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Recently, the Grassmann-tensor-entanglement renormalization group (GTERG) algorithm has been proposed
as a generic variational approach to study strongly correlated boson/fermion systems [Gu et al., arXiv:1004.2563].
However, the weakness of such a simple variational approach is that generic Grassmann tensor product states
(GTPS) with large inner dimension D will contain a large number of variational parameters which are hard to
be determined through usual minimization procedures. In this paper, we first introduce a standard form of GTPS
which significantly simplifies the representations. Then we describe a simple imaginary-time-evolution algorithm
to efficiently update the GTPS based on the fermion coherent state representation and show that all the algorithms
developed for usual tensor product states (TPS) can be implemented for GTPS in a similar way. Finally, we study
the environment effect for the GTERG approach and propose a simple method to further improve its accuracy.
We demonstrate our algorithms by studying some simple two-dimensional free and interacting fermion systems
on honeycomb lattice, including both off-critical and critical cases.
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I. INTRODUCTION

Since the discovery of the fractional quantum hall effect
(FQHE) and high Tc cuprates, it has been realized that a
large class of phases and phase transitions cannot be described
by Landau symmetry breaking theory. Enormous efforts have
been made to understand the underlying physics of these new
systems during the last two decades. It is believed that the
strongly correlated nature plays an essential role for these
new phases of quantum matter. The most successful and
powerful approach to study strongly correlated systems is
to construct new classes of variational wave functions. For
example, the famous Laughlin wave function1 successfully
explains the quantized nature of the Hall conductance at
rational filling factors. Such a new state is very different from
a symmetry breaking state and it describes a new class of
order of quantum matter—the topological order.2 Although
the essential physics of high Tc is still controversial, it is
believed that the relevant low energy physics is dominated
by a class of metastable states—the resonating-valence-bond
(RVB) states.3,5 A quantitative description for the RVB states
is based on the projective wave-function approach, which was
first proposed to satisfy the no-double-occupancy constraint
for the repulsive Hubbard model in the strong coupling limit.4,5

It has been shown that this new class of states can describe new
phases of matter with topological order or quantum order.6

Later, those projective functions are widely used to study the
phenomena in strongly correlated systems, including frustrated
magnets7 and the fractional quantum hall states as well.8

Despite the success of projective states, they are especially
designed to describe states with particular topological order or
quantum order and it is very difficult to study the competing
effect among different orders. Therefore, it is very important
to establish a unified framework to encode different orders
of quantum matter. In Ref. 9, a natural generalization of the
projective states, the Grassmann tensor product states (GTPS)
has been proposed as generic variational wave functions to
study interacting boson/fermion systems.

However, only local GTPS (GTPS with short-range bonds)
can be efficiently simulated in an approximated9 way. Thus, it

is also very important to understand what kind of states can be
faithfully represented in a local way. For spin/bosonic systems,
Refs. 10 and 11 have shown that the ground states of nonchiral
topological phases, the so-called string-net condensates,12

admit a local tensor product states (TPS) representation.
Recently, the fermionic version of string-net states which can
describe nonchiral topological orders in interacting fermion
systems (e.g., fractional topological insulators) were proposed
in Ref. 13. Similar to the bosonic string-net states, the
ground states of fermionic string-net models can also be
faithfully represented as GTPS since the parent Hamiltonians
for these new classes of states are described by summations
of (fermionic) commuting projectors. Moreover, it has been
shown that even for systems with chiral topological orders, the
ground-state wave functions admit an approximate local GTPS
representation.14–16 Therefore, to the best of our knowledge,
the GTPS variational approach can in principle describe all
kinds of gapped local boson/fermion systems in 1 + 2D.
Clearly, the advantage of this variational approach is that it
provides a unified description for different orders of quantum
matter and allows us to study the competing effect among
different orders.

On the other hand, from the quantum information and
computation perspective, it has been shown that ground states
of gapped local Hamiltonians obey area laws. For local
boson/spin systems with translational invariance, states that
satisfy such a property can be efficiently represented by
the class of so-called matrix product states (MPS) in one
dimension and by tensor product states (TPS) or projected en-
tangled pair states (PEPS) in higher dimensions.17,18 Recently,
a fermionic generalization of those states—the fermionic
projected entangled pair states (fPEPS) were proposed and
have been benchmarked in many interesting free/interacting
fermion systems.19–25 In Ref. 9, it has been shown that all
fPEPS can be represented as (local) GTPS.

Although GTPS variational ansatz is conceptually useful,
the implementation in generic strongly correlated boson/
fermion systems is still not easy since the tensor contrac-
tion for generic GTPS is an exponentially hard problem.
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Similar difficulties may occur for PEPS (fPEPS)26 and many
efforts have been made based on the MPS algorithm.27–29

However, it is still a very big cost to handle a large system
with periodical boundary condition (PBC).27 Alternatively,
based on the concept of renormalization,30 the so-called tensor-
entanglement renormalization group (GTERG)31,32 method
and its recent developments33–35 are very successful for sys-
tems with PBC. Similar to TERG, based on the renormalization
principle for Grassmann variables, the Grassmann-tensor-
entanglement renormalization group (GTERG) was proposed
in Ref. 9 to simulate physical measurements for GTPS
approximately. Nevertheless, a naive minimization procedure
for generic GTPS variational approach will still be very hard
due to the large number of variational parameters when inner
dimension D increases (scale as D3 on honeycomb lattice and
as D4 on square lattice). For TPS, it is well known that the
imaginary time evolution algorithm is the best method to solve
such a problem. Hence, it is natural to generalize the algorithm
for GTPS, which is the main focus of this paper.

The rest of the paper is organized as follows: In Sec. II,
we present a standard form of GTPS, which only contains
one species of Grassmann variable for each inner index
and significantly simplifies the representation for numerical
calculations. In Sec. III, we first give a brief review about the
concept of the imaginary time evolution algorithm for TPS and
then present the detailed implementation for GTPS. Finally,
we demonstrate the algorithm for a simple spinless fermion
system on honeycomb lattice, including both off-critical and
critical cases. In addition, we study a spinless fermion system
with attractive interactions on honeycomb lattice and predict
a p + ip superconducting ground state. We benchmark the
ground-state energy with exact diagonalization calculation
and find a very good agreement. In Sec. IV, we describe the
environment effect of the GTERG algorithm and present a
simple improved algorithm. We implement the algorithm to
a critical free fermion system on honeycomb lattice and find
a significant improvement. Finally, we briefly summarize our
results and discuss possible future developments along this
direction.

