
u=xyz

( 
d†
s,r t̂u,u+1 
ds,r−eu+eu+1 + H.c.). (7)

Here, 
ds = (dz2,s ,dx2−y2,s)T is a vector in orbital space,
s =↑, ↓ is the spin and the notation u + 1 refers to y if u = x

with a cyclic extension to the other elements.
Using the tight-binding model H0 with parameters t , t ′,

and � (with tδ = 0), we fitted both the LDA and GGA band
structures of the fully relaxed system near the Fermi level.
The fitting parameters are listed in Table I and Fig. 8 shows
the LDA together with the tight-binding band structure for the
best fit. As mentioned in the previous section, the relaxation of
the lattice including the oxygen tilts does not affect the band
structure in a qualitative way and the model H0 captures well
the DFT results. Compared to the unrelaxed case there is an
overall reduction of the kinetic energy scale by about 10–15%
(see Table I), which makes the system more susceptible to
interaction effects. The phase diagrams in Fig. 2 of Ref. 47
and in Fig. 7 of Ref. 48 will thus have a numerically small
shift in the boundaries between different phases for the fully
relaxed system. We have explicitly verified this.

E
−

E
F

[e
V

]

LDA

TB

Γ ΓΚ Μ

FIG. 8. (Color online) Fully relaxed LDA band structure and
tight-binding (TB) fit. A comparison of the tight-binding parameters
with those for the unrelaxed system is given in Table I.
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B. Fitting for the system with strain along [001]

We now turn to the system with an external strain imposed
along the [001] direction. On the level of the tight-binding
model, such a distortion introduces several symmetry-breaking
perturbations in the Hamiltonian.94,95 The most important one
is an orbital-dependent local energy splitting

Hz = αz

∑
r

(
nr,x2−y2 − nr,z2

)
. (8)

For x > 0 in Eq. (1), αz > 0 and the local energy of the
dz2 orbital is lowered as compared to the dx2−y2 orbital, see
Fig. 7. Physically, the uniaxial strain elongates the oxygen
octahedra along the [001] direction, which results in an orbital
field. Besides the orbital field given by Hz, strain along [001]
also modifies the overlapping matrices thereby inducing an
anisotropy in the hopping amplitudes. Hence, in the externally
strained case, the form of H0 in Eq. (8) is altered and we
introduce the parameter η, which rescales the nearest-neighbor
hopping along the z direction

t̃z = η−1 t̂z, t̃x = t̂x , t̃y = t̂y . (9)

In contrast to the anisotropy of the nearest-neighbor hopping
matrices, we have found that the anisotropy of the second-
neighbor hopping matrices is small and does not improve the
tight-binding fit in an essential way. In the following, we only
keep the hopping anisotropy in the first-neighbor hopping. The
anisotropic hopping Hamiltonian is denoted by H̃0 and the full
tight-binding model for the system with strain along [001] is
given by

Hstrained = H̃0 + Hz. (10)

We used the model Eq. (10) to fit the LDA band structure
for the case of x = 0.01 and x = 0.05 with x given in Eq. (1).
The results are shown in Fig. 9. Overall, the quality of the fit
is less good compared to the fully relaxed case, see Fig. 8.
However, the simple model Eq. (10) correctly captures the
overall features of the band structure including the opening
of the gap at the � point for x = 0.05. The values of the
strain induced parameters are αz ≈ 0.02 eV and η ≈ 0.95 for
x = 0.01 while αz ≈ 0.15 eV and η = 0.86 for x = 0.05.

As discussed above, moderate external strain opens a
gap at the � point resulting in an insulating phase for the

E
−

E
F

[e
V

]

x = 0.05

E
−

E
F

[e
V

]

x = 0.01(a) (b)

Γ Γ Γ ΓΜ1 Κ Μ2 Κ’ Μ1 Κ Μ2 Κ’

LDA

TB
TB

LDA

FIG. 9. (Color online) Tight-binding (TB) band structure fits for
(a) x = 0.01 and (b) x = 0.05 using the model Eq. (10) which
includes the 6 parameters t , t ′, �, αz, η and the Fermi energy EF , see
text.

spin-unpolarized system. However, the strain does not open
a gap at the Dirac points, which are relevant in the fully
spin-polarized FM phase. This fact is best understood by
linearizing the strained Hamiltonian around K and K′, which
results in

H (k) = vx(kx − Axτz)σxτz + vykyσy + ε0(k)σ0τz. (11)

In the lowest order, the strain-induced perturbations to the ideal
Dirac model enter via the following parameters

(vx,vy) =
[

3t(1 + 8t ′αz/t2)

4
,
3t(1 − 8t ′αz/t2)

4

]

Ax = 2(1 − η−1)

3t
ε0(k) = −αzkx.

