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Results are presented for the dynamics arising due to a sudden quench of a boson interaction parameter with
the simultaneous switching on of a commensurate periodic potential, the latter providing a source of nonlinearity
that can cause inelastic scattering. A quantum kinetic equation is derived perturbatively in the periodic potential
and solved within the leading order gradient expansion. A two-particle irreducible formalism is employed to
construct the stress-momentum tensor and hence the conserved energy. The dynamics is studied in detail in the
phase where the boson spectrum remains gapless. The periodic potential is found to give rise to multiparticle
scattering processes that relaxes the boson distribution function. At long times the system is found to thermalize
with a thermalization time that depends in a nonmonotonic way on the amount of energy injected into the system
due to the quantum quench. This nonmonotonic behavior arises due to the competing effect of an increase of
phase space for scattering on the one hand, and an enhancement of the orthogonality catastrophe on the other
hand as the quench amplitude is increased. The approach to equilibrium is found to be purely exponential for
large quench amplitudes, and more complex for smaller quench amplitudes.
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I. INTRODUCTION

How a many-particle system prepared in an initial state
which is far from equilibrium evolves in time, and how it ther-
malizes if at all, is an important fundamental question which is
also of experimental relevance due to the realization of ideal,
thermally isolated, quantum systems using ultracold atomic
gases.1 The issue of thermalization becomes all the more
important for one-dimensional (1D) and quasi-1D systems
where phase space for scattering is so highly restrictive that
even generic systems with no special conservation laws can
show enormous bottlenecks to thermalization.2–4 In fact in the
past, classical 1D systems were also found to show a bottleneck
to thermalization,5 where a quantitative explanation for this
was found to be quite subtle, requiring an understanding of
integrability, the Kolmogorov-Arnold-Moser (KAM) theorem
and chaos.

One appealing way to understand thermalization or the
lack of it in quantum systems is to borrow concepts from
classical systems. In particular the lack of thermalization in
many 1D systems has been attributed to these systems being
similar to ideal integrable models.2 Integrable models have
the property that they have many more conserved quantities
besides energy and particle number,6 which strongly restricts
their dynamics. However the exact effect of integrability on
dynamics is not understood in any quantitative way as the
notion of integrability cannot be generalized to quantum
systems rigorously because classical and quantum systems
differ in the way the number of degrees of freedom are
counted.7 This leads to confusion as to how to collect all
the relevant integrals of motion, and how many of these need
to be kept in order to understand the time evolution and the
long time behavior.8 Recent studies have proposed keeping
only the most “local” integrals of motion.9–11 These selective
integrals of motion have been used to construct generalized
Gibbs ensembles (GGEs)12 with the aim to understand the long
time steady-state behavior after a quantum quench. However
understanding the temporal evolution from the initial state

to the state described by the GGE in integrable models, in
particular those described by interacting field theories is a
challenging issue that has been addressed only recently for the
time evolution of some single-particle expectation values,13–15

in contrast how two-point and higher order correlations evolve
in time, and whether their behavior can be captured by a GGE
is largely unexplored.

Numerical studies on finite size systems have also been ex-
tensively carried out to understand the issue of thermalization.
The two main approaches used are exact diagonalization16–20

and integrability based methods.21 Some of these studies16,17

indicate that thermalization is consistent with the eigenstate-
thermalization hypothesis (ETH),22,23 and is related to the level
statistics of the Hamiltonian.20 However it is a challenging task
to generalize these results to systems in the thermodynamic
limit.

Perhaps one of the most powerful methods to study
dynamics of many-particle systems in the thermodynamic limit
is the Schwinger-Keldysh or the quantum Boltzmann equation
approach.24,25 While the success of this approach relies on the
existence of a small parameter which allows one to truncate
the self-energy to a finite order, it is still a nonperturbative
approach. These methods have been used to study nonequilib-
rium dynamics in a variety of interacting fermionic and bosonic
field theories, revealing thermalization for some cases,26–30

and the appearance of intriguing nonthermal quasistationary
steady states for other cases,30–34 where some of these steady
states have been related to turbulence.35

A promising direction of research is to employ a quantum
kinetic equation to study the dynamics of integrable models,
and to then study how integrability breaking terms affect
the results. Recently such a study was undertaken for the
fermionic Hubbard model with nearest-neighbor36 and next-
nearest-neighbor37 interactions, where it was shown that the
kinetic equation for the integrable case (nearest-neighbor
interactions) allows for an infinite number of athermal steady
states besides the thermal steady-state corresponding to the

115144-11098-0121/2013/88(11)/115144(18) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.88.115144


MARCO TAVORA AND ADITI MITRA PHYSICAL REVIEW B 88, 115144 (2013)

Fermi-distribution function. Whether a system ends up in one
of these athermal steady states or the thermal state depends on
the initial condition. Detailed studies also exist on how a 1D
system weakly perturbed from an initial thermal equilibrium
state relaxes to equilibrium,38–40 where the weak deviation
from thermal equilibrium allows for a linearization of the
Boltzmann equation. However such a linearization procedure
cannot be applied to quantum quenches since a quench always
generates a highly nonequilibrium distribution function.

The aim of the current paper is to study quench dynamics
employing a quantum kinetic equation approach. In particular
we study a 1D system of interacting bosons in a commensurate
periodic potential. We envision a situation where the 1D bosons
are initially in the continuum (thus no periodic potential).
Using Feshbach resonance techniques, at an initial time t = 0,
the interaction strength of the bosons is suddenly quenched
driving them out of equilibrium. A commensurate periodic
potential is also switched on at the same time as the interaction
quench. A periodic potential gives rise to Umpklapp or
backscattering which can relax the distribution function of the
bosons, however its effect has never been studied before using a
quantum kinetic equation approach. In this paper we plan to fill
this gap. In particular we employ a bosonization prescription
to study the system, where the bosons in a commensurate
periodic potential is described by the sine-Gordon model.41

Bosonization allows us to treat the effect of forward scattering
between bosons exactly, while the quantum kinetic equation
is derived perturbatively in the Umpklapp or backscattering
processes.

The ground state of bosons in a commensurate periodic
potential has two possible phases;41 one is the superfluid
phase where the periodic potential is an irrelevant perturbation,
and the low-energy theory of the bosons is described by
the Luttinger liquid. The second phase is the Mott insulator
where the periodic potential is relevant and localizes the
bosons. We will be interested in studying quenches within
the superfluid phase where the periodic potential is irrelevant
in equilibrium. However out of equilibrium, irrelevant terms
cannot be dropped42 and can eventually thermalize a system.
We plan to study in detail how thermalization comes about
due to Umpklapp processes. Of course, other irrelevant terms
such as band curvature are also present, however in this
paper we retain only the irrelevant term corresponding to
the commensurate periodic potential. Keeping more than one
irrelevant term is technically challenging, and beyond the
scope of this paper. Moreover, for certain quench parameters
that we study, the cosine potential is the leading irrelevant
operator, and therefore its effects (such as inelastic scattering
rate) will dominate over other irrelevant operators.

Note that a periodic potential in a bosonization language
is highly nonlinear in the bosonic fields as it is given by
g cos(2φ), where −∂xφ/π is the boson density. Since the
system is a superfluid, φ is highly fluctuating, and the quench
only increases these fluctuations. Thus we are not allowed
to Taylor expand the cos(2φ) term. Neither are semiclassical
approaches such as the truncated Wigner approximation
valid.43,44 Instead we will derive a quantum kinetic equation
perturbatively in the strength of the periodic potential g.
In doing so we will show that the periodic potential leads
to an unusual kinetic equation that even to O(g2) leads to

multiparticle scattering of bosons. This is in marked contrast
to studies on φ4 theory or fermionic models where the leading
order terms in the kinetic equation capture two-particle36,37 or
three-particle scattering processes.39,45

In this paper we present results for the dynamics of
the 1D sine-Gordon model in its gapless phase using a
quantum kinetic equation approach. In contrast, in the gapped
phase, the perturbative expansion in g employed to derive
the kinetic equation is not valid. The sine-Gordon model is
the continuum limit of the Bose-Hubbard model which is
nonintegrable. At the same time, the sine-Gordon model
is also the continuum limit of the nearest-neighbor XXZ spin
chain which is integrable. The continuum model is some
approximation of the lattice model and does not share all its
features. While the sine-Gordon model in its gapped phase
is known to be integrable,46 whether it is integrable in the
gapless phase is not a question straightforward to address.
The reason is that the sine-Gordon model in the gapless phase
has ultraviolet (UV) divergences that need to be regularized,
and the integrability or lack of it may very well depend on the
short-distance physics and therefore the regularization scheme.
In this paper we follow a particular regularization scheme,
and the final results, once expressed in terms of suitable
dimensionless units, do not depend on this regularization.
However, since we always see thermalization, we think that our
model does not have any nontrivial conservation laws. Thus our
results are probably not relevant to the integrable XXZ chain,
and are more relevant for the nonintegrable Bose-Hubbard
model. However, the precise connection between the results
of this paper, and the integrability or lack of it of the original
lattice models needs further exploration.

This paper is organized as follows. In Sec. II we present the
model that will be studied, and briefly discuss the properties
of the quench in the absence of the periodic potential where
the system reduces to the exactly solvable Luttinger model. In
Sec. III the Dyson equation to leading nontrivial order in the
periodic potential is derived, and simplified using a leading
order gradient expansion. In Sec. IV a two-particle irreducible
(2PI) formalism is used to show that the Dyson equation can
equivalently be derived from a variational approach applied to
the 2PI action. We show that this approach also naturally leads
to the derivation of a stress-momentum tensor, and from that
the conserved energy. In Sec. V we present our results for the
time evolution of the boson distribution function to leading
order in the gradient expansion. Here we discuss time scales
for thermalization and present an analytic estimate for this time
scale. Finally in Sec. VI we present our conclusions. Some of
the details of the calculations are relegated to Appendixes A–C.

II. MODEL

The Hamiltonian for interacting bosons in a periodic
potential after bosonization is given by

H = H0 + Vsg, (1)

H0 = u

2π

∫
dx

{
K[π�(x)]2 + 1

K
[∂xφ(x)]2

}
, (2)

Vsg = −gu

α2

∫
dx cos (γφ(x)), (3)
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where H0 is the quadratic part which describes the Luttinger
liquid or long-lived sound modes that propagate with ve-
locity u. The density of the sound modes is ρ = −∂xφ/π ,
whereas � = ∂xθ/π is the variable canonically conjugate to
φ, [φ,∂yθ (y)] = iπδ(x − y). Vsg represents the commensurate
periodic potential whose most important effect is a source
of backscattering which can localize the density modes
via the well-known Berezenskii-Kosterlitz-Thouless (BKT)
transition.41 Note that we will use the convention that for
bosons,

γ = 2, (4)

while K = 1 corresponds to hard-core bosons, and K →
∞ represents noninteracting bosons. In this notation, the
critical point separating the Mott-insulating phase from the
superfluid phase, in the limit g → 0, is located at K = 2.
In a renormalization group language, the cosine potential is
a relevant perturbation for K < 2, and irrelevant otherwise,
provided g is sufficiently small. In this paper we will be
concerned with quench dynamics within the superfluid phase.