II. STANDARD FORM FOR GTPS

In this section, we will introduce a standard form to
represent GTPS. In the standard form, each link only associates
with one Grassmann variable, thus, the representation in the
numerical calculations will be simplified significantly.

Let us recall the generic GTPS wave functions (defined in
the usual Fork basis):

�({mi}) =
∑
{aI }

P0

∫ ∏
i

T
mi

i;aKaL···
∏
ij

Gij ;aI aJ
, (1)

where

T
mi

i;aKaL··· =
∑

{lαK
K }{lαL

L }···
T
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K }{lαL

L }···
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∏
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FIG. 1. A graphic representation for the GTPS. The open circle
which connects to links I and J represents the Grassmann metric
Gij,aI aJ

. The solid circle on the physical site i represents the
Grassmann tensors T

mi

i;aKaL···. The Grassmann numbers θα
I associate

with the Grasmann metric Gij,aI aJ
and the dual Grassmann numbers

associate with the Grassmann tensor T
mi

i;aKaL···. There are a pair of
indices (aI ,{lαI

I }) live on link I . aI is called the bosonic index while
{lαI

I } = 0,1 are called the fermionic indices.

Here i,j, . . . label different physical sites, I,J, . . . label
different links, and I ∈ i means the link I connects to the site i

(see in Fig. 1, any link I uniquely belongs to one physical site
i). On each link I , aI labels the bosonic inner indices, lαI

I = 0,1
labels the fermionic inner indices, and αI labels different
species of Grassmann variables. mi is the physical index.
θ

αI

I and dθ
αI

I are Grassmann numbers and dual Grassmann
numbers that satisfy the standard Grassmann algebra:

θ
αI

I θ
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I ′
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I ′ θ
αI
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αI

I dθ
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I ′
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αI
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(3)∫

dθ
αI

I θ
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I ′
I ′ = δI,I ′δαI α

′
I ′

∫
dθ

αI

I 1 = 0.

Note that
∏

i and
∏̃

i have opposite orders:∏
i

θi ≡ θ1θ2θ3 · · ·
∏̃

i

θi ≡ · · · θ3θ2θ1. (4)

The symbol P0 represents a projection of the result of the
integral to the term containing no Grassmann variables θ

αI

I .
For fermion (electron) systems, the physical index mi in a

local Hilbert space is always associated with a definite fermion
parity Pf (mi) = ±1. Hence, we can impose the following
constraints to issue that Eq. (1) does represent fermion wave
functions. ∑

I∈i

∑
αI

l
αI

I = odd, if Pf (mi) = −1,

∑
I∈i

∑
αI

l
αI

I = even, if Pf (mi) = 1, (5)

∑
αI

l
αI

I +
∑
αJ

l
αJ

J = even.

Although the original form of Eq. (1) provides us a good
physical insight of the state, especially for strongly correlated
systems from projective constructions, it is not an efficient
representation for numerical simulations. In the following
we will derive the standard form of GTPS to simplify the
representation.

By using the Grassmann version of the singular-value-
decomposition (GSVD) method proposed in Ref. 9, under
the constraint

∑
αI

l
αI

I + ∑
αJ

l
αJ

J = even, we can decompose
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FIG. 2. (Color online) A graphic representation of the decompo-
sition Eq. (6). We use double lines (red and blue) to represent the
standard metric gij , which is the Z2 graded version of the canonical
delta function. The blue line represents the channel with no inner
fermion (nI = nJ = 0) and the red line represents the channel with
one inner fermion (nI = nJ = 1) for the standard metric. The arrow of
the red line represents the ordering for the dual Grassmann variables
dθI and dθJ . We notice that the standard metric gij only has one
species of Grassmann variable despite the original Grassmann metric
Gij contains many species of Grassmann variables on its link I and
J (labeled by αI and αJ ). Here qI ,qJ and aI ,aJ are bosonic indices.

Gij ;aI aJ
into (see Fig. 2)

Gij ;aI aJ
=

∑
pI pJ

P ′
0

∫
gij ;qI qJ
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, (6)

with
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=
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=

∑
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∑
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∑
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l
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where S
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I }nI
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= √
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and S
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J }nJ
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J };qJ ,nJ
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value-decomposition (SVD) for the matrix MaI {lαI
I };aJ {lαJ

J } =
G

{lαI
I }{lαJ

J }
ij ;aI aJ

with M = U�V T . (Notice that the constraint∑
αI

l
αI

I + ∑
αJ

l
αJ

J = even implies a Z2 symmetry for the
matrix M which can be block diagonalized, with each sector
labeled as nI = nJ = 0 or 1.) Again, the symbol P ′

0 represents
a projection of the result of the integral to the term containing
no Grassmann number θI . We call gij ;qI qJ

the standard metric
for GTPS, which is the Grassmann generalization of the
canonical delta function δqI qJ

.
Putting Eq. (6) into Eq. (1), we have

�({mi}) =
∑

{aI },{qI }
P0P

′
0

∫ ∏
ij

gij ;qI qJ

∏
i

T
mi

i;aKaL···
∏
I

SI ;aI qI
.

(9)

The Grassmann matrices SI ;aI qI
defined on all links contain

even number of Grassmann numbers and they commute with
each other. Such a property allows us to regroup them as∏

I

SI ;aI qI
=

∏̃
i

∏̃
I∈i

SI ;aI qI
. (10)

To derive the above expression, we use the fact that each link
I uniquely belongs to a site i.

∏̃
defined here has opposite

orders according to that defined in Eq. (2).

FIG. 3. (Color online) A graphic representation for the standard
Grassmann tensor T̃i , which is a combination of the Grassmann tensor
Ti and those SI (K,L)(green solid circles) surrounding it.

Thus, we can integral out all the Grassmann numbers∏
αI

(θαI

I )l
αI
I and sum over all the bosonic indices {aI } to derive

a simplified wave function:

�({mi}) =
∑
{qI }

P ′
0

∫ ∏
ij

gij ;qI qJ

∏
i

T̃
mi

i;qKqL···, (11)

where the new Grassmann tensor T̃
mi

i;aKaL··· associated with
physical site i can be expressed as (see Fig. 3)

T̃
mi

i;qKqL··· =
∑

nKnL···
T̃mi ;nKnL···

i;qKqL···
∏
I∈i

θ
nI

I , (12)

with

T̃mi ;nKnL···
i;qKqL··· =

∑
aKaL···

∑
{lαK

K }{lαL
L }···

T
mi ;{lαK

K }{lαL
L }···

i;aKaL···
∏
I∈i

S
{lαI

I }nI

I ;aI qI
. (13)

We call Eq. (11) the standard form (see Fig. 4) of GTPS
which only contains one species of Grassmann variable on
each link. We can further simplify the expression by grouping
the bosonic index qI and fermionic index nI into one super
index pI = (qI ,nI ).