The external strain along [001] has three effects: (i) it
introduces an anisotropy in the Fermi velocity vx �= vy ,
(ii) it shifts the Dirac point along the kx direction by Ax ,
and (iii) leads to a tilt of the Dirac cones around the ky axis
with opposite tilt angle for K and K′ as described by the term
ε0(k). Crucially, however, the external strain does not open a
gap at the Dirac points in lowest order.

C. Breathing distortion as a bond-order wave

Before we proceed with the Hartree-Fock calculations
for the [001] strained systems, we would like to provide a
perspective of the breathing distortion found in the LSDA + U

within the effective tight-binding model Eq. (8). Because the
difference in the charge on the two Ni sites is very small, the
term that opens the gap at the Dirac points in the spectrum is not
simply a staggered sublattice potential. Instead, an additional
perturbation allowed by symmetry can be considered. This is
a term that enhances the hopping on sublattice A, t ′ → t ′ + ε,
while it reduces the hopping on sublattice B, t ′ → t ′ − ε,
see Fig. 10. Such a bond-order wave in the second-neighbor
hopping amplitudes also breaks the inversion symmetry but
it leaves the charge on the two Ni sites unaffected. The
microscopic origin of such a perturbation can be understood
from considering the second-neighbor hopping processes via
two intermediate oxygens:48 the breathing distortion renders
the second-neighbor hopping among two A sites inequivalent
from the hopping among two B sites. In Fig. 10 we show the
tight-binding band structure for t ′ = 0.1t and ε = 0.05t while

E
/
t

Γ ΓΚ Μ

A

B

FIG. 10. (Color online) Gap opening at the Dirac point due to
a bond-order wave in the second-neighbor hopping amplitudes t ′ →
t ′ ± ε. Such a bond-order wave mimics the breathing distortion found
in the LSDA + U calculation of Sec. II C. Parameters are t ′ = 0.1t

and ε = 0.05t .
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the remaining small parameters are set to zero. As expected, a
gap opens at the Dirac points.

It is instructive to consider the gap opening in the FM phase
from the point of view of the k · p Hamiltonian obtained by
linearizing around K and K′ (h̄ = 1):

H (k) = v(kxσxτz + kyσy) + mεσz. (12)

Here, 
σ are the Pauli matrices acting on the pseudospin
degree of freedom and 
τ are the Pauli matrices acting on
the valley degree of freedom. (We ignore the physical spin
for the fully spin-polarized system.) The Fermi velocity is
given by v = 3ta/4 where a = √

2/3a0 is the bond length of
the projected honeycomb lattice. Importantly, the bond-order
wave introduces a mass parameter mε = 3ε/2, which has the
same sign in the two valleys. It therefore acts similarly to a
staggered sublattice potential.

IV. HARTREE-FOCK CALCULATIONS FOR U �= 0.

A. Multiorbital Hubbard model

As we discussed earlier in this work, the fact that the
fully relaxed band structure is qualitatively very similar to
the the unrelaxed one presented earlier implies that the
Hartree-Fock predictions of Ref. 48 are not expected to
be qualitatively changed. Indeed, we have verified there is
negligible quantitative change to the phase diagram reported
in Fig. 7 of Ref. 48.

In this section, we instead explore the impact of an external
strain along [001] on the various symmetry-broken phases
obtained in the mean-field treatment of the interacting system.
Our Hartree-Fock calculations follow Ref. 48 in which an
on-site interaction96,97

Hint =
∑

r

⎡
⎣U

∑
α

nrα↑nrα↓ + (U ′ − J )
∑

α>β,s

nrαsnrβs

+U ′ ∑
α �=β

nrα↑nrβ↓ + J
∑
α �=β

d
†
rα↑drβ↑d

†
rβ↓drα↓

+ I
∑
α �=β

d
†
rα↑drβ↑d

†
rα↓drβ↓

⎤
⎦ (13)

is used. We assume the following relations between the
Slater-Kanamori interaction parameters: U ′ = U − 2J and
I = J . These are valid in free space and believed to be
approximately true in the solid-state environment. The total
multiorbital Hubbard Hamiltonian for the eg electrons is given
by

H = H0 + Hz + Hint, (14)

where H0 is the tight-binding Hamiltonian given in Eq. (8)
and the effect of the strain is included by the orbital-dependent
local energy splitting Hz [Eq. (8)]. For the tight-binding model
H0, we keep the two largest parameters t and t ′ and set the
remaining small parameters to zero.