It is convenient to represent the fields φ,θ in terms of
bosonic creation and annihilation operators (bp,b

†
p),41

φ(x) = −(NR + NL)
πx

L
− iπ

L

∑
p �=0

(
L|p|
2π

)1/2

× 1

p
e−α|p|/2−ipx(b†p + b−p), (5)

θ (x) = (NR − NL)
πx

L
+ iπ

L

∑
p �=0

(
L|p|
2π

)1/2

× 1

|p|e
−α|p|/2−ipx(b†p − b−p), (6)

where

� = uα−1 (7)

is an ultraviolet cutoff. Thus,

H0 =
∑
p �=0

u|p|η†
pηp, (8)

where η and b are related by the canonical transformation,

ηp = cosh β1bp + sinh β1b
†
−p, (9)

η
†
−p = cosh β1b

†
−p + sinh β1bp, (10)

and e−2β1 = K,u = vF /K .

A. Interaction quench in the Luttinger model: Properties
of the quadratic theory

In this subsection, let us assume that g = 0, so that we
have an exactly solvable theory, namely the Luttinger model
which captures the characteristic power-law decays of the
Luttinger liquid. In equilibrium, the Luttinger liquid is an
approximate low-energy description of more complicated
models in their gapless phases such as the XXZ spin chain and
the Bose-Hubbard model. Out of equilibrium, when g �= 0,
there is no reason to expect that the effective low energy or
long wavelength theory is described by the Luttinger liquid42

as irrelevant operators cause inelastic scattering. The aim of
this paper is to explore these effects.

Dynamics arising either due to a sudden quench or due to
more complicated time-dependent protocols have been studied
extensively in the literature for the Luttinger model.47–52 Here
we present some results that we will need for the g �= 0 case.
Let us suppose that the system at time t < 0 is a Luttinger
liquid with interaction parameter K0 and velocity u0, and
therefore described by the Hamiltonian,

Hi = u0

2π

∫
dx

{
K0[π�(x)]2 + 1

K0
[∂xφ(x)]2

}
=
∑
p �=0

u0|p|η†
pηp. (11)

Let us suppose that at t = 0 there is an interaction quench from
K0 → K so that the time evolution from t > 0 is due to

Hf = u

2π

∫
dx

{
K[π�(x)]2 + 1

K
[∂xφ(x)]2

}
=
∑
p �=0

u|p|γ †
pγp. (12)

To simplify the algebra we make the assumption that
the quench preserves Galilean invariance u = vF /K,u0 =
vF /K0. In the language of the Luttinger model this is
equivalent to always having g2 and g4 processes of the same
magnitude.41 Note that the following canonical transformation
relates the different sets of bosons,(

bp

b
†
−p

)
=
(

cosh β1 − sinh β1

− sinh β1 cosh β1

)(
γp

γ
†
−p

)
, (13)

(
bp

b
†
−p

)
=
(

cosh β0 − sinh β0

− sinh β0 cosh β0

)(
ηp

η
†
−p

)
, (14)

where e−2β0 = K0,e
−2β1 = K .

Let us define the functions,

f (pt) = cos(u|p|t) cosh β0

− i sin(u|p|t) cosh(2β1 − β0), (15)

g(pt) = cos(u|p|t) sinh β0

+ i sin(u|p|t) sinh(2β1 − β0). (16)

These functions determine the time evolution after the quench
(t > 0),

b†p(t) + b−p(t) = (f ∗(pt) − g(pt))η†
p(0)

+ (f (pt) − g∗(pt))η−p(0), (17)

b†p(t) − b−p(t) = (f ∗(pt) + g(pt))η†
p(0)

− (f (pt) + g∗(pt))η−p(0). (18)

Note that the dynamics couples only the q, − q modes but
there is no scattering between modes of different |q|. This will
change when the periodic potential is applied in a way that will
be discussed in detail later. Moreover the dynamics is always
translationally invariant in position, both in the absence and
presence of the periodic potential as long as we are in the
weak-coupling (in g) regime where the perturbative treatment
of this paper is valid. Of course looking for the growth of spatial
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instabilities after a quench is also an interesting direction of
study,53 which we do not address here.

We will find it convenient to define the following two
exponents,

Keq = γ 2

4
K, (19)

Kneq = γ 2

8
K0

(
1 + K2

K2
0

)
. (20)

In terms of these exponents the critical point separating the
gapped and the gapless phases in the limit g → 0 is located
at Keq = 2. In the ground state of the final Hamiltonian,
correlators such as 〈eiγ φ(1)e−iγ φ(2)〉 decay as a power law
determined by Keq, whereas at long times after the quench,
the very same correlators decay as a power law with the
new exponent Kneq.42,48 The origin of these new exponents
is the underlying integrability of the Luttinger model where
the boson occupation number for each q is conserved. A more
quantitative way to understand why after a quench the decays
are still power law is by noticing that the quench results in a
mode occupation,

n(q) = 〈γ †
q γq〉 = (K0 − K)2

4KK0
= 1

2

(
Kneq

Keq
− 1

)
, (21)

which is plotted in Fig. 1. This nonequilibrium distribution
may be interpreted as one where there is a momentum or mode-
dependent temperature. However, since n(q = 0) is finite, it
implies that the momentum-dependent temperature vanishes
for long wavelengths. Since the power law or lack of it is
primarily determined by the mode occupation or the effective
temperature of the long wavelength modes, the power law
survives in the Luttinger model after a quench, though the new
exponent Kneq determines the decay. As we show below, the
fractional change in the decay exponent [Kneq − Keq]/Keq is
a measure of how far out of equilibrium the system is driven
due to the quantum quench.

0 2 4 6
q

0

2

4

n(
q)

FIG. 1. The boson distribution function n(q) generated by an
interaction quench where Kneq = 13.8 and Keq = 3 is n(q) =
1
2 ( Kneq

Keq
− 1) ≈ 1.797 (continuous line). This is compared with the bo-

son distribution at equilibrium at a nonzero temperature 1/[eu|q|/Teq −
1], where Teq = 2.23 is the temperature associated with the energy
injected into the system due to the quench (dashed line). At zero
temperature equilibrium, n(q) ≡ 0.

It is straightforward to see that the mode occupation in
Eq. (21) implies the following energy per unit length of the
system,

E

L
= 1

L

∑
p �=0

e−α|p|u|p|〈γ †
pγp〉 = u

4πα2

(K0 − K)2

KK0

= u

2πα2

(
Kneq

Keq
− 1

)
. (22)

Obviously the energy injected into the system depends on
the underlying lattice cutoff u/α. However, once length and
energies are expressed in units of this cutoff, we have a cutoff
independent result for the energy injected into the system,

αE/u

L/α
= 1

2π

(
Kneq

Keq
− 1

)
. (23)

Thus the energy injected into the system due to the quench is
proportional to the fractional change in the exponent governing
the power-law decay at long times, [Kneq − Keq]/Keq. This is
an important energy scale which will determine the inelastic
scattering rate and therefore the thermalization time when the
cosine potential is switched on.

In the presence of nonlinearities and at long times, the
system is expected to eventually thermalize to the equilibrium
(mode-independent) temperature Teq. We now express this
temperature in terms of the quench parameters Keq and
Kneq. Using 〈γ †

pγp〉 = 1
eu|p|/Teq −1

, the energy density at thermal
equilibrium is

E

L
= u

2π

[
2Teq

u2
ψ ′
(

αTeq

u

)
− 2

α2

]
, (24)

where ψ(z) = �′(z)
�(z) and �(z) is the gamma function. Since the

system is closed, energy conservation implies that Eqs. (22)
and (24) are equal to each other, so that Teq is related as follows
to the quench parameters,

E

L
= u

2π

[
2Teq

u2
ψ ′
(

αTeq

u

)
− 2

α2

]
= u

2πα2

(
Kneq

Keq
− 1

)
.

(25)

Taking the limit of high temperatures, Eq. (25) becomes
E
L

≈ − u
πα2 + Teq

πα
. For high temperatures, α

u
Teq � 1 (or large

quenches Kneq � Keq) energy conservation implies

α

u
Teq ≈ 1

2

Kneq

Keq
. (26)

For small quenches (Kneq − Keq)/Keq → 0, and hence low
temperatures, the equilibrium temperature is given by

α

u
Teq ≈

√
3

π

√
Kneq

Keq
− 1. (27)

Figure 1 shows the distribution function n(q) = 〈γ †
q γq〉

generated by an interaction quench and compares it with
the thermal distribution at temperature Teq. For the Luttinger
model, n(q) is stable in time as there are no relaxation
mechanisms. The aim of this paper is to understand how
the periodic potential relaxes the distribution function, and
whether it ever reaches the thermal distribution shown by the
dashed line in Fig. 1.
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III. PERIODIC-POTENTIAL: DERIVATION OF THE
DYSON EQUATION

We now turn to the case where a periodic potential is also
present after the quench. Thus the Hamiltonian at t � 0 is
given by Eq. (11), while that at t > 0 is given by Eqs. (1)–(3).
Thus at t = 0 the boson interaction parameter is quenched
from K0 → K , and a lattice of strength g is also switched
on. Since we are interested in nonequilibrium dynamics, we
will use the Keldysh formalism.24 φ−/+ will denote fields that
are (time/antitime)-ordered on the Keldysh axes. Accordingly
we may define Green’s functions Gab, with a,b = ± where
G−−(12) = −i〈T φ−(1)φ−(2)〉 is the time-ordered Green’s
function, G++(12) = −i〈T̃ φ+(1)φ+(2)〉 is the antitime-
ordered Green’s function, G−+(12) = −i〈φ+(2)φ−(1)〉, and
G+−(12) = −i〈φ+(1)φ−(2)〉.

It is also convenient to define quantum (φq) and classical
fields (φcl),

φ± = 1√
2

(φcl ∓ φq), (28)

with respect to which the basic retarded (R), advanced (A),
and Keldysh (K) Green’s functions are

GR(xt,yt ′) = −iθ (t − t ′)〈[φ(xt),φ(yt ′)]
= −i〈φcl(xt)φq(yt ′)〉, (29)

GA(xt,yt ′) = iθ (t ′ − t)〈[φ(xt),φ(yt ′)]
= −i〈φq(xt)φcl(yt ′)〉〉, (30)

GK (xt,yt ′) = −i〈{φ(xt),φ(yt ′)}〉
= −i〈φcl(xt)φcl(yt ′)〉. (31)

Note that GR,A,K are linear combinations of Gab. In what
follows we will use lowercase letters gR,A,K,gab to denote the
Green’s functions for the free theory, and uppercase letters for
the Green’s functions in the presence of the periodic potential.

The Green’s function in the presence of a periodic potential
is modified as follows:

iGcd (1,2) = igcd (1,2) − 1

2

(
gu

α2

)2 ∑
a,b=±

εab

∫
d3
∫

d4

〈cos (γφa(3)) cos (γφb(4))φc(1)φd (2)〉 + . . .