�({mi}) =
∑
{pI }

∫ ∏
ij

gij ;pI pJ

∏
i

Tmi

i;pKpL···, (14)

FIG. 4. (Color online) A graphic representation for the standard
form of GTPS. The solid circle on the physical site i represents the
standard Grassmann tensors Tmi

i;pKpL ···. The link index pI has a definite
fermion parity Pf and we use the blue(red) line to represent the
fermion parity even(odd) Pf (pI ) = 1(−1) indices. If Pf (pI ) = −1,
we associate a Grassmann number θI with the standard Grassmann
tensor Tmi

i;pKpL ··· while associate its dual dθI with the standard metric
gij,pI pJ

. Since the standard metric gij,pI pJ
is actually just a Grassmann

generalization of the canonical delta function δpI pJ
, we only need to

use an arrow to specify the ordering of the two Grassmann variables
dθJ and dθI .
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with

gij ;pI pJ
= δpI pJ

(dθJ )Nf (pJ )(dθI )Nf (pI ),
(15)

Tmi

i;pKpL··· = T̃mi ;nKnL···
i;qKqL···

∏
I∈i

(θI )Nf (pI ),

where Nf (pI ) = nI . Notice that the super index pI has a
definite fermion parity Pf (pI ) = ±1 and the corresponding
fermion number is determined as Nf = Pf +1

2 .
The new form Eq. (14) is extremely useful in general

purpose of numerical calculations. We will use this new form
to explain all the details of our algorithms.

III. THE IMAGINARY TIME EVOLUTION ALGORITHM

In this section, we will start with a brief review of imaginary
time evolution algorithms for TPS and then generalize all those
algorithms into GTPS. Finally, we apply the algorithms to
some fermion models on honeycomb lattice.

A. A review of the algorithm of TPS

1. Generic discussion

Let us consider the imaginary time evolution for generic
TPS |�0〉.

|�τ 〉 = e−τH |�0〉. (16)

If we don’t make any approximation, the true ground state can
be achieved in the τ → ∞ limit.

|�GS〉 = lim
τ→∞ e−τH |�0〉 = lim

N→∞
e−NδτH |�0〉, (17)

where N is the number of evolution steps and δτ = τ/N

is a sufficiently thin imaginary-time slice. However, without
any approximation, the inner dimension of TPS will increase
exponentially as the number of evolution steps increase.
Hence, we need to find out the best TPS approximation with
fixed inner dimension.

Without loss of generality (WLOG), we use the honeycomb
lattice geometry to explain the details here and for the rest of
the paper. To illustrate the key idea of the algorithm, let us
consider a simple case that the model Hamiltonian H only
contains a summation of nearest-neighbor two-body terms:

H =
∑
〈ij〉

hij . (18)

Let us divide the Hamiltonian into three parts:

H = Hx + Hy + Hz; Hα =
∑
i∈A

hi,i+α (α = x,y,z),

(19)
where A labels the sublattices A and x,y,z label three
different nearest-neighbor directions. By applying the Trotter
expansion, we have

e−δτH = e−δτHx e−δτHy e−δτHz + o(δτ 2). (20)

Notice that each Hα only contains summation of commuting
terms, hence we can decompose them without error:

e−δτHα =
∏

i

e−δτhi,i+α . (21)

Let us expand |�0〉 under the physical basis:

|�0〉 =
∑

{mi,mj }

∑
{a,a′}

∏
i∈A

T
mi

i;abc

∏
j∈B

T
mj

j ;a′b′c′ ,
∏
ij

δaa′ |{mi,mj }〉.
(22)

Here A,B denote two different sublattices in a unit cell and
mi(j ) denote the physical indices on site i(j ), e.g., mi(j ) = ↑,↓
for a spin-1/2 system. The canonical delta function δaa′

defined on link ij can be regarded as the metric associated
with tensor contraction, which can be generalized to its
Grassmann variable version for fermion systems. After acting
one evolution operator e−δτhij onto the corresponding link ij ,
we can expand the new state e−δτhij |�0〉 as

e−δτhij |�0〉 =
∑

{mi,mj }

∑
{a,a′}

∑
m′

im
′
j

E
mimj

m′
im

′
j
T

m′
i

i;abcT
m′

j

j ;a′b′c′
∏
i ′ �=i

T
mi′
i ′;edf

×
∏
j ′ �=j

T
mj ′
j ′;e′d ′f ′

∏
ij

δaa′ |{mi,mj }〉, (23)

where E
mimj

m′
im

′
j

= 〈mimj |e−δτhij |m′
im

′
j 〉 is the matrix element of

the evolution operator on link ij . Using the SVD decompo-
sition, we can decompose the rank 6 tensor Tij ;mimj bcb′c′ =∑

a

∑
m′

im
′
j
E

mimj

m′
im

′
j
T

m′
i

i;abcT
m′

j

j ;ab′c′ as

Tij ;mimj bcb′c′ =
∑
aa′

T mi

i;abcT
mj

j ;a′b′c′δaa′ . (24)

Here the indices a,a′ have dimension Dd2, where D is the
inner dimension and d is the physical dimension of the tensor
T

mi

i;abc. After applying e−δτHx on state |�0〉, the tensor Ti will
be replaced by Ti :

e−δτHx |�0〉 =
∑

{mi,mj }

∑
{a,a′}

∏
i∈A

T mi

i;abc

∏
j∈B

T mj

j ;a′b′c′

×
∏
ij

δaa′ |{mi,mj }〉. (25)

Notice that all {T mi

i;abc} have enlarged inner dimension Dd2

instead of D for their inner indices a (the bond along x

direction). Similarly, the dimension of indices b,c (the bonds
along y,z directions) will also be enlarged to Dd2 after
applying e−δτHy and e−δτHz on |�0〉. Thus, it is easy to see that
the inner dimension will increase exponentially as evolution
steps increase if we don’t make any truncation.