B. Connection to previous results

The interacting Hamiltonian Eq. (14) for the unstrained
lattice (αz = 0) has been studied previously within the Hartree-

Fock approximation and the phase diagram has been worked
out for various combinations of interaction parameters.47–49

A particularly interesting result for intermediate to strong
interactions is the observation of a spontaneously generated
quantum anomalous Hall (QAH) phase, which is accompanied
by ordering in complex orbitals within a ferromagnetic (FM)
phase. As the FM phase (which appears for larger J/U values)
is fully spin polarized, the Fermi energy is placed right at the
Dirac points. Physically, the QAH phase then appears as a
result of a gap opening at these Dirac points with opposite sign
of the mass parameter in the two valleys near K and K′.98 This
gap opening is induced by spontaneous ordering of complex
orbitals, which is signaled by a nonvanishing expectation value
of the y component of the pseudospin-1/2 associated with the
orbital degree of freedom47

χ =
∑

s

〈 
d†
s,rσy


ds,r〉 = 〈 
d†
↑,rσy


d↑,r〉 �= 0, (15)

where σy is the second Pauli matrix and for the last equation we
assumed n↑ = 1. In the presence of such an order parameter,
the mean-field Hamiltonian acquires a term47

Hχ = −χ̃
∑
r,s


d†
s,rσy


ds,r , (16)

where the orbital field is determined self-consistently via
Eq. (15) and

χ̃ = χ

4
(U − 3J ). (17)

The on-site term Hχ opens a gap at the Dirac points. In the k · p

Hamiltonian, it enters as a mass parameter mχ with opposite
sign in the two valleys:

H (k) = v(kxσxτz + kyσy) + mχσzτz, (18)

where mχ = χ̃ . The resulting mean-field band structure is
topologically nontrivial displaying a spontaneous quantum
anomalous Hall effect with Hall conductivity σxy = e2ν/h

where ν is the Chern number

ν = 1

2π

∫
BZ

d2k�(k) = ±1. (19)

�(k) denotes the Berry curvature, which is obtained from the
mean-field Bloch functions as99

�(kx,ky) = i
∑
n occ.

εlm〈∂kl
un(k)|∂km

un(k)〉, (20)

εlm is the fully antisymmetric tensor and the sum runs over
the occupied bands. The nontrivial Chern number ν = ±1
implies the existence of a chiral edge state. Figure 11 shows
the spectrum obtained by studying the model HQAH = H0 +
Hχ + Hz on a strip with two zigzag edges for zero external
strain and for αz = 0.25t . As expected, chiral edge states are
visible at half filling with and without external strain while at
quarter filling, the external strain drives a transition to a trivial
insulator.

These results bear a similarity with Haldane’s honeycomb
lattice model,98 which also realizes a nontrivial Chern num-
ber ν = ±1 in the absence of an external magnetic field.
However, the Haldane model is a single-orbital model for
spinless fermions and the nontrivial Berry phases appear
as a consequence of a complex second-neighbor hopping
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kx/π

E
/
t

kx/π

E
/
t

(a) (b)

FIG. 11. Edge states in the QAH model HQAH for a strip with
zig-zag edges. (a) External strain αz = 0. (b) External strain αz =
0.25t . Parameters are t ′ = 0.1t , χ̃ = 0.2t and the width of the strip
contains L = 31 sites.

amplitude.98 On the other hand, HQAH involves two orbitals
and the nontrivial Berry phases in the QAH phase appear due
to ordering in complex orbitals, which is apparent in the local
term Eq. (16). As discussed in Refs. 100 and 101 for the closely
related planar p-orbital model, the QAH phase is realized at
half filling if χ̃ < 3t/2. For χ̃ = 3t/2, the gap at half filling
closes at � and a trivial insulator appears for χ̃ > 3t/2. In this
limit, HQAH essentially describes two copies of the Haldane
model separated by χ̃ and the complex second-neighbor
hopping appears in second-order perturbation theory in t/χ̃ .100

Finally, we note that in the vicinity of the QAH/FM phase,
Hartree-Fock also predicts48 a gapless FM phase and a gapped√

3 × √
3 AFO/FM phase where a coupling between the

two Dirac cones at K and K′ is generated by orbital order,
which triples the unit cell. Furthermore, reducing the value
of J/t leads to an antiferromagnet with ferro-orbital order
(FO/AFM).