(32)

where 1,2,3,4 denote both position and time indices, ε++ =
ε−− = 1 and ε+− = ε−+ = −1, while 〈〉 are expectation
values evaluated in the initial state which is the ground state
of the free theory with interaction parameter K0. Note that the
fact that the periodic potential was switched on suddenly at
t = 0 only appears in the lower limit of the time integration.
In general any switching protocol may be employed.

Performing the contractions, one finds

〈cos (γφa(3)) cos (γφb(4))φc(1)φd (2)〉
= 〈cos(γφa) cos(γφb)〉(igcd + γ 2[gcagad + gcbgbd

− gcagbd − gcbgad ]). (33)

While the first disconnected term cancels when summing on
indices a,b, the remaining terms may be used to identify a

(a)

(b)

FIG. 2. The self-energies to leading order O(g2) in the periodic
potential. The solid lines are the boson Green’s function G.

self-energy � to O(g2) which is shown diagrammatically in
Fig. 2, and whose formal expression is

�R(1,2) = �R(1,2) − δ(1 − 2)
∫

d3�R(1,3), (34)

�K (1,2) = �K (1,2), (35)

where

�R(x1t1,x2t2) = −iγ 2

(
gu

α2

)2

θ (t1 − t2)

× [〈cos (γφ−(x1t1)) cos (γφ−(x2t2))〉
− 〈cos (γφ+(x1t1)) cos (γφ+(x2t2))〉], (36)

�K (x1t1,x2t2) = −iγ 2

(
gu

α2

)2

× [〈cos (γφ−(x1t1)) cos (γφ−(x2t2))〉
+ 〈cos (γφ+(x1t1)) cos (γφ+(x2t2))〉]. (37)

While the effect of this self-energy has been studied in the
past in order to understand equilibrium finite temperature
properties54–56 of 1D systems, here we will be interested in
its effect on dynamics arising after a quench.

The Dyson equation obtained from the infinite summation
of terms G = g + g�g + g�g�g + . . . generalized to the
time-dependent problem, may now be written as

GR(xt,yt ′) = gR(xt,yt ′) +
∫

dx1dt1

∫
dx2dt2gR(xt,x1t1)

×�R(x1t1,x2t2)[GR(x2t2,yt ′) − GR(x1t1,yt ′)]

= gR(xt,yt ′) +
∫

dx1dt1

∫
dx2dt2gR(xt,x1t1)

×�R(x1t1,x2t2)GR(x2t2,yt ′), (38)

GK (xt,yt ′) =
∫

dx1dt1

∫
dx2dt2GR(xt,x1t1)

×�K (x1t1,x2t2)GA(x2t2,yt ′), (39)

where the retarded propagator for the Luttinger model is

g−1
R (1,2) = − 1

πKu

[
∂2
t1

− u2∂2
x1

]
δ(t1 − t2)δ(x1 − x2). (40)
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Since the Keldysh component GK contains information
on the mode occupation, its equation of motion constitutes a
(quantum) kinetic equation. An alternative way to write the
Keldysh component is by expressing GK in the following
way,57

GK ≡ GR ◦ F − F ◦ GA, (41)

where the symbol ◦ implies convolution on x and t and also
matrix multiplication. Using the Dyson equation in matrix
form (ĝ−1 − �̂) ◦ Ĝ = 1̂ we obtain the following kinetic
equation in terms of the auxiliary function F ,

F ◦ g−1
A − g−1

R ◦ F = �K − �R ◦ F + F ◦ �A. (42)

Assuming spatial invariance which allows us to transform to
momentum space, and using that the left-hand side of Eq. (42)
is 1

πKu
[∂2

t − ∂2
t ′]F (q,t,t ′), and changing variables from (t,t ′)

to (T ,τ ) = ((t + t ′)/2,t − t ′), Eq. (42) becomes

∂τ ∂T F (q,T ,τ )=
(

πKu

2

)
[�K (q,T ,τ )

− (�R◦F )(q,T ,τ ) + (F◦�A)(q,T ,τ )]. (43)

So far no approximations have been made other than in the
precise diagrams that make up �.

We now define

F̃ (q,T ,ω) =
∫ ∞

−∞
dτ

∫ ∞

−∞
dre−iqr+iωτF (r,T ,τ ), (44)

and employ a gradient expansion to lowest order, i.e.,

(B�R ◦ F )(q,T ,ω) ≈ �̃R(q,T ,ω)F̃ (q,T ,ω).58 Note that by
dropping the derivatives in the gradient expansion we are
assuming that the dynamics is valid for t sufficiently large since
for small t , F usually rapidly oscillates.59 This decoupling
simplifies the kinetic equation to

∂T F̃ (q,T ,ω) =
(

iπKu

2ω

)
[�̃K (q,T ,ω) − (�̃R(q,T ,ω)

− �̃A(q,T ,ω))F̃ (q,T ,ω)]. (45)

Let us consider the analogous equation for the spectral
density,

Gρ = GA − GR (46)

The Dyson equations for the retarded and advanced propaga-
tors are

(
g−1

R ◦ GR

)
(xx0,yy0) = 1 +

∫
dz

∫ x0

y0

dz0

×�R(xx0,zz0)GR(zz0,yy0), (47)

(
g−1

A ◦ GA

)
(xx0,yy0) = 1 +

∫
dz

∫ y0

x0

dz0

×�A(xx0,zz0)GA(zz0,yy0), (48)

where x,y,z denote spatial coordinates and x0,y0,z0 de-
note temporal coordinates. Taking the difference of the
above two equations and noting that terms such as

θ (t1 − t ′1)
∫ t1
t ′1

dt2�
R(1,2)GA(2,1′) = 0 we obtain

(g−1◦)Gρ(xx0,yy0) =
∫

dz

∫ x0

y0

dz0[�R(xx0,zz0)

−�A(xx0,zz0)]Gρ(zz0,yy0). (49)

By applying the g−1 operator on the second argument, and
combining the result with the above equation, we obtain

[g−1 ◦ Gρ − Gρ ◦ g−1](xx0,yy0)

=
∫

dz

∫ x0

y0

dz0[�R(xx0,zz0) − �A(xx0,zz0)]

×Gρ(zz0,yy0) − Gρ(xx0,zz0)[�R(zz0,yy0)

−�A(zz0,yy0)]. (50)

As before we now go into center of mass and relative coordi-
nates, and assuming that the system is spatially homogeneous,
we find that to leading order in the gradient expansion,

ω∂T G̃ρ(q,T ,ω) = 0. (51)

In other words, the lowest order gradient expansion captures
the dynamics of the mode occupation and neglects the time
evolution of the spectral density, which is fixed by the state
before the quench. From the definition (41) we note that F

comes multiplied by Gρ which is a sharply peaked function,

Gρ(q,ω) = iπ2K

|q| [δ(ω − u|q|) − δ(ω + u|q|)]. (52)

The kinetic equation can therefore be simplified by being
computed only at the on-shell frequencies ω = ±uq (below
we simplify the notation by replacing �̃,F̃ by �,F ),

∂T F (q,T ,ω = uq) =
(

iπK

2q

)
[�K (q,T ,ω = uq)

− (�R − �A)(q,T ,ω = uq)

×F (q,T ,ω = uq)]. (53)

Thus the leading order gradient expansion is identical to the
so-called “quasiclassical” approximation which assumes that
the spectral density remains sharply peaked.

There is a hidden assumption in going into the mixed
representation of ω,T . The time evolution of the system begins
at t = 0 but in order to be able to Fourier transform we need
to extend the range of the relative coordinate τ from −∞
to ∞ in (44). Therefore by extending t = 0 to t = −∞ we
are using a hybrid description,60 since the initial conditions
for the kinetic equation are defined at a finite time t = 0.
This approximation implies that the kinetic equation cannot
be used to describe dynamics at times too short after the
quench at t = 0, but works best at slightly longer times where
some of the memory effects have decayed away. A detailed
comparison of the kinetic equation with the full solution of
the Dyson equation for φ4 theory and other models like the
Yukawa model may be found in Refs. 25, 28, 59, and 60. Such
a comparison for our model with the cosine potential is beyond
the scope of this paper.
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The self-energies entering in the kinetic equation under the
on-shell approximation for the spectral density are

�K (q,T ,ω) = −i

(
guγ

α2

)2 ∫ ∞

−∞
dτ

∫ ∞

−∞
dr cos(qr) cos(ωτ )

× e−I (T ,r,τ ) cos

[
Keq

∑
ε=±1

tan−1

(
uτ + εr

α

)]
,

(54)

(�R − �A)(q,T ,ω)

= −i

(
guγ

α2

)2 ∫ ∞

−∞
dτ

∫ ∞

−∞
dr sin(ωτ ) cos(qr)

× e−I (T ,r,τ ) sin

[
Keq

∑
ε=±1

tan−1

(
uτ + εr

α

)]
, (55)

where

I (T ,r,τ ) = Keq

∑
ε=±1

∫ ∞

0

dq

q
e−αqF (uq,T )

× [1 − cos (q(uτ + εr))]. (56)

In what follows we will suppress the frequency label as it is
understood that it is fixed at an on-shell value, and use only
the arguments q and the time T to label quantities. The initial
condition for the boson distribution function follows from the
discussion in Sec. II A and is given by

F (q,T = 0) = 1 + 2〈γ †
q γq〉(T = 0) = Kneq

Keq
. (57)

In the absence of a quench, the distribution function is given
by the zero temperature limit of coth( u|q|

2Teq
) → 1. Due to the

interaction quench, a highly nonequilibrium boson distribution
Eq. (57) is generated. In the absence of the cosine potential
this distribution function is infinitely long lived. However, the
cosine potential allows for inelastic multiparticle scattering,
which will relax it. We will study how this relaxation comes
about and whether the system thermalizes, and if so on what
time scales.

Equations (53)–(56) together with the initial condition in
Eq. (57) define the problem we wish to solve. Note that the
equilibrium distribution function F = coth u|q|

2Teq
is a solution

of the kinetic equation for any Teq, as it should be. Due to
the self-energies being of the form � ∼ 〈cos(γφ) cos(γφ)〉 ∼
e−γ 2〈φφ〉, where 〈φφ〉 is proportional to the boson distribution
function, the matrix elements determining the in-scattering
and out-scattering rates in the kinetic equation (53) have an
exponential dependence on the distribution function through
the function e−I ∼ e−F . This is in marked contrast to φ4 theory
or other fermionic models where the matrix elements entering
the kinetic equation have a polynomial dependence on the
distribution function, for example, for two-particle scattering,
the matrix elements are proportional to FF (1 ± F )(1 ± F ).
Hence we use the term multiparticle scattering to describe the
effect of the cosine potential.

It is instructive to study the form of the self-energy
�(r,0) ∼ 〈cos(γφ)(r) cos(γφ)(0)〉 at zero temperature equi-
librium. Here � ∼ 1

|r|2Keq . At long times after an interaction
quench, and within leading order perturbation theory where

F may be taken to be the distribution function right after the
quench [Eq. (57)], � ∼ 1

|r|2Kneq . Since Kneq > Keq, the matrix
element for scattering is suppressed by the interaction quench.