To solve the above difficulty, we need to find a new set
of {T ′mi

i;abc} with fixed inner dimension D that minimizes the
distance with e−δτHx |�0〉. If we start from |�0〉 and evolve it
by e−δτHx in a sufficiently thin time slice, the cost function f

takes the form,

f
({

T ′mi

i;abc

}) = ‖|� ′
0〉 − e−δτHx |�0〉‖

= 〈� ′
0|� ′

0〉− (〈� ′
0|e−δτHx |�0〉+ H.c.) + const.,

(26)

where

|� ′
0〉 =

∑
{mi,mj }

∑
{a,a′}

∏
i∈A

T ′mi

i;abc

∏
j∈B

T ′mj

j ;a′b′c′ ,
∏
ij

δaa′ |{mi,mj }〉,

(27)

and f is a multivariable quadratic function of {T ′mi

i;xiyizi
}, hence

we can use the sweep method to minimize it. The advantage
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FIG. 5. (Color online) A graphic representation for the environ-
ment tensor ρ[(a)] and e[(b)] on honeycomb lattice.

of the above algorithm is that the Trotter error will not
accumulate after long time evolution. However, calculating the
cost function f explicitly is an exponentially hard problem and
we need further approximations at this stage. Some possible
methods have been proposed based on the MPS algorithm,27

but the calculational cost can still be very big and the method
has only been implemented with the open boundary condition
(OBC) so far.

2. Translational invariant systems

Nevertheless, for translational invariant TPS ansatz, it is
possible to develop an efficient method to simulate the cost
function by using the TERG method.

We assume that Ti = TA if i ∈ A and Tj = TB if j ∈ B.
The cost function can be expressed as

f (T ′
A,T ′

B) = ρbcb′c′;b̄c̄b̄′ c̄′
T̄ ′mi

A;āb̄c̄
T ′mi

A;abcT̄
′mj

B;āb̄′ c̄′T
′mj

B;ab′c′

− (
eb̄c̄b̄′ c̄′;mimj T̄ ′mi

A;āb̄c̄
T̄ ′mj

B;āb̄′ c̄′ + H.c.
) + const,

(28)

where ρ and e (Fig. 5) are the so-called environment tensors.
Here we use the convention that all the repeated indices will
be summed over and we use T̄ to represent complex conjugate
of T . Strictly speaking, the environment tensors for ρ and
e are also dependent on T ′

A and T ′
B , thus f is no longer a

quadratic multivariable function. However, for sufficiently thin
time slice, up to o(δτ 2) error (same order as Trotter error), we
can replace T ′

A,T ′
B by TA,TB when calculating the environment

tensor ρ. e can be derived from ρ:

eb̄c̄b̄′ c̄′;mimj = ρbcb′c′;b̄c̄b̄′ c̄′
E

mimj

m′
im

′
j
T

m′
i

A;abcT
m′

j

B;ab′c′ . (29)

Again, repeated indices need to be summed over here. We
notice that ρ can be expressed as a tensor trace of double
tensorsTA(B) = ∑

m T̄ m
A(B) ⊗ T m

A(B) with an impurity tensorTij

for the link ij (see Fig. 6):

ρbcb′c′;b̄c̄b̄′ c̄′ = tTr
[
T ρ

ij ⊗ TA ⊗ TB ⊗ TA ⊗ TB · · · ], (30)

where the impurity double tensor Tij is just a projector:

Tij ;bcb′c′;b̄c̄b̄′ c̄′ = 1; others = 0. (31)

Now it is easy to see that we can first decompose the impurity
tensor on the link i,j to two rank-3 impurity tensors on site
i,j and then implement the usual TERG algorithm. We can
also use a more efficient but complicated way to compute ρ

by applying the coarse-graining procedures for all sites except
sites i,j , as introduced in Ref. 33.

FIG. 6. (Color online) A graphic representation for the tensor
contraction that allows us to compute ρ on honeycomb lattice.

The above algorithm can further be simplified if we assume
that the environment tensor ρ has specific forms for certain
physical systems. One interesting attempt was proposed in
Ref. 32 by assuming that ρ can be factorized as

ρbcb′c′;b̄c̄b̄′ c̄′ = �
y

b�
z
c�

y

b′�
z
c′δbb̄δcc̄δb′b̄′δc′ c̄′ , (32)

where �α is a positive weight vector defined on links along
the α direction. The above form can always be true for 1D
systems36 due to the existence of the canonical form of an
MPS. Although the above form is not generic enough in
2D, it still works well in many cases, especially for those
systems with symmetry breaking order. In this case, the cost
function Eq. (28) can be solved by SVD decomposition and
keep the leading Dth singular values for the following matrix
(see Fig. 7):

Mbcmi ;b′c′mj
=

∑
a,m′

i ,m
′
j

√
�

y

b

√
�z

c

√
�

y

b′

√
�z

c′Tij,minj bcb′c′

=
∑

a,m′
i ,m

′
j

√
�

y

b

√
�z

c

√
�

y

b′

√
�z

c′E
mimj

m′
im

′
j
T

m′
i

A;abcT
m′

j

B;ab′c′

�
D∑

a=1

Ubcmi ;aVb′c′mj ;a�
′
a. (33)

FIG. 7. (Color online) (a) After applying the two-body evolution
operator e−δτhij to the ij link for TPS (with inner dimension D),
we get a new TPS with enlarged inner dimension (Dd2, d is the
physical dimension) for the corresponding link. (b) For large classes
of translational invariant TPS, we can reduce the inner dimension
from Dd2 back to D with respect to some environment wight �.
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The new tensors T ′
A and T ′

B can be determined as

T ′mi

A;abc =
√

�′
a√

�
y

b

√
�z

c

Ubcmi ;a,

(34)

T ′mj

B;a′b′c′ =
√

�′
a′√

�
y

b′
√

�z
c′

Vb′c′mj ;a′ .

Similarly as in 1D, the environment weight associated with
bonds along the x direction is updated as �x = �′. It is not
hard to understand why the above simplified algorithm works
very well for systems with symmetry breaking orders, but not
in the critical region, since in those cases the ground states
are close to product states and the entanglements between
the x,y,z directions in the environment tensors become
pretty weak. However, for topologically ordered states, the
environment tensors can be more complicated. For example,
the Z2 topologically ordered state in the toric code model will
have an emergent Z2 symmetry and cannot be factorized as a
product. Hence, for topological ordered states, it is important to
calculate the full environment in the imaginary time evolution.