C. Effect of external strain

In the following, we generalize the previous Hartree-Fock
studies to include the effect of external [001] strain. We obtain
the phase diagram shown in Fig. 12. Based on previous work
of the authors, it is known that the phases have a very weak
dependence on the value of t ′/t , as this ratio is small.48 We

0 0.1 0.2 0.3 0.4
0

1

2

3

αz/t

J
/
t

t = 0.1t
U = 10t

FM

FO/AFM

√
3 ×

√
3

AFO/FM

QAH/FM

FIG. 12. Phase diagram as a function of orbital strain αz [see
Eq. (8)] and the Hund’s rule coupling J/t for fixed U = 10t . For
x = 0.05, αz ≈ 0.15eV ≈ t/4. Compared to the unstrained (and
numerically similar fully relaxed) case, the AFM is more favored
at the expense of the

√
3 × √

3 AFO/FM phase. The parameter
regime of the topological quantum anomalous Hall state, QAH/FM,
is essentially unaffected.

therefore fix t ′/t = 0.1 and study the phase diagram as a
function of the stain-induced eg orbital splitting, αz, and the
Hund’s coupling J , for fixed U = 10t , which is a reasonable
estimate for LaNiO3.48 Our main result is that the splitting
of the eg orbitals tends to suppress the AFO/FM phase in
favor of the FO/AFM phase. Physically, this is because the
eg splitting favors ferro-orbital order, which then biases the
system in favor of AFM spin interactions. Our predictions for
the topological QAH/FM state with Chern number ν = ±1
remain quantitatively similar to the unrelaxed and fully relaxed
cases because of the robustness of the Dirac point under the
[001] strain, as illustrated by Eq. (11).

It is interesting to note that recent experiments on the
LaNiO3 bilayer grown along [111] did not report robust
FM spin order.66 There is presently no crystal structure data
available on this system so it is unclear if symmetry-breaking
strain is playing an important role in the physics, but at
least the experimental results are roughly consistent with
the Hartree-Fock calculations for both the fully relaxed and
[001] strained system, which identify the most likely phases
for the system as the

√
3 × √

3 AFO/FM and FO/AFM
because physical parameters place the system near this phase
boundary. If J/U,J/t were roughly 50–70% larger the
QAH/FM would be a likely candidate as well. However,
it is unclear how one might tune the experimental system
to achieve this regime. Including fluctuation effects beyond
the Hartree-Fock mean-field approximation typically moves
critical interaction strengths to smaller values. This would
have the effect of pushing the phase boundaries in Fig. 12
to larger J/t values (since U = 10t is fixed), which would
tend to favor the FO/AFM phase and disfavor the QAH/FM
phase. This expectation is also consistent with the most current
experimental results that do not report FM order.

D. Effect of a breathing distortion

Finally, we mention that a possible breathing distortion
as discussed in Secs. II C and III C does likely affect the
potential QAH/FM phase. This is apparent from the effective
models Eqs. (12) and (18) where it is seen that the breathing
distortion competes with the QAH/FM phase. Indeed, the
gap closes if mε = mχ , which indicates a transition from
the topological to the trivial phase triggered by a structural
transition. However, because the breathing distortion only
appears within LSDA + U , we expect a complex interplay
between interaction effects and structural distortions, which is
beyond the scope of the present paper. We leave this interesting
problem for a future study.

V. EXPERIMENTAL IDENTIFICATION
OF TOPOLOGICAL STATES

From the point of view of experimentally identifying topo-
logical states of matter in oxide heterostructures, it is important
to emphasize that the most natural experiments for identifying
two-dimensional topological states with one-dimensional edge
modes involve transport.1–3 The two-dimensional topological
systems we discussed in this paper are gapped in the bulk,
but possess gapless one-dimensional boundary excitations that
dominate the low-energy response of the system. A number
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of theories based on interacting one-dimensional models have
made predictions for a wide range of transport scenarios,102–109

and many of them should be applicable to the edge of two-
dimensional topological states formed at oxide interfaces. The
key experimental challenge may be patterning and contacting
the sample in a way convenient to perform the most desirable
transport experiments.