The above exponential dependence of the matrix elements
on the distribution function is a consequence of the orthog-
onality catastrophe arising due to the interaction quench.
In particular the larger the quench amplitude Kneq − Keq,
the poorer is the overlap between the initial wave function
and the low-energy eigenstates of the final Hamiltonian,
leading to an exponential suppression of the matrix elements
entering the kinetic equation. Because of our bosonization
approach, this physics is captured naturally. This also shows
that a quench, however small in magnitude, cannot lead to
a suitable linearization procedure for the kinetic equation
as is possible to do for small deviations about thermal
equilibrium.39

It is important to now summarize the conservation laws
associated with Eq. (53). The potential cos(γφ) does not
conserve particle number; this is also the case for φ4 theory.25

However, since our system is closed, energy is conserved.
The total energy has a kinetic contribution, and an interaction
contribution arising from the cosine potential. In the next
section we carefully evaluate the conserved energy and prove
that the kinetic equation (53) obtained from the leading order
gradient expansion is a conserving approximation. Readers
not interested in the derivation of the conserved energy may
go straight to the results in Sec. V.

IV. 2PI FORMALISM AND ENERGY CONSERVATION

If we perform standard perturbative approximations for the
self-energies (36) and (37), such as replacing the dressed
Green’s function in the self-energy in Fig. 2, by the bare
one, we violate energy conservation.61 An efficient scheme
to approach this problem and to develop conserving approx-
imations is via the two-particle irreducible (2PI) effective
action.30,62,63 The 2PI effective action involves a diagrammatic
series in terms of closed loops where dressed propagators
are used instead of bare ones.64 By applying a variational
principle on the 2PI functional, the exact Dyson equations (38)
and (39) are obtained. The approximations are performed
directly on the effective action by truncating the corresponding
diagrammatic expansion. By construction, the effective action
(and consequently its truncations) is invariant under global
transformations of the Green’s function G, and using Noether’s
theorem we can find expressions for the conserved quantities
(in our specific case the energy).27 The 2PI effective action
�(G) is given by

�(G) = i

2

∫
dxdt

∫
dx ′dt ′ ln(G−1)(xt,x ′t ′)δ(x − x ′)δ(t − t ′)

+ i

2

∫
dxdt

∫
dx ′dt ′g−1(xt,x ′t ′)

×G(x ′t ′,xt) + �2(G), (58)

where G(x,t ; x ′,t ′) = 〈TCϕ(x,t)ϕ(x ′,t ′)〉 is the Schwinger-
Keldysh contour-ordered Green’s function and ig−1(xt,x ′t ′) =
−(∂2

t − ∂2
x )δ(x − x ′)δ(t − t ′) is the free propagator (where

we have set u = 1,πK = 1). Since we are interested in
finding the energy-momentum tensor T μν we apply a general
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(space- and time-dependent) infinitesimal translation,

x → x + ε1(x,t), t → t + ε0(x,t), (59)

which vanishes at the boundaries. To leading order in ε(x,t)
the corresponding transformation of G(xt,x ′t ′) is

δG(xt,x ′t ′) = ∂G(xt,x ′t ′)
∂x

ε1(x,t) + ∂G(xt,x ′t ′)
∂t

ε0(x,t)

+ ∂G(xt,x ′t ′)
∂x ′ ε1(x ′,t ′) + ∂G(xt,x ′t ′)

∂t ′
ε0(x ′,t ′)

= [εμ(x,t)∂μ + εμ(x ′,t ′)∂μ′]G(xt,x ′t ′). (60)

Above we used the notation xμ = (x,t),xμ′ = (x ′,t ′), and a
sum over repeated indices is implied.

We will show below that we can write the variation of �(G)
as

δ�(G) =
∫

dx

∫
dt T μν(x,t)∂̃μεν(x,t). (61)

The above equation defines the energy-momentum tensor
T μν . The ∂̃μ is defined as ∂̃μ = (∂̃x,∂̃t ) ≡ (−∂x,∂t ). After an
integration by parts this becomes

δ�(G) = −
∫

dxdt∂̃μT μν(x,t)εν(x,t). (62)

Now, the Dyson equation is derived from the effective action
�(G) by requiring that δ�

δG
= 0. By taking the functional

derivative of �(G) we obtain

δ�

δG
= − i

2
G−1(xt,x ′t ′) + i

2
g−1(xt,x ′t ′) + δ�2

δG
. (63)

Setting this to zero we obtain the Dyson equation,

G−1(x,t ; x ′,t ′) − g−1(x,t ; x ′,t ′) + 2i
δ�2

δG
= 0, (64)

provided that

�(x,t ; x ′,t ′) = 2i
δ�2

δG
. (65)

Thus, we have

G−1(xt,x ′t ′) = g−1(xt,x ′t ′) − �(xt,x ′t ′). (66)

Now we see that if G satisfies the Dyson equation, Eqs. (61)
and (62) are zero. Moreover, since (ε0,ε1) is arbitrary, the
energy-momentum tensor is conserved:

∂̃μT μν = 0. (67)

The above implies

∂tT
00 − ∂xT

x0 = 0. (68)

Integrating over all space and noting that the second term
above is a total derivative and therefore vanishes, leads to the
definition of the conserved energy E = ∫

dxT 00 such that

dE

dt
= d

dt

∫
all space

dxT 00(x,t) = 0. (69)

For a spatially homogeneous system like the one we study,
the energy density T 00 is position independent and is also
conserved. In this section we will derive an explicit expression
for T 00.

We can obtain the explicit expression for T μν by varying
(58). We first define δ�(G) = δ�a(G) + δ�b(G) + δ�2(G)
corresponding to varying the first, second, and third term in
Eq. (58). We first vary �a(G),

δ�a(G) = − i

2
δTr (ln G) = − i

2
TrG−1δG. (70)

This can be written explicitly as

− i

2

∫
dxdt

∫
dx ′dt ′G−1(xt,x ′t ′)

× [εμ(x,t)∂μG(x ′t ′,xt) + εμ(x ′,t ′)∂μ′G(x ′t ′,xt)].

Introducing a δ function in the dummy variables (x2,t2), we
can rewrite the first term as (the second term is analogous)

− i

2

∫
dxdt

∫
dx ′dt ′

∫
dx2dt2δ(x − x2)δ(t − t2)εμ(x2,t2)

×G−1(xt,x ′t ′)∂2μG(x ′t ′,x2t2)

= − i

2

∫
dxdt

∫
dx2dt2δ(x − x2)δ(t − t2)εμ(x2,t2)

× ∂2μ

∫
dx ′dt ′G−1(xt,x ′t ′)G(x ′t ′,x2t2)

= − i

2

∫
dxdt

∫
dx2dt2δ(x − x2)δ(t − t2)εμ(x2,t2)

× ∂2μ[δ(x − x2)δ(t − t2)]

= − i

2

∫
dx2dt2εμ(x2,t2) ∂2μ[δ(0)δ(0)] = 0. (71)

Treating the second term in a similar way we find δ�a(G) = 0
and therefore does not contribute anything to the stress tensor.

The expression for δ�b(G) is

δ�b(G) = 1

2

∫
dxdt

∫
dx ′dt ′δ(x − x ′)δ(t − t ′)

(
∂2
x − ∂2

t

)
[ε1(x,t)∂xG(x ′t ′,xt) + ε1(x ′,t ′)∂x ′G(x ′t ′,xt)

+ ε0(x,t)∂tG(x ′t ′,xt) + ε0(x ′,t ′)∂t ′G(x ′t ′,xt)].

(72)

The above may be written in a short-hand form,

δ�b(G) = 1

2

∫
dxdt

∫
dx ′dt ′δ(x − x ′)δ(t − t ′)

× (∂2
x − ∂2

t

)
[εμ(x,t)∂μG(x ′t ′,xt)

+ εμ(x ′,t ′)∂μ′G(x ′t ′,xt)]. (73)

If we now use the following expression:

∂2
a (εμ∂μG)

O(ε)= εμ∂2
a (∂μG) + 2(∂aεμ)∂a(∂μG), (74)

where ∂2
a is ∂2

x or ∂2
t and perform a few manipulations we get

δ�b(G) =
∫

dxdt

∫
dx ′dt ′δ(x − x ′)δ(t − t ′)

×
[
∂tεμ(x,t) ∂μ′∂t − ∂xεμ(x,t) ∂μ′∂x

− 1

2
∂μεμ(x,t)

(
∂2
t t ′ − ∂2

xx ′
)]

G(x ′t ′,xt). (75)
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The above may be rewritten as (defining δ̃μν = (−δxx,δtt ))

δ�b(G)

=
∫

dxdt

∫
dx ′dt ′δ(x − x ′)δ(t − t ′)

×
[

(∂̃νεμ)∂μ′∂ν − 1

2
(∂̃νεμ)δ̃μν

(
∂2
t t ′ − ∂2

xx ′
)]

G(x ′t ′,xt),

(76)

which has the required form (61). We thus find the following
contribution to the energy-momentum tensor:

T
μν

kin (x,t) =
∫

dx ′dt ′δ(x − x ′)δ(t − t ′)

×
[
∂2G(x ′,t ′; x,t)

∂xμ∂x ′
ν

− 1

2
δ̃μν

∂2G(x ′,t ′; x,t)

∂xλ∂̃x ′
λ

]
.

(77)

The label kin is to indicate that this is the contribution to the
tensor for free bosons. In the presence of interactions, even
though we will continue to use the label kin, T

μν

kin contains
contributions from the interactions as the Green’s function
G is affected by the interactions. However, in the presence of
interactions, an additional contribution to the tensor arises from
varying the last term in Eq. (58), which we discuss shortly.

Since the kinetic equation is expressed in terms of F

or equivalently GK , it is necessary to express the contour
ordered Green’s function G in terms of GK and Gρ . Defining
θC(t − t ′) to be the step function along the Keldysh contour,
the decomposition identity is given by25

iG(x,t ; x ′,t ′) = i〈φ(x,t)φ(x ′,t ′)〉θC(t − t ′)
+ i〈φ(x ′,t ′)φ(x,t)〉θC(t ′ − t)

=

−GK (x,t ;x ′,t ′)︷ ︸︸ ︷
1

2
i〈{φ(x,t),φ(x ′,t ′)}〉

+

Gρ (x,t ;x ′,t ′)︷ ︸︸ ︷
1

2
i〈[φ(x,t),φ(x ′,t ′)]〉

θC (t−t ′)−θC (t ′−t)︷ ︸︸ ︷
sgnC(t − t ′)

= −1

2
[GK (x,t ; x ′,t ′)

−Gρ(x,t ; x ′,t ′)sgnC(t − t ′)], (78)

and for the self-energy since G−1 = g−1 − �,

i�(x,t ; x ′,t ′) = 1
2 [�K (x,t ; x ′,t ′) − �ρ(x,t ; x ′,t ′)
× sgnC(t − t ′)]. (79)

Then we can write T
μν

kin (x,t) in terms of GK only since

G(x,t ; x,t) = i

2
GK (x,t ; x,t). (80)

Equation (77) becomes

T
μν

kin (x,t) =
∫

dx ′dt ′δ(x − x ′)δ(t − t ′)[
i

2

∂2GK (x ′,t ′; x,t)

∂xμ∂x ′
ν

− i

4
δ̃μν

∂2GK (x ′,t ′; x,t)

∂xλ∂̃x ′
λ

]
.