B. Generalize to fermion (electron) systems

In this subsection, we will show how to generalize the above
algorithms to GTPS. The key step is to introduce fermion
coherent state representation and treat the physical indices also
as a Grassmann variable. WLOG, we use a spinless fermion
system as a simple example here and for the rest part of the
paper:

|η〉 ≡
∏

i

(1 − ηic
†
i )|0〉, (35)

where ηi is a Grassmann number.
As already discussed in Ref. 9, under this new basis, the

GTPS wave function Eq. (1) and its standard form Eq. (14)

can be represented as

�({ηi}) =
∑
{mi }

∑
{aI }

∫ ∏
i

η̄
mi

i T
mi

i;aKaL···
∏
ij

Gij ;aI aJ

=
∑
{mi }

∑
{pI }

∫ ∏
ij

gij ;pI pJ

∏
i

η̄
mi

i Tmi

i;pKpL···

=
∑
{mi }

∑
{pI }

∫ ∏
ij

gij ;pI pJ

∏
i

T̃mi

i;pKpL···, (36)

where η̄i is the complex conjugate of the Grassmann
number ηi and T̃mi

i;pKpL··· = η̄
mi

i Tmi

i;pKpL···.
On honeycomb lattice with translational invariance, we can

simplify the above expression as

�({η̄i},{η̄j })
=

∑
{mi },{mj }

∑
{a},{a′}

∫ ∏
〈ij〉

gaa′
∏
i∈A

T̃mi

A;abc

∏
j∈B

T̃mj

B;a′b′c′ , (37)

with

T̃mi

A;abc = T̃mi

A;abcη̄
mi

i θ
Nf (a)
α θ

Nf (b)
β θ

Nf (c)
γ ,

T̃mj

B;a′b′c′ = T̃
mj

B;a′b′c′ η̄
mj

j θ
Nf (a′)
α′ θ

Nf (b′)
β ′ θ

Hf (c′)
γ ′ , (38)

gaa′ = δaa′dθ
Nf (a)
α dθ

Nf (a′)
α′ .

Comparing to the usual TPS, here the link indices {a,a′}
always have definite fermion parity Pf = ±1. Nf = 0 when
Pf = 1 while Nf = 1 when Pf = −1.

Let us start from the simplest case with the assumption
that the environment can also be approximately represented
by some weights. In this case, the imaginary time evolution
for GTPS can be reduced to an SVD problem of Grassmann
variables. The Grassmann version of the matrix M in Eq. (33)
can be constructed as follows (see Fig. 8):

(a) Let us first sum over the bond indices a,a′ and integrate
out the Grassmann variables θα,θα′ :

T̃ij ;mimj bcb′c′ =
∑
aa′

∫
gaa′ T̃mi

abcT̃mj

a′b′c′ =
∑

a

∫
dθ

Nf (a)
α dθ

Nf (a)
α′ T̃mi

A;abcη̄
mi

i θ
Nf (a)
α θ

Nf (b)
β θ

Nf (c)
γ T̃

mj

B;ab′c′ η̄
mj

j θ
Nf (a)
α′ θ

Nf (b′)
β ′ θ

Hf (c′)
γ ′

=
∑

a

(−)[mi+mj ]Nf (a)(−)mj [mi+Nf (b)+Nf (c)]T̃mi

A;abcT̃
mj

B;ab′c′ η̄
mj

j η̄
mi

i θ
Nf (b)
β θ

Nf (c)
γ θ

Nf (b′)
β ′ θ

Nf (c′)
γ ′ . (39)

Here the sign factor (−)[mi+mj ]Nf (a)(−)mj [mi+Nf (b)+Nf (c)] comes from the anticommutating relations of Grassmann variables.
(b) Next we derive the matrix element of the evolution operator under fermion coherent state representation. Let us first

calculate them under the usual Fock basis (c†j )mj (c†i )mi |0〉 with mi,mj = 0,1. Let us define

E
mimj

m′
im

′
j

= 〈0|(ci)
mi (cj )mj e−δτhij (c†j )m

′
j (c†i )m

′
i |0〉. (40)

Thus, we can expand e−δτhij as

e−δτhij =
∑

mimj ;m′
im

′
j

E
mimj

m′
im

′
j
(c†j )mj (c†i )mi |0〉〈0|(ci)

m′
i (cj )m

′
j . (41)

In the fermion coherent state basis, we have

〈η′
i ,η

′
j |e−δτhij |ηi,ηj 〉 =

∑
mimj ;m′

im
′
j

E
mimj

m′
im

′
j
(η̄′

j )mj (η̄′
i)

mi (ηi)
m′

i (ηj )m
′
j . (42)

(c) Then we can evolve the state � to a new state � ′:

� ′({η̄′
i},{η̄′

j }) =
∫

dη̄idηidη̄j dηj (1 + ηiη̄i)(1 + ηj η̄j )〈η′
i ,η

′
j |e−δτhij |ηi,ηj 〉�({η̄i},{η̄j }). (43)
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Put Eq. (39) and Eq. (42) into the above equation, and it is easy to derive the Grassmann version of the rank-6 tensor Tij defined
on the link ij . We have

T̃′
ij ;mimj bcb′c′ =

∑
m′

im
′
j a

(−)[m′
i+m′

j ]Nf (a)(−)m
′
j [m′

i+Nf (b)+Nf (c)]E
mimj

m′
im

′
j
T̃

m′
i

A;abcT̃
m′

j

B;ab′c′ (η̄′
j )mj (η̄′

i)
mi θ

Nf (b)
β θ

Nf (c)
γ θ

Nf (b′)
β ′ θ

Nf (c′)
γ ′

=
∑

m′
im

′
j a

(−)[m′
i+m′

j ]Nf (a)(−)m
′
j [m′

i+Nf (b)+Nf (c)](−)mj [mi+Nf (b)+Nf (c)]

×E
mimj

m′
im

′
j
T̃

m′
i

A;abcT̃
m′

j

B;ab′c′ (η̄′
i)

mi θ
Nf (b)
β θ

Nf (c)
γ (η̄′

j )mj θ
Nf (b′)
β ′ θ

Nf (c′)
γ ′ . (44)

We notice that there will be an extra sign factor
(−)mj [mi+Nf (b)+Nf (c)] after we reorder these Grassmann
variables.

FIG. 8. (Color online) A graphic representation for the simplified
imaginary time evolution algorithm for Grassmann tensor product
states. In step (a), we sum over the inner indices and integral out the
Grassmann variables on the shared link for two adjoint Grassmann
tensors T̃A and T̃B . In step (b), we express the two-site evolution
operator e−δτhij under the fermion coherent basis. In step (c) and (d),
we apply the evolution operator e−δτhij to the two-site Grassmann
tensor T̃ij and derive a new two-site Grassmann tensor T̃′

ij . Then we
approximate it by two new adjoint Grassmann tensors T̃′

A and T̃′
B with

respect to the environment weights �. We also use double lines to
label different fermion parities for the physical indices. For the simple
spinless fermion example, the red line represents one fermion state
and the blue line represents the empty state. The metric (1 + ηi η̄i) is
the standard metric for the physical indices.