It appears to us that angle resolve photoemission spec-
troscopy would be extremely challenging on these samples
as the one-dimensional edge signal would likely be rather
weak and difficult to detect. Even for the transport measure-
ments, a promising experimental strategy might be to form
a superlattice with bilayers sufficiently widely separated that
they are uncoupled from each other. In this case, transport
measurements would pick up a signal of N bilayers in parallel.
For known N , one could then verify that the conductance scales
as expected with N : 2Ne2/h for QSH and Ne2/h for QAH
with Chern number one for each bilayer.

VI. CONCLUSIONS

In this work we have extended earlier theoretical
studies47–49 on the LaNiO3 [111] bilayer system to include the
effects of lattice relaxation and strain on the predicted phase
diagrams. By constraining the in-plane lattice constants to their
bulk value and allowing for out-of-plane stretching along with
rotations of the oxygen octahedral cages we have found that
the fully relaxed band structure obtained within the LDA/GGA
approximation to DFT is very similar (only 10–15% change
in tight-binding fit parameters) to the ideal cubic structure.
As a result, the previously predicted phase diagrams that used
this band structure as an input to a Hartree-Fock calculation
are left essentially unchanged, even quantitatively. This is true
both at weak interactions where the quadratic band touching
at the � point is perturbatively unstable to the spontaneous
opening of a gap and the formation of topological states,47 and
at stronger coupling where a fully polarized ferromagnetic
state opens a gap at Dirac points near K and K′ to transition
to a QAH state.48 Based on experimentally known parameters
for LaNiO3, the latter possibility (gapping a Dirac point in a
fully spin-polarized state to obtain the QAH state) is likely
the most relevant candidate topological transition in the [111]
bilayer.

In addition to the essentially unchanged phase diagrams
in the fully relaxed case, we also computed the oxygen layer
separation in the (LaNiO3)2/(LaAlO3)10 heterostructure and
found a compression near the interface and an expansion in the
LaNiO3 bilayer. We also computed the layer-resolve oxygen
tilt angle in the heterostructure. These results could be useful

in future experimental efforts to design [111]-grown materials
with particular octahederal tilts.

Finally, we found two types of lattice distortions that do
compete with topological phases: (i) a symmetry-breaking
strain applied along the [001] cubic axis and (ii) a breathing
distortion of the oxygen octahedra. A symmetry-breaking
strain opens a gap at the quadratic band touching at the �

point and hence destroys a topological phase appearing as a
weak coupling instability.47 However, for the studied range of
external strain, the Dirac points, which are relevant to the fully
polarized system, remain intact. As a result, instabilities of
the gapless fully polarized system to a gapped topological
phase persists.48 We explicitly confirmed this expectation
by computing a new phase diagram for the [001] strained
system over the parameter regime most relevant to LaNiO3

using the Hartree-Fock approximation to an effective Hubbard
model, which includes the effect of strain. We indeed found
that the region of the topological QAH/FM phase is nearly
unchanged compared to the fully relaxed and unrelaxed system
(a reflection of the stability of the Dirac point).48 However, the
FO/AFM phase tends to outcompete the

√
3 × √

3 AFO/FM
as the [001] strain is increased. As opposed to the symmetry-
breaking strain, we found that a possible breathing distortion,
as predicted in the LSDA + U calculation, would compete
with a topological phase in the fully polarized system. But
because the most recent experimental results66 do not report
inequivalent Ni sites, the experimental relevance of this
observation is unclear.

We hope our results, which discuss the robustness to
the predicted phase diagrams, will further spur experimental
efforts to search for novel, including topological, phases in the
[111]-grown transition-metal oxide systems.
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11S. Chadov, X.-L. Qi, J. Kübler, G. H. Fecher, C. Felser, and S.-C.
Zhang, Nature Mater. 9, 541 (2010).

12J. Wang, R. Li, S.-C. Zhang, and X.-L. Qi, Phys. Rev. Lett. 106,
126403 (2011).

13W. Feng, D. Xiao, J. Ding, and Y. Yao, Phys. Rev. Lett. 106, 016402
(2011).
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