(81)

Thus, the kinetic part of the energy density T 00
kin(x,t) after

restoring the Luttinger liquid parameters reads

T 00
kin(x,t) = 1

πKu

∫
dx ′dt ′δ(x − x ′)δ(t − t ′)

×
[

i

4

∂2GK (x ′,t ′; x,t)

∂t∂t ′
+ i

4
u2 ∂2GK (x ′,t ′; x,t)

∂x∂x ′

]
.

(82)

In consonance with the kinetic equation (53) we perform
a gradient expansion to lowest order, which as we showed
before is equivalent to the on-shell or quasiclassical approx-
imation. This along with the assumption that the system is
homogeneous gives (defining T = (t + t ′)/2,τ = t − t ′)

T 00
kin(T ) = i

(4πKu)

∫ ∞

−∞

dq

2π

∫
dτδ(τ )

×
(

1

4
∂2
T − ∂2

τ + u2q2

)
GK (q,T ,τ )

≈ i

(4πKu)

∫ ∞

−∞

dq

2π

∫ ∞

−∞

dω

2π
(ω2+u2q2)GK (q,T ,ω),

(83)

where a term O(∂2
T ) was dropped. Using

GK (q,ω,T ) = − iπ2K

|q| [δ(ω − u|q|)
− δ(ω + u|q|)]F (q,ω,T ), (84)

we obtain (suppressing the ω label as it is understood that it is
evaluated at ±uq)

T 00
kin(T ) = u

4π

∫ ∞

−∞
dqe−α|q| |q| F (q,T ). (85)

This is the expected expression for the kinetic energy. In the
absence of the cosine potential, this quantity is exact, and was
evaluated in Sec. II.

Let us now construct the stress-momentum tensor from the
third term in Eq. (58), and from that construct the interaction
contribution to the conserved energy. The contribution from
the last term �2 can be written as

δ�2(G) =
∫

dxdt

∫
dx ′dt ′

(1/2i)�(x ′t ′,xt)︷ ︸︸ ︷
δ�2(G)

δG(xt,x ′t ′)
× [εμ(x,t)∂μG(xt ; x ′t ′) + εμ(x ′,t ′)∂μ′G(xt,x ′t ′)]

= 1

2i

∫
dxdt

∫
dx ′dt ′�(x ′,t ′; x,t)

× [εμ(x,t)∂μG(xt ; x ′t ′) + εμ(x ′,t ′)∂μ′G(xt,x ′t ′)].
(86)

Changing variables in the second term we obtain an expression
of the form (62),

δ�2(G) = 1

2i

∫
dxdt

∫
dx ′dt ′[�(x ′t ′,xt) ∂μG(xt ; x ′t ′)

+�(xt ; x ′t ′)∂μG(x ′t ′,xt)]εμ(x,t), (87)
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where we identify

∂̃μT
μν
� (x,t) = − 1

2i

∫
dx ′dt ′[�(x ′t ′,xt) ∂νG(xt,x ′t ′)

+�(xt,x ′t ′)∂νG(x ′t ′,xt)] (88)

It is convenient to write the above expression in terms of Gρ

and GK (see Appendix A for intermediate steps) to obtain

∂̃μT
μν
� (x,t) = 1

2i

∫
dx ′

∫ t

0
dt ′[−�ρ(x ′t ′,xt)∂νGK (xt,x ′t ′)

+�K (x ′t ′,xt)∂νGρ(xt,x ′t ′)]. (89)

Integrating over x, the left-hand side of the above equation is

∫
dx∂̃μT

μ0
� (x,t) =

∫
dx∂tT

00
� (x,t) −

surface terms →0︷ ︸︸ ︷∫
dx∂xT

00
� (x,t) .

(90)

Assuming spatial invariance, the expression for the interaction
contribution to the conserved energy density T 00

� (t) is found
to be

T 00
� (t) = 1

2i

∫ t

0
dt ′′

∫ t ′′

0
dt ′
∫ ∞

−∞

dq

2π
e−α|q|

× [�K (q,t ′,t ′′)∂t ′′Gρ(q,t ′′,t ′) − �ρ(q,t ′,t ′′)∂t ′′GK (q,t ′′,t ′)].
(91)

The next step is to perform a lowest order gradient
expansion as we did before for the kinetic equation and for
T

μν

kin . It is more convenient to work with dT 00
� (t)/dt and then

integrate over t . The expression for dT 00
� (t)/dt is

dT 00
� (t)

dt

= 1

2i

∫ t

0
dt ′
∫ ∞

−∞

dq

2π
e−α|q| (92)

× [�K (q,t ′,t)∂tGρ(q,t,t ′) − �ρ(q,t ′,t)∂tGK (q,t,t ′)].

Rewriting this expression using Wigner coordinates (T ,τ ) =
( t+t ′

2 ,t − t ′) one obtains

dT 00
� (t)

dt
= 1

2i

∫ ∞

−∞

dq

2π

∫ t

0
dt ′e−α|q|

×
[
�K

(
q,

(t + t ′)
2

,t ′ − t

)
∂tGρ

(
q,

(t + t ′)
2

,t − t ′
)

−(ρ ↔ K)

]
. (93)

The next step is to Fourier transform with respect to the
relative coordinate τ = t − t ′. As mentioned before, in order
to go to ω space we must extend the interval of integration
of the relative coordinate τ from (0,t) to (−∞,∞). Notic-
ing that

∫∞
0 dτei(ω−ω′)τ → πδ(ω − ω′), using ∂tGρ(q,t,t ′) =

−i
∫

dω
2π

e−iω(t−t ′)ωG̃ρ(q,T ,ω) and finally integrating over T

we obtain the expression for T 00
� (T ),

T 00
� (T ) = −1

4

∫ T

0
dT ′

∫ ∞

−∞

dq

2π
e−α|q|

∫
dω

2π
ω[�̃K (q,T ′,ω)

× G̃ρ(q,ω) − (ρ ↔ K)]. (94)

The final step is to use the on-shell approximation which
as shown before follows from the leading order gradient
expansion,

T 00
� (T ) = −1

4

∫ T

0
dT ′

∫ ∞

−∞

dq

2π
e−α|q|

∫
dω

2π
ω

× [�̃K (q,T ′,ω)G̃ρ(q,ω)

+ �̃ρ(q,T ′,ω)G̃ρ(q,ω)F (q,T ′,ω)]

= − iπ2K

16π2

∫ T

0
dT ′

∫ ∞

−∞
dqe−α|q|

∫
dω

ω

|q|
× [�̃K (q,T ′,ω) + �̃ρ(q,T ′,ω) F (q,T ′,ω)]

× [δ(ω − u|q|) − δ(ω + u|q|)]

= − iKu

8

∫ T

0
dT ′

∫ ∞

−∞
dqe−α|q|[�̃K (q,T ′)

+ �̃ρ(q,T ′) F (q,T ′)]. (95)

In summary the conserved energy density, is

E

L
= T 00

kin(T ) + T 00
� (T ), (96)

with T 00
kin defined in Eq. (85) and T 00

� given by

T 00
� (T ) = − iKu

8

∫ T

0
dT ′

∫ ∞

−∞
dqe−α|q|

× [�K (q,T ′) + �ρ(q,T ′) F (q,T ′)]. (97)

On differentiating Eq. (96) in time and using the kinetic
equation (53), we see that the total energy is conserved by
the kinetic equation since

1

L

dE(T )

dT
= iuK

4

∫ ∞

0
dqe−αq [�K (q,T ) + �ρ(q,T )F (q,T )]

− iuK

4

∫ ∞

0
dqe−αq [�K (q,T )

+�ρ(q,T ) F (q,T ) ] = 0. (98)

Thus the kinetic equation derived by us is a conserving
approximation, with the conserved energy given in Eq. (96).

V. RESULTS

In this section we numerically solve the kinetic equa-
tion (53) with the in-scattering and out-scattering rates given
in Eqs. (54)–(56), and the boundary condition that at T = 0
the distribution function is given by Eq. (57). As discussed in
the previous sections, the cosine potential does not conserve
particle number, but the quench always conserves the total
energy. Using the 2PI formalism we found the expression
for the conserved energy to be Eq. (96). It is the sum of a
kinetic part Eq. (85) and an interaction part Eq. (97). We
find it convenient to label the energies this way even though
the interactions affect the kinetic part of the energy as well
because they affect the single-particle Green’s function. In case
the system thermalizes, we would like to understand what is
the equilibrium temperature at which it should thermalize. This
temperature has a kinetic contribution as well as a correction
from the cosine interaction.

115144-10



QUENCH DYNAMICS OF ONE-DIMENSIONAL BOSONS IN . . . PHYSICAL REVIEW B 88, 115144 (2013)

We find that after the leading order gradient expansion there
is another zero mode in the problem, namely

dT 00
kin(T )

dT
= 0;

dT 00
� (T )

dT
= 0. (99)

The proof of this is given in Appendix B. The above implies
that under the leading order gradient expansion, the total
kinetic energy (summing over all momentum modes) and
the total potential energy are separately conserved. This
additional conservation law implies that since at the initial time
T 00

� (T = 0) = 0, it remains zero always. This implies that the
equilibrium temperature at which the system thermalizes can
be calculated in a rather straightforward way using the analysis
of Sec. II A for the quadratic Luttinger model. In particular the
equilibrium temperature Teq even in the presence of the cosine
potential is given by Eq. (25) within the leading order gradient
expansion.

The appearance of this zero mode where the total kinetic
energy of the bosons is conserved is not an accident. Recall that
even for φ4 theories or interacting fermionic models, a kinetic
equation obtained from a leading order gradient and quasiparti-
cle approximation results in two- and three-particle scattering
processes where the total kinetic energy of the particles is
conserved. The interactions at most give a Hartree correction
to the kinetic energy. While our kinetic equation is more
complicated than that for two- and three-particle scattering,
the leading order gradient expansion leads to the same result.

All our numerical computations are done for g = 0.1 and
γ = 2. Moreover we set the velocity u = 1, and all energy
and length scales are in units of the cutoff � = u/α. It is also
interesting to note that the strength of g only appears as an
overall multiplying factor in the kinetic equation (53) so that
as g decreases, the time evolution slows proportionally as g2.