(d) Finally, we can define the Grassmann generalization of
the M matrix after putting the environment weight for all the
inner indices.

Mbcmi ;b′c′mj
= Mbcmi ;b′c′mj

(η̄′
i)

mi θ
Nf (b)
β θ

Nf (c)
γ

× (η̄′
j )mj θ

Nf (b′)
β ′ θ

Nf (c′)
γ ′ , (45)

where the coefficient matrix M reads

Mbcmi ;b′c′mj
=

∑
am′

im
′
j

√
�

y

b

√
�z

c

√
�

y

b′

√
�z

c′

× (−)[m′
i+m′

j ]Nf (a)(−)m
′
j [m′

i+Nf (b)+Nf (c)]

× (−)mj [mi+Nf (b)+Nf (c)]E
mimj

m′
im

′
j
T̃

m′
i

A;abcT̃
m′

j

B;ab′c′ .

(46)

Since hij is a local fermionic operator, it will always contain
an even number of fermion operators. As a result, the nonzero
elements of the M matrix will always contain an even number
of Grassmann variables and we can apply GSVD as discussed
before. We keep the largest D eigenvalues:

Mbcmi ;b′c′mj
=

∑
a

Ubcmi ;a�
′
aVb′c′mj ;a. (47)

The coefficient matrix M will have a block diagonal structure,
hence the new index a will have a definite fermion parity
Pf (a) = Pf (b)Pf (c) = Pf (b′)Pf (c′).

Similar to the usual TPS cases, the new Grassmann tensors
T̃′

i and T̃′
j have the form,

T̃′mi

A;abc =
√

�′
a√

�
y

b

√
�z

c

Ubcmi ;aθ
Nf (a)
α (η̄′

i)
mi θ

Nf (b)
β θ

Nf (c)
γ

= T̃′mi

A;abc(η̄′
i)

mi θ
Nf (a)
α θ

Nf (b)
β θ

Nf (c)
γ ,

T̃′mj

B;a′b′c′ =
√

�′
a′√

�
y

b′
√

�z
c′

Vb′c′mj ;a′θ
Nf (a′)
α′ (η̄′

j )mj θ
Nf (b′)
β ′ θ

Nf (c′)
γ ′

= T̃
′mj

B;a′b′c′ (η̄′
j )mj θ

Nf (a′)
α′ θ

Nf (b′)
β ′ θ

Nf (c′)
γ ′ . (48)

However, due to the reordering of Grassmann variables,
extra signs appear in the new tensors T̃′

A and T̃′
B .

T̃′mi

A;abc = (−)miNf (a)

√
�′

a√
�

y

b

√
�z

c

Ubcmi ;a,

(49)

T̃
′mj

B;a′b′c′ = (−)mj Nf (a′)

√
�′

a′√
�

y

b′
√

�z
c′

Vb′c′mj ;a′ .
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FIG. 9. (Color online) Ground-state energy per site as a function
of � for fixed μ = 1. As a benchmark, we also plot the exact energy of
the free fermion Hamiltonian. (Insert) Relative error of ground-state
energy as a function of Dcut for � = 0.2. Dcut is the number of
singular values kept in the Grassmann SVD decomposition.18

Again �′
a is used as the new environment weight for all links

along the x direction.
The full environment tensors can be very similar as

those in the usual TPS case. The Grassmann version of the
environment tensor ρ can be efficiently simulated by GTPS.
The environment tensor e can be calculated from ρ and T̃′

ij .
The cost function can be derived from Eq. (28) after replacing
ρ,e, and T with their Grassmann version. After we contract
the tensor net and integrate out all the Grassmann variables, it
can be reduced to a usual multivariable quadratic minimization
problem for the coefficient tensors T̃′

A and T̃′
B, and we can solve

it by using the sweep method. Although the algorithm with full
environment is general, it is still very time consuming and a
much more efficient method is very desired. Nevertheless, it
turns out that the simple updated method works very well in
many cases and we will focus on the application of this method
in this paper.

C. A free fermion example

In this subsection, we demonstrate the above algorithm
by studying a free fermion model on honeycomb lattice. We
consider the following (spinless) fermion Hamiltonian:

H = −2�
∑
〈ij〉

(c†i c
†
j + H.c.) + μ

∑
i

ni . (50)

We first test our algorithm in the parameter region where the
system opens a gap. For example, we can fix μ = 1 and take
different values for � from 0.1 to 0.5. As seen in Fig. 9,
even with the minimal inner dimension D = 2, the GTPS
variational approach has already given out very good ground-
state energy. Here and throughout the whole paper, we fix the
total system size to be N = 2 × 36 sites and with PBC. (The
GTEG algorithm will allow us to reach a huge size in principle,
however, for better convergency, we choose a relatively large
but not huge size.) We note that the agreement for the ground-
state energy is better for small �, which is expected since the
system becomes a trivial vacuum state |0〉 in the limit � = 0.

FIG. 10. (Color online) Ground-state energy per link as a function
of Dcut for fixed μ = 0 and � = 0.25. As a benchmark, we also plot
the exact energy of the corresponding free fermion Hamiltonian.

In the insert of Fig. 9, we also plot the ground energy as a
function of Dcut and it is shown that the energy converges for
very small Dcut (around Dcut = 15, where Dcut is the number
of singular value we keep in the GTERG algorithm). We find
that the relative error can be very small, e.g., 0.4% for � = 0.2.

Although we get good results for the above simple example,
it is not quite surprising since a trivial gapped fermion system
only involves local physics. A much more challenging and
interesting example is at μ = 0, in which case the low energy
physics of the system is described by two Dirac cones in
the first Brillouin zone (BZ). Actually, up to a particle-hole
transformation on one sublattice, the above fermion pairing
Hamiltonian is equivalent to the fermion hopping Hamiltonian
that describes the physics in graphene (the spinless version)
where low energy electrons deserve a Dirac-like dispersion.
In Fig. 10, we plot the ground-state energy as a function of
Dcut for inner dimensions D = 2 and D = 4. In this case, the
D = 2 approach only gives very poor results compared to the
gapped case. However, when we increase the inner dimension
to D = 4, we find that the ground-state energy agrees pretty
well with the exact one, with a relative error of 0.6%. Another
interesting feature is that such a critical system would require
a much larger Dcut (around Dcut = 70 for D = 4) for the
convergence of the GTERG algorithm. Later, we will discuss a
possible improvement for the GTERG algorithm, which allows
us to access much larger inner dimension D.

Finally, we would like to make some comments and
discussions about the above results:

(a) Although a gapless fermion system with Dirac cones is
critical, it does not violate the area law because it only contains
zero dimensional Fermi surfaces.