It is convenient to define the function,

�(q) = qF (q). (100)

Since in equilibrium �(q) = q coth uq

2Teq
, the q = 0 intercept

of �(q) may be used to define an effective temperature,

Teff = u

2
�(q = 0). (101)

Figure 3 shows how the distribution function evolves in time.
At T = 0 the interaction quench generates a nonequilibrium
distribution function �(q,T = 0) = q

Kneq

Keq
. The cosine poten-

tial leads to inelastic scattering that relaxes this distribution
function and generates an effective temperature Teff which
corresponds to a nonzero intercept at q = 0 in Fig. 3. Even-
tually at long times this effective temperature evolves into the
true thermal temperature Teq. Figure 4 shows the distribution
function at sufficiently long times for two different quenches,
and compares it with the equilibrium distribution function.
Not only the intercept at q = 0, but also the functional form of
the distribution function agrees very well with the equilibrium
form. There is some deviation at large q, but we expect that this
deviation will become smaller at longer times. To determine
the long distance behavior of various correlation functions, it is
ultimately the distribution function at small q that is important.
Thus for all practical purposes, Fig. 4 is a fully thermalized
distribution function.
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q

0
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Ψ
(q

)=
qF

(q
)

T=0
T=424.5
T=1162

FIG. 3. The distribution function �(q) = qF (q) plotted for
increasing times for a quench where Keq = 3,Kneq = 13.8. At the
initial time, the quench generates the distribution given by the straight
line �(q) = q

Kneq

Keq
. The distribution converges to the equilibrium

distribution given by �(q) = q coth( uq

2Teq
).

A. Toy model to recapture the dynamics for large quenches

Simulating the full kinetic equation is numerically costly.
Figure 3 shows that the distribution function stays mostly
smooth as a function of q, and ultimately it is the small
q behavior which is most important in determining the in-
scattering and out-scattering rates. This observation allows us
to simulate the entire time evolution using a toy model where
we approximate the distribution function by its value in the
vicinity of q = 0,

�(q > 0,T ) = 2
Teff(T )

u
+ B(T )q + A(T )q2 + C(T )q3,

(102)

where the coefficients Teff,B,A,C are, respectively, the in-
tercept, slope, and curvatures of the distribution function at
q = 0. From inversion symmetry �(q) = �(−q). Substituting
in Eq. (53), the full kinetic equation may be reduced to a set of
coupled rate equations describing how these four coefficients

0 1 2 3 4
q

0

2.5

5

7.5

Ψ
(q

)=
qF

(q
)

K
neq

=13.8, K
eq

=3

K
neq

=5.38, K
eq

=4

FIG. 4. At long times the distribution converges to �eq(q) =
q coth( uq

2Teq
) (dashed line). The quenches and the time for which

the distributions are shown correspond to Keq = 3,Kneq = 13.8,T =
1162 and Keq = 4,Kneq = 5.38,T = 1072. The final temperatures
are, respectively, Teq = 2.22 and Teq = 0.414.
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evolve in time, where the boundary conditions are

A(T = 0) = C(T = 0) = Teff(T = 0) = 0;
(103)

B(T = 0) = Kneq

Keq
.

The rate equations are found to be

dTeff(T )

dT
= πK

2

[
u

2
i�K (q = 0,T )

− i(�R − �A)(q = 0,T )Teff(T )

]
(104)

dB(T )

dT
= −πK

2
i(�R − �A)(q = 0,T )B(T ), (105)

dA(T )

dT

= πK

2

[
−i(�R − �A)(q = 0,T )A(T )

+ 1

2

(
∂2i�K

∂q2

∣∣∣∣
q=0

− 2Teff(T )

u

∂2i(�R − �A)

∂q2

∣∣∣∣
q=0

)]
,

(106)

where the coefficient C is determined by imposing energy

conservation and in particular dT 00
�

dT
= 0. The self-energies

and their momentum derivatives that appear above depend on
the coefficients Teff,A,B,C through their dependence on the
distribution function entering in the exponent I in Eqs. (54)
and (55). A comparison between the full solution of the kinetic
equation (53) and the above toy model is shown in Fig. 5
where the time evolution of the effective temperature after a
quench is plotted. The two agree very well. For smaller quench
amplitudes, however, the deviation between the toy model and
the full kinetic equation becomes larger because for smaller
quenches the dynamics, at least for short times, is affected by
the distribution function at all q.

Figure 6 shows how the effective temperature evolves in
time after a quench where Keq = 4 while Kneq is varied from
4.4 to 17.72. The larger quenches (Kneq � 6.0) are obtained
from the toy model, while the smaller quenches are obtained
from solving the full kinetic equation. For all cases, the system
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FIG. 5. Comparison between the full model (dashed line) and the
toy model (solid line) for Keq = 3 and Kneq = 13.8. The differences
are unobservable. The system thermalizes to Teq (dot-dashed line).
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FIG. 6. Time evolution of the effective temperature for (bottom
to top) Kneq = 4.40,4.72,5.38,6.0,6.72,9.08,11.48,13.91, and 17.72
with Keq = 4. For all quenches the system thermalizes to the
equilibrium temperate Teq (dashed line).

is found to thermalize at the equilibrium temperature Teq shown
as a dashed line.

B. Time scales for thermalization

An important question concerns the time scales for ther-
malization. Assuming that the relaxation is purely exponential
Teff(T ) = Teq[1 − e−ηT ], we define the thermalization time
(Tth = 1/η) as the time at which the effective temperature
is related to the equilibrium temperature as follows,

Teff(Tth = 1/η) = Teq[1 − e−1]. (107)

We find an interesting nonmonotonic dependence
of the thermalization time 1/η on the quench
amplitude Kneq − Keq. Naively one expects the thermalization
time to increase as the quench amplitude decreases,
approaching infinity for zero quench amplitude Keq = Kneq.
Note that a sudden switching on of g, keeping the interaction
parameter fixed also generates nonequilibrium dynamics, but
this cannot be captured within the leading order gradient
expansion.

In contrast to the above expectation we find that the
thermalization time increases with decreasing quench am-
plitude (or the thermalization rate increases with increasing
quench amplitude) only for small quenches around equilibrium
Kneq − Keq � Keq. For large quenches on the other hand
Kneq − Keq � Keq, this behavior is reversed. Figure 7 shows
the expected increase in thermalization time for decreasing
quench amplitudes for small quenches, while Fig. 8 shows
how this behavior is reversed for larger quenches.

A summary of the relaxation rates (inversely related to the
thermalization time) for quenches with Keq = 3 and Keq = 4
is shown in Fig. 9, and clearly shows the nonmonotonic
behavior with a maximum relaxation rate for some optimal
Kneq for each Keq. The nonmonotonic behavior arises due to
the dependence of the thermalization time on two competing
effects. One is the dependence of the scattering rate on
the available phase space for scattering that increases with
increasing quench amplitude and therefore favors an increase
in the thermalization rate with increasing quench amplitude.
The second effect is that of the orthogonality catastrophe where
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FIG. 7. For small quenches, the relaxation times (given by the
abscissa corresponding to the three black dots) decreases with
increasing quench amplitude (dot-dashed line). The parameters are
Keq = 4 and Kneq = 4.40,4.72, and 5.38 (bottom to top).

a quench results in an initial state which has only a partial
overlap with the low-energy eigenstates of the Hamiltonian
after the quench, with the wave-function overlap becoming
poorer with increasing quench amplitude. This behavior
is reflected by the exponential dependence of the matrix
elements entering the kinetic equation on the distribution
function F . Thus as the quench amplitude grows, F increases,
suppressing the scattering rates, and ultimately leading to a
nonmonotonic dependence of the thermalization time on the
quench amplitude.

It is interesting to ask how much of the numerical results
may be recovered from a perturbative estimate for the inelastic
scattering rate. We use Eq. (53) to define an inelastic scattering
rate,

η0 = lim
ω→0

(
πK

2

)
i

ω
(�R − �A)(q,T ,ω = uq), (108)

where �R,A depends on F which is determined using the
kinetic equation. Such an inelastic scattering rate occurs in
equilibrium and finite temperature as well for weak deviations
of the distribution function from thermal equilibrium, and has
been used to determine the finite-temperature lifetimes of the
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FIG. 8. For large quenches, the relaxation time (given by the
abscissa corresponding to the three black dots) increases with the
quench amplitude (dot-dashed line). The parameters are Keq = 3 and
Kneq = 8.39,11.3, and 13.8 (bottom to top).

sound modes of the Luttinger liquid.56 We discuss the finite-
temperature expression in Appendix C.

For our problem, we may make a crude estimate for the
inelastic scattering rate by using perturbation theory, where
the distribution function F entering in Eq. (108) is taken to be
the value right after the quench, F = Kneq

Keq
. This is equivalent

to replacing the dressed Green’s function in the self-energy by
its bare value. While this is not a conserving approximation, it
still gives a result which shares many features with the results
obtained from the kinetic equation. As shown in Appendix C,
the perturbative estimate for η0 in units of the cutoff is42,65

η0 =
(

πK

2

)
g2γ 2

×
[

π

2Kneq−1(Kneq − 1)B
(Keq+Kneq

2 ,
Kneq−Keq

2

)
]

×
[

π

2Kneq−2(Kneq − 2)B
(Keq+Kneq−2

2 ,
Kneq−Keq

2

)
− π

2Kneq−2(Kneq − 2)B
(Keq+Kneq

2 ,
Kneq−Keq−2

2

)
]

. (109)

Figure 9 shows a comparison between the rate obtained
from the kinetic equation, and Eq. (109). The agreement
is impressive, especially for small and large quenches. The
optimal value of Kneq at which the rate is maximum is also in
very good agreement. For intermediate quench amplitudes, a
slight suppression of the actual relaxation rate compared with
the perturbative estimate is found.

It is also interesting to ask how the thermalization time
behaves as one approaches the critical point Keq = 2. Figure 9
shows that the thermalization rates for quenches in the vicinity
of Keq = 3 is overall greater than the thermalization rates
in the vicinity of Keq = 4. Thus our results indicate that as
one approaches the critical point, the system relaxes faster.
This observation has also been made in other theoretical and
experimental studies.4,66,67
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FIG. 9. The relaxation rate (inverse thermalization time) for
quenches with different Kneq keeping Keq fixed at Keq = 3 and
Keq = 4. [Kneq − Keq]/Keq is proportional to the energy density
injected due to the quench. The numerical results are compared with
the analytic expression Eq. (109) obtained from perturbation theory.
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It is instructive to see how the analytic expression in
Eq. (109) behaves for small and large quench amplitudes. For
small quenches Kneq − Keq � 1,

η0(Kneq − Keq � 1) � π3K

2
g2γ 2 2−2KeqKeq

(Keq − 2)(Keq − 1)2

× (Kneq − Keq)2. (110)

Thus according to perturbation theory the thermalization rate
diverges as one approaches the critical point at Keq = 2.
This divergence is unphysical and an indication that bare
perturbation theory does not work in the vicinity of the
critical point, and a more self-consistent approach employing
a kinetic equation is necessary. In this paper we do not attempt
to study the dynamics too close to the critical point using
the kinetic equation and leave it for future studies. In the
vicinity of the critical point, it may also be necessary to
use the renormalization group to improve on our perturbative
expression for the self-energy because the cosine potential is
a marginal perturbation near the critical point.