(b) The good agreement in ground-state energy does not
imply the good agreement in long-range correlations. Indeed,
our conjecture is that for any finite D, the variational wave
function we derive may always be associated with a finite
correlation length which scales polynomially in D. We note
that an interesting critical fPEPS state with finite inner
dimension D = 2 was proposed in Ref. 19, however, that
model is different from our case since the Dirac cones in that
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model contain a quadratic dispersion along some directions in
the first BZ.

(c) Although the GTPS variational approach cannot de-
scribe the above system with finite inner dimension D, the
variational results will still be very useful. From the numerical
side, we can apply both finite D and finite size scalings to
estimate the physical quantities in the infinite D and infinite
size limit. From the analytic side, the finite correlation length
corresponds to a finite gap in the system, which is known
as Dirac mass term in the effective theory.37 In quantum
field theory, a controlled calculation (without singularities in
calculating correlation functions) can be performed by first
taking the Dirac mass term to be finite and then pushing it to
the zero limit.

D. An interacting fermion example

To this end, let us test an interacting fermion example with
the following Hamiltonian:

H = −
∑
〈ij〉

(c†i cj + H.c.) − V
∑
〈ij〉

ninj + μ
∑

i

(ni − nf ).

(51)

Such a Hamiltonian describes a spinless fermion system on
honeycomb lattice with attractive interactions. In Fig. 11, we
compare the ground-state energy with exact diagonalization
(ED) on 24 sites and find a very good agreement for various
fermion density nf at V = 0.5. We use the GTPS ansatz with
inner dimension D = 6. We keep Dcut up to 132 to ensure
the convergence of ground-state energy. We also compute the
superconducting order parameter on the nearest neighbor (NN)
bond and find a p + ip pairing symmetry, which is consistent
with the general argument that a spinless fermion system with
attractive interactions supports p + ip pairing. In the insert
of Fig. 11, we plot the amplitude of superconducting order
parameter for various fermion densities. In Table I, we show the
phase shift of superconducting order parameters along three
primary directions of honeycomb lattice.

FIG. 11. (Color online) A comparison of the ground-state energy
per link as a function of electron density for spinless fermion on
honeycomb lattice with attractive interactions.

TABLE I. The phase shift of superconducting order parameter
along three primary directions on honeycomb lattice.

Doping nf = 0.224 nf = 0.313 nf = 0.36

�SC
a /�SC

b (−0.4996,0.8656) (−0.4995,0.8657) (−0.4995,−0.8656)

�SC
b /�SC

c (−0.5005,0.8660) (−0.5006,0.8659) (−0.5006,−0.8659)

�SC
c /�SC

a (−0.4999,0.8664) (−0.4999,0.8665) (−0.4999,−0.8666)

IV. POSSIBLE IMPROVEMENTS OF THE
GTERG APPROACH

In this section, we will discuss possible improvements
for the TERG algorithm and its Grassmann generalization.
Again, let us start from the usual TPS case. Its Grassmann
generalization would be straightforward by replacing the
complex number valued tensors with those Grassmann valued
tensors. We notice that the simple SVD method used in the
TERG algorithm actually implies the following cost function:

fSVD = ‖T − S · S′‖, (52)

where the rank four double tensor T is defined as TA · TB and
· means summing over indices for the connected link, as seen
in Fig. 12(a). (Actually it is the inner product of two vectors
if we interpolate TA(B) as D6 dimensional vectors, where D

is the inner dimension of the TPS.) ‖ · · · ‖ is the usual 2-norm
of a vector. (The rank-4 tensor T and rank-3 tensors S,S′
can be viewed as D8 and D6 dimensional vectors.) Such a
cost function only minimizes the 2-norm of local error δT =
T − S · S′ for a given cutoff dimension Dcut (the dimensional
of the link shared by S and S′) and could not be the optimal
one for minimizing global error. To figure out the optimal cost
function, let us divide the system into large patches, as seen
in Fig. 13. If we trace out all the internal indices inside the
patch, we can derive a rank L (L is the number of sites on
the boundary of the patch) tensor T ′ for the patch and the
norm of TPS can be represented as the tensor trace of the new
double tensors T ′. When we perform the TERG algorithm and
replace T by S · S′, we aim at making a small error for the
double tensor T ′.

FIG. 12. (Color online) (a) A graphic representation for T = TA·
TB and T ∼ S · S′. The symbol · here means sum over the indices for
the shared link for two connected tensors. (b) A schematic plot for the
TERG scheme on honeycomb lattice. The first step is approximate
while the second step is exact.
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FIG. 13. A schematic plot for the patch double tensor T ′. The
global cost function aims at finding the best way to minimize the
error for the above patch double tensor.

Now it is clear why the simple SVD method that minimizes
local errors could not approximate the patch double tensor
T ′ in an optimal way. Let us rewrite T ′ as T ′ = E · T .
(Notice that here we regard the rank L double tensor T ′ as
a D2L dimensional vector, the rank-4 double tensor T as
a D8 dimensional vector, and the rank L + 4 double tensor
E as a D2L by D8 matrix.) The double tensor E is called
environment tensor. The cost function which provides the best
approximation for T ′ can be represented as

f = ‖E · (T − S · S′)‖. (53)

Again, · means the vector inner product and ‖ · · · ‖ means
the usual 2-norm. Comparing to the simple SVD method,
the environment tensor gives a complex weight for each
component of the local error δT . Notice that the cost function
proposed here is very different from the one in Ref. 33, which
aims at minimizing Tr (E · T ).

Although the environment tensor E is conceptually useful,
it is impossible to compute this rank L + 4 tensor when the
patch size becomes very large. Nevertheless, we can derive a
simplified environment through the simplified time evolution
algorithm. The key step is also based on the conjecture that
the rank-8 tensor E† · E can be factorized into a product form,

(E† · E)pqp′q ′;p̄q̄p̄′q̄ ′ = y
pz

q
y

p′
z
q ′δpp̄δqq̄δp′p̄′δp′p̄′ , (54)

where p = (b,b̄), q = (c,c̄) are the double indices. For any
converged TA and TB from the simplified time evolution
algorithm with converged weight vectors �∗α , the weight
vectors α for double tensors T can be determined as

y
p = �∗y

b�
∗y

b̄
, z

q = �∗z
c�

∗z
c̄. (55)

The above conjecture for the environment is reasonable when
the environment of T m can be approximated as a product form
since T = ∑

m T̄ m ⊗ T m.
Similar to the simplified time evolution algorithm, solving

the optimal cost function in this case can be implemented by
the SVD decomposition for matrix M (see Fig. 14):

Mq ′p;qp′ = Tpqp′q ′
√

p

√
q

√
p′

√
q ′

�
Dcut∑
r=1

Uq ′p;rVqp′;r
′
r . (56)

Then the rank-3 double tensors S and S′ can be determined as

Srq ′p =
√

′
r√

q ′
√

p

Uq ′p;r , S′
r ′qp′ =

√
′

r ′√
q

√
p′

Vqp′;r ′ .