Avoiding the above complications, away from the critical
point, the thermalization rate obtained from perturbation
theory is found to behave as g2(Kneq − Keq)2 ∼ g2(K0 − K)4

for small quenches, and is therefore proportional to g2× the
square of the energy injected into the system due to the quench.
For large quenches Kneq − Keq � 1, the thermalization rate is
found to decrease with Kneq as

η0(Kneq − Keq � 1) � πg2γ 2 Keq

K2
neq

. (111)

We now address the question of whether the approach to
thermal equilibrium is truly exponential or not. Figure 10
shows how the actual time evolution of the effective temper-
ature compares with a purely relaxational model T

exp
eff (T ) =

Teq[1 − e−ηT ]. For large quenches, the differences between
the two are unobservable. However, as the quench amplitude
is reduced, the time evolution deviates more and more from
a purely exponential relaxation. The thermalization time is
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FIG. 10. Comparison between Teff (T ) obtained from the ki-
netic equation (solid line) with a relaxational ansazt T

exp
eff (T ) =

Teq(1 − e−ηT ) (dashed lines). The parameters are Keq = 4 and Kneq =
4.4,4.72,5.38, and 9.08 (bottom to top). As the quench amplitude de-
creases, the deviation from a simple exponential relaxation becomes
larger.

not precisely defined when the relaxation is not exponential,
and so our definition for the thermalization time in Eq. (107)
becomes somewhat ad hoc for small quenches. Yet the close
agreement with the analytic result shows that the definition
chosen is still a close estimate of the physical time scale.

VI. CONCLUSIONS AND OUTLOOK

We have presented a detailed study of quench dynamics of
a 1D system of interacting bosons in a commensurate periodic
potential. A quantum kinetic equation was derived perturba-
tively in the strength of the periodic potential and solved within
a leading order gradient expansion. Our results are valid for
quenches within the gapless (superfluid) phase. The system
is found to thermalize at long times. The thermalization time
is found to be nonmonotonic in the quench amplitude or the
amount of energy injected into the system. This nonmonotonic
behavior arises due to a competition between two effects. One
is an increase in phase space for scattering as the system is
driven further away from equilibrium with increasing quench
amplitude; this has the effect of relaxing the system faster
as the quench amplitude is increased. The second is an
enhancement of the orthogonality catastrophe with increasing
quench amplitude arising out of a poorer overlap between the
initial wave function and the low-energy eigenstates of the
final Hamiltonian as the quench amplitude is increased. This
has the effect of suppressing the matrix elements for scattering
as the quench amplitude is increased, leading to a longer
thermalization time. The bosonization approach captures the
orthogonality catastrophe naturally. We also find an analytic
expression for the relaxation rate from perturbation theory
which captures the above features remarkably well.

The result for the nonmonotonic dependence of the thermal-
ization time on the quench amplitude can also be understood as
follows. Imagine that initially the bosons are in the ground state
of a superfluid with interaction parameter K0. Now consider
increasing the quench amplitude to smaller and smaller values
of K . Here one would eventually be in the Mott insulator phase
where we expect thermalization to be poor or almost absent.
A similar behavior is expected when the quench amplitude
is increased to larger and larger values of K . Here since for
K = ∞ the bosons are effectively noninteracting, we again
expect thermalization to be almost absent for large enough K .
This nonmonotonic behavior of the thermalization time should
be observable in experiments if a large tunability of quench
amplitudes were possible.

We find that in general the relaxation rates grow as
one approaches the critical point. Previous numerical and
experimental studies which could approach the critical point
both from the superfluid side as well as the Mott insulating
side made a similar observation, namely that the relaxation
rates are maximal at the critical point and decrease away from
it in both directions.4,66,67

There are many open questions. First we have employed
a leading order gradient expansion which works best when
the relaxation rates are not too small so that the system loses
memory of the initial condition fast. Therefore this approach
will not work when Kneq → Keq. In particular the leading order
gradient expansion gives no dynamics when only the periodic
potential is quenched keeping the boson interaction parameter
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fixed. For this case a full solution of the Dyson equation may
be necessary, however, this is a numerically challenging task.

The results of this paper are not valid very close to the
critical point either. This is because our self-energies were
derived perturbatively in the periodic potential, whereas near
the critical point, the periodic potential becomes a marginal
perturbation. For this case an alternate approach presented
in Ref. 68 may be more appropriate where a separation of
time scales was identified. For times smaller than an inelastic
scattering rate (but longer than microscopic time scales), real
quantum processes dominate the dynamics and can be treated
with a perturbative renormalization group approach, while at
longer times the quasiclassical approach of this paper may be
employed.

Finally the issue of integrability and the relation of this
model to lattice models such as the Bose-Hubbard model
and the XXZ chain are open questions. Numerical studies on
integrable and nonintegrable fermionic models on the lattice
show that irrelevant operators do not affect the dynamics
for numerically accessible time scales.69 Whether there is a
fundamental difference between dynamics of lattice models
and continuum field theories like the one studied in this paper,
or whether this is an issue of differing time scales is a question
that needs to be explored.

Quench dynamics of integrable models described by inter-
acting field theories, and the effect of integrability breaking
terms on the dynamics, is an important topic of research.
Kinetic equations constructed for some 1D integrable models
such as the nearest-neighbor fermionic Hubbard chain,36

fermionic models with delta-function interactions in real
space,70 the fermionic limit of the Lieb-Liniger model,70 and
the Calogero-Sutherland model71 have been shown to know
about the underlying integrability of the systems by either
giving vanishing matrix elements for scattering,70,71 or by
causing scattering only in some special points, resulting in
nonthermal steady-state solutions.36 A more systematic study
involving other integrable models, and then understanding the
effect of integrability breaking terms is an important direction
of research.
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APPENDIX A: DERIVATION OF EQ. (89)

Consider a Keldysh contour (
∫
C

) starting from an initial
time t0, going up to a maximum time tmax, and then returning
to the initial time t0. Then the following identities hold:25

∫
C

dt ′sgnC(t − t ′) =
∫ t

t0

dt ′ −
∫ t0

t

dt ′

= 2
∫ t

t0

dt ′,

∫
C

dt ′sgnC(t − t ′)sgnC(t ′ − t ′′) = 2sgnC(t − t ′′)
∫ t

t ′′
dt ′.

(A1)

The right-hand side of Eq. (88) can be written in terms of
K and ρ components by using the above identities. The first
term is

1

2i

∫
dx ′dt ′�(x ′t ′,xt) ∂μG(xt,x ′t ′)

= 1

8i

∫
dx ′dt ′[�K (x ′t ′,xt) − �ρ(x ′t ′,xt)sgnC(t ′ − t)]

× [∂μGK (xt,x ′t ′) − ∂μGρ(xt,x ′t ′)sgnC(t − t ′)],
(A2)

where Gρ(xt,x ′t ′)∂tsgnC(t − t ′) = 2Gρ(xt,x ′t ′)δC(t − t ′) =
0 was used. Now using identities (A1) and∫

C

dt ′�K (x ′t ′,xt)∂μGK (xt,x ′t ′)

=
∫ tmax

t0

dt ′�K (x ′t ′,xt)∂μGK (xt,x ′t ′)

+
∫ t0

tmax

dt ′�K (x ′t ′,xt)∂μGK (xt,x ′t ′)

= 0, (A3)

we end up with two terms only:

1

8i

∫
dx ′dt ′[−�K (x ′t ′,xt)∂μGρ(xt,x ′t ′)sgnC(t − t ′)

−�ρ(x ′t ′,xt)∂μGK (xt,x ′t ′)sgnC(t ′ − t)]

= − 1

4i

(∫
dx ′

∫ t

0
dt ′�K (x ′t ′,xt)∂μGρ(xt,x ′t ′)

−
∫

dx ′
∫ t

0
dt ′�ρ(x ′t ′,xt)∂μGK (xt,x ′t ′)

)
. (A4)

Note that t0 = 0 as the cosine potential and hence the self-
energies are nonzero only after this time. The second term of
Eq. (88) is

1

8i

∫
dx ′dt ′[−�K (xt,x ′t ′)∂μGρ(x ′t ′,xt)sgnC(t ′ − t)

−�ρ(xt,x ′t ′)∂μGK (x ′t ′,xt)sgnC(t − t ′)]

= 1

8i

∫
dx ′dt ′[�K (x ′t ′,xt)∂μGρ(xt,x ′t ′)sgnC(t ′ − t)

+�ρ(x ′t ′,xt)∂μGK (xt,x ′t ′)sgnC(t − t ′)]

= − 1

4i

(∫
dx ′

∫ t

0
dt ′�K (x ′t ′,xt)∂μGρ(xt,x ′t ′)

−
∫

dx ′
∫ t

0
dt ′�ρ(x ′t ′,xt)∂μGK (xt,x ′t ′)

)
. (A5)

The terms in Eqs. (A4) and (A5) are equal, and summing them
we obtain Eq. (89).

APPENDIX B: PROOF OF EQ. (99)

Here we will show that dT 00
� (T )
dT

= 0. Since from energy

conservation dE
dT

= 0, this implies that dT 00
kin(T )
dT

= 0. Using
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Eq. (97), we find that

dT 00
�

dT
= −uK

4

∫ ∞

0
dqe−αq [i�K (q,T )

− i(�R − �A)(q,T )F (q,T )]. (B1)

Using Eq. (54),

∫ ∞

0
dqe−αqi�K =

(
guγ

α2

)2 ∫ ∞

−∞
dτ

∫ ∞

−∞
dre−I (T ,r,τ )

× cos

[
Keq

∑
ε=±1

tan−1

(
uτ + εr

α

)]

×
∫ ∞

0
dqe−αq cos(qr) cos(uqτ ).

(B2)

Using
∫∞

0 dqe−αq cos(qr) cos(uqτ ) = 1
2α

∑
ε=±

1
1+(uτ+εr)2/α2

and that

α

Keq

∂

∂(uτ + εr)
sin

[
Keq

∑
ε′=±

tan−1

(
uτ + ε′r

α

)]

= cos

[
Keq

∑
ε′=±

tan−1

(
uτ + ε′r

α

)]

×
[

1

1 + (uτ + εr)2/α2

]
,

we find

∫ ∞

0
dqe−αqi�K =

(
guγ

α2

)2 ∫ ∞

−∞
dτ

∫ ∞

−∞
dre−I (T ,r,τ )

× 1

2Keq

∑
ε′=±

∂

∂(uτ + ε′r)
sin

[
Keq

∑
ε=±

tan−1

(
uτ + εr

α

)]
.

(B3)

Now one may integrate the above expression by parts and use
that ∂

∂(uτ+εr)I (r,τ,T ) = Keq
∫∞

0 dqe−αqF (q,T ) sin[q(uτ +
εr)]. This leads to∫ ∞

0
dqe−αqi�K

=
(

guγ

α2

)2 ∫ ∞

−∞
dτ

∫ ∞

−∞
dr

× e−I (T ,r,τ ) sin

[
Keq

∑
ε=±

tan−1

(
uτ + εr

α

)]

×
∫ ∞

0
dqe−αq cos(qr) sin(uqτ )F (q,T )

=
∫ ∞

0
dqe−αqi[�R − �A](q,T )F (q,T ). (B4)

Thus we have proved Eq. (99).

APPENDIX C: PERTURBATIVE EVALUATION OF THE
INELASTIC SCATTERING RATE

In this section we discuss the inelastic scattering rate or
dissipation defined in Eq. (108) for two cases, one is for
small deviations of the system from thermal equilibrium at
a temperature Teq,56 and the second is by doing perturbation
theory for the quantum quench.42,65

In equilibrium and finite temperature, Keq = Kneq and
the distribution function of the bosons is 〈2b

†
pbp + 1〉 =

coth u|p|
2Teq

. This leads to the following inelastic scattering rate
at temperature Teq (in units of the cutoff),

ηT =
(

πK

2

)
g2γ 2

∫ ∞

−∞
dr

∫ ∞

−∞
dτ

τ sin[Keq tan−1(τ + r) + Keq tan−1(τ − r)] (C1)

× e−Keq[fT (τ+r)+fT (τ−r)],

where

fT (x) =
∫ ∞

0
dqe−q [1 − cos(qx)] coth

(
uq

2Teqα

)

= ln(
√

1 + x2) + 2 ln �

(
1 + αTeq

u

)

− ln �

(
1 + αTeq

u
− i

αTeqx

u

)

− ln �

(
1 + αTeq

u
+ i

αTeqx

u

)
, (C2)

and � is the Gamma function. For x � 1

fT (x � 1) = ln

[
u

απTeq
sinh

(
παTeqx

u

)]
. (C3)

From this it follows that the dissipation at finite temperature
scales with temperature as follows,

ηT ∝ g2γ 2(αTeq/u)2Keq−3, (C4)

in agreement with Ref. 56 if we set γ = 2
√

2.
Let us now consider the case of the quantum quench. Using

bare correlators (g = 0) for the expectation values 〈φφ〉 (see
Sec. II A), explicit expressions for the self-energy in Eqs. (36)
and (37) are given below:

�R(x1t1,x2t2) = −
(

guγ

α2

)2

θ (t1 − t2)

× sin

[
Keq tan−1

(
u(t1 − t2) + (x1 − x2)

α

)

+Keq tan−1

(
u(t1 − t2) − (x1 − x2)

α

)]
× fss(x1 − x2,t1 − t2)ftr(x1 − x2,t1,t2),

(C5)

115144-16



QUENCH DYNAMICS OF ONE-DIMENSIONAL BOSONS IN . . . PHYSICAL REVIEW B 88, 115144 (2013)

and

�K (x1t1,x2t2) = −i

(
guγ

α2

)2

cos

[
Keq tan−1

(
u(t1 − t2) + (x1 − x2)

α

)
+ Keq tan−1

(
u(t1 − t2) − (x1 − x2)

α

)]
× fss(x1 − x2,t1 − t2)ftr(x1 − x2,t1,t2), (C6)

where fss is a function that is translationally invariant in time, while ftr contains transients. Their explicit expressions are

fss(x1 − x2,t1 − t2) =
⎡
⎣
√

α2

α2 + [u(t1 − t2) + (x1 − x2)]2

√
α2

α2 + [u(t1 − t2) − (x1 − x2)]2

⎤
⎦Kneq

, (C7)

ftr(x1 − x2,t1,t2) =
⎡
⎣
√

α2 + (2ut1)2

α2 + [u(t1 + t2) + (x1 − x2)]2

√
α2 + (2ut2)2

α2 + [u(t1 + t2) − (x1 − x2)]2

⎤
⎦Ktr

. (C8)

Above Keq = γ 2

4 K , Kneq = γ 2

8 K0(1 + K2

K2
0
), and Ktr = γ 2

8 K0(1 − K2

K2
0
). At very long times after the quench, we may set (t1 +

t2)/2 → ∞ while keeping t1 − t2 arbitrary. In this case ftr → 1 and the scattering rates may be evaluated analytically to give

η0 =
(

πK

2

)
g2γ 2

⎡
⎢⎢⎣ π

2Kneq−1(Kneq − 1)B

(
Keq+Kneq

2 ,
Kneq−Keq

2

)
⎤
⎥⎥⎦

×

⎡
⎢⎢⎣ π

2Kneq−2(Kneq − 2)B

(
Keq+Kneq−2

2 ,
Kneq−Keq

2

) − π

2Kneq−2(Kneq − 2)B

(
Keq+Kneq

2 ,
Kneq−Keq−2

2

)
⎤
⎥⎥⎦ . (C9)

Another useful quantity is the strength of the noise which is given by the correlation function42,65 �K . Its expression at long
wavelengths is given by

IK = i

∫ ∞

−∞
dτ

∫ ∞

−∞
dr�K (r,τ = t1 − t2,

t1 + t2

2
→ ∞). (C10)

Within perturbation theory we obtain

IK = 2g2γ 2

⎡
⎢⎢⎣ π

2Kneq−1(Kneq − 1)B

(
Keq+Kneq

2 ,
Kneq−Keq

2

)
⎤
⎥⎥⎦

2

. (C11)

The ratio of the noise in Eq. (C11) and the dissipation in Eq. (C9) may be used to define an effective temperature,

T̃eff = u

α

(
Kneq − 2

2Keq

)
. (C12)

This effective temperature does not have any physical meaning as the system is out of equilibrium, and different combinations of
response and correlation functions in general will give different effective temperatures. However, it is interesting to note that in
the limit of large quenches Kneq � Keq, this temperature approaches the true temperature Teq [Eq. (26)] the system would reach
if it thermalized.
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J. Eisert, and I. Bloch, Nature Physics 8, 325 (2012).
68A. Mitra, Phys. Rev. B 87, 205109 (2013).
69C. Karrasch, J. Rentrop, D. Schuricht, and V. Meden, Phys. Rev.

Lett. 109, 126406 (2012).
70Anders Mathias Lunde, Karsten Flensberg, and Leonid I. Glazman,

Phys. Rev. B 75, 245418 (2007).
71M. Khodas, M. Pustilnik, A. Kamenev, and L. I. Glazman, Phys.

Rev. B 76, 155402 (2007).

115144-18

http://dx.doi.org/10.1103/PhysRevLett.98.050405
http://dx.doi.org/10.1103/PhysRevLett.98.050405
http://dx.doi.org/10.1088/1367-2630/12/5/055015
http://dx.doi.org/10.1103/PhysRevLett.109.175301
http://arXiv.org/abs/arXiv:1308.4551
http://dx.doi.org/10.1103/PhysRevLett.103.100403
http://dx.doi.org/10.1103/PhysRevA.80.053607
http://dx.doi.org/10.1103/PhysRevA.79.021608
http://dx.doi.org/10.1103/PhysRevLett.105.250401
http://dx.doi.org/10.1103/PhysRevLett.105.250401
http://dx.doi.org/10.1103/PhysRevE.81.036206
http://dx.doi.org/10.1088/1367-2630/14/7/075006
http://dx.doi.org/10.1103/PhysRevA.43.2046
http://dx.doi.org/10.1103/PhysRevE.50.888
http://dx.doi.org/10.1103/PhysRevD.69.025006
http://dx.doi.org/10.1103/PhysRevD.69.025006
http://dx.doi.org/10.1103/PhysRevD.72.025014
http://dx.doi.org/10.1103/PhysRevD.72.025014
http://dx.doi.org/10.1103/PhysRevD.77.025027
http://dx.doi.org/10.1103/PhysRevLett.103.056403
http://dx.doi.org/10.1103/PhysRevLett.103.056403
http://dx.doi.org/10.1007/s00340-011-4426-2
http://dx.doi.org/10.1103/PhysRevLett.93.142002
http://dx.doi.org/10.1103/PhysRevLett.93.142002
http://dx.doi.org/10.1103/PhysRevLett.100.175702
http://dx.doi.org/10.1103/PhysRevLett.100.120404
http://dx.doi.org/10.1103/PhysRevLett.101.041603
http://dx.doi.org/10.1103/PhysRevLett.101.041603
http://dx.doi.org/10.1103/PhysRevLett.108.161601
http://dx.doi.org/10.1103/PhysRevE.86.031122
http://dx.doi.org/10.1103/PhysRevE.86.031122
http://dx.doi.org/10.1103/PhysRevE.88.012108
http://dx.doi.org/10.1103/PhysRevE.88.012108
http://dx.doi.org/10.1103/PhysRevLett.107.056402
http://dx.doi.org/10.1103/PhysRevLett.107.056402
http://dx.doi.org/10.1103/RevModPhys.84.1253
http://dx.doi.org/10.1103/RevModPhys.84.1253
http://dx.doi.org/10.1103/PhysRevLett.110.016401
http://dx.doi.org/10.1103/PhysRevLett.110.016401
http://dx.doi.org/10.1103/PhysRevLett.107.150602
http://dx.doi.org/10.1016/j.aop.2010.02.006
http://dx.doi.org/10.1103/PhysRevB.82.235124
http://dx.doi.org/10.1103/PhysRevLett.100.210403
http://dx.doi.org/10.1103/PhysRevLett.100.210403
http://dx.doi.org/10.1103/PhysRevA.80.063619
http://dx.doi.org/10.1103/PhysRevLett.97.156403
http://dx.doi.org/10.1103/PhysRevE.81.061134
http://dx.doi.org/10.1103/PhysRevB.74.205123
http://dx.doi.org/10.1103/PhysRevLett.106.156406
http://dx.doi.org/10.1103/PhysRevLett.106.156406
http://dx.doi.org/10.1088/1367-2630/14/7/075001
http://dx.doi.org/10.1088/1367-2630/14/7/075001
http://dx.doi.org/10.1103/PhysRevB.84.085146
http://dx.doi.org/10.1103/PhysRevB.34.6372
http://dx.doi.org/10.1103/PhysRevB.65.134410
http://dx.doi.org/10.1103/PhysRevB.83.035115
http://dx.doi.org/10.1103/PhysRevB.83.035115
http://dx.doi.org/10.1103/RevModPhys.58.323
http://dx.doi.org/10.1103/PhysRevD.73.125002
http://dx.doi.org/10.1103/PhysRevD.74.045022
http://dx.doi.org/10.1103/PhysRev.124.287
http://dx.doi.org/10.1016/S0375-9474(99)00313-9
http://dx.doi.org/10.1016/S0375-9474(99)00313-9
http://dx.doi.org/10.1016/j.nuclphysa.2009.10.081
http://dx.doi.org/10.1103/PhysRevD.10.2428
http://dx.doi.org/10.1103/PhysRevD.10.2428
http://dx.doi.org/10.1103/PhysRevB.85.075117
http://dx.doi.org/10.1103/PhysRevLett.101.063001
http://dx.doi.org/10.1038/nphys2232
http://dx.doi.org/10.1103/PhysRevB.87.205109
http://dx.doi.org/10.1103/PhysRevLett.109.126406
http://dx.doi.org/10.1103/PhysRevLett.109.126406
http://dx.doi.org/10.1103/PhysRevB.75.245418
http://dx.doi.org/10.1103/PhysRevB.76.155402
http://dx.doi.org/10.1103/PhysRevB.76.155402