(57)

FIG. 14. A graphic representation for the first step of the weighted
TERG algorithm.

Finally, the weight vector x for x link can be updated as
x = ′.

In general cases, the assumption Eq. (54) could not be
true, however, as long as Eλ;pqp′q ′/

√
p

√
q

√
p′

√
q ′ has a

much more uniform distribution (up to proper normalization):∣∣∣∣∣ Eλ;pqp′q ′√
p

√
q

√
p′

√
q ′

∣∣∣∣∣ ∼ 1, (58)

the above weighted TERG (wTERG) algorithm can still
improve the accuracy for fixed Dcut with the same cost. This is
because the SVD method is the best truncation method if the
environment has a random but uniform distribution.

By replacing the complex valued double tensors with
Grassmann variable valued double tensors, all the above
discussions will be valid for GTPS. However, the definition
of the inner product · and the corresponding 2-norm ‖ · · · ‖
should also be generalized into their Grassmann version,
which evolves the integration over Grassmann variables for
the connected links with respect to the standard Grassmann
metric. For example, the cost function of the GSVD method
discussed in Ref. 9 can be formally written as

fGSVD = δT f · δT f † = ‖δT f ‖ = ‖T f − Sf · S′f ‖. (59)

To explain the meaning of the above expression more explic-
itly, we consider a simple case that T f only contains one
species of Grassmann variables. We can express T f as

T f

pqp′q ′ = Tpqp′q ′(θβ)Nf (p)(θγ )Nf (q)(θβ ′)Nf (p′)(θγ ′)Nf (q ′),

(60)

where Tpqp′q ′ is the complex coefficient of the Grassmann
number valued double tensor T f

pqp′q ′ and Nf (p) = Pf (p)+1
2

is determined by the fermion parity of the inner index p.
We notice that Tpqp′q ′ = ∑

r TA;rpqTB;rp′q ′ if we express
the Grassmann number valued double tensors T f

A(B);rpq on
sublattice A(B) as

T f

A(B);rpq = TA(B);rpq (θα)Nf (r)(θβ)Nf (p)(θγ )Nf (q). (61)

Similarly, we can express Sf and S′f as

Sf

rq ′p = Srq ′p(θα)Nf (r)(θγ ′)Nf (q ′)(θβ)Nf (p),
(62)

S′f
r ′qp′ = S′

r ′qp′(θα′ )Nf (r ′)(θγ )Nf (q)(θβ ′)Nf (p′).

Again, Srq ′p and S′
r ′qp′ are the complex valued coefficients.

Recall the definition of the standard Grassmann metric grr ′ :

grr ′ = δrr ′ (dθα)Nf (r)(dθα′)Nf (r ′), (63)
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the inner product Sf · S′f explicitly means

(Sf · S′f )pqp′q ′ =
∑
rr ′

∫
grr ′Srq ′pS

′
r ′qp′(θα)Nf (r)(θγ ′)Nf (q ′)

× (θβ)Nf (p)(θα′ )Nf (r ′)(θγ )Nf (q)(θβ ′ )Nf (p′)

=
∑

r

Srq ′pS
′
r ′qp′ (θγ ′)Nf (q ′)(θβ)Nf (p)

× (θγ )Nf (q)(θβ ′)Nf (p′). (64)

Thus, we have

δT f

pqp′q ′ = δTpqp′q ′ (θγ ′)Nf (q ′)(θβ)Nf (p)(θγ )Nf (q)(θβ ′)Nf (p′),

(65)

with

δTpqp′q ′ = Tpqp′q ′(−)Nf (p′) −
∑

r

Srq ′pS
′
rqp′

= T ′
pqp′q ′ −

∑
r

Srq ′pS
′
rqp′ . (66)

Now it is clear that up to a sign twist, the GSVD cost function
is equivalent to the cost function of its complex coefficient
tensors:

fGSVD = ‖δT f ‖ = ‖δT‖ = ‖T ′ − S · S′‖. (67)

Explicitly the same as in the TERG case, the best approxima-
tion for a given Dcut is nothing but the SVD decomposition
for the coefficient tensor T ′. (If we view T ′

pqp′q ′ as a matrix
Mq ′p;qp′ = T ′

pqp′q ′ � ∑Dcut
r=1 Srp′qS′

rqp′ .) On the other hand,
as already having been discussed in Ref. 9, the constraint
Eq. (5) of GTPS implies that their double tensors contain
an even number of Grassmann numbers. As a result, M is
block diagonalized and the index r will have a definite parity
P f (r) = P f (p)P f (q) = P f (p′)P f (q ′). We notice that the
novel sign factor (−)Nf (p′) here arises from the anticommuting
nature of the Grassmann variables and will encode the fermion
statistics. The second RG step remains the same as in GTERG
and a similar novel sign factor will also emerge there.

All the above discussion will still be correct if the inner
index of the double tensor T f contains multiple species
of Grassmann variables. Indeed, starting from the standard
GTPS, the double tensor T f in the first RG step will
contain two species of Grassmann variables. This is because
T f

A(B) = ∑
m T̄m

A(B) ⊗ Tm
A(B) andT f = T f

A · T f

B . In the second

and latter RG steps, T f

A(B) will only contain one species of
Grassmann variables.

The discussion for the environment effect will be in a
similar way. Especially, if we use some weighting factors to
approximately represent the environment effect, the coefficient
tensors S,S′ will take the same form as in the usual TPS case.
However, an important sign factor should be included when
we define the matrix M. Again, the environment weight for
the first step is determined by the time evolution algorithm of
GTPS. Same as in the bosonic case, the singular value obtained
from the GSVD would perform as the environment weight for
the next RG step.

In Fig. 15, we implement the above algorithm to the free
fermion Hamiltonian Eq. (50) at critical point (μ = 0). We
see an important improvement that the ground-state energy

FIG. 15. (Color online) A comparison of the ground-state energy
per link as a function of Dcut at μ = 0 and � = 0.25. By introducing
the environment weight in the GTERG method, an important
improvement is that the ground-state energy is always above the
exact value, which is very important for variational approach.

decreases when increasing Dcut and is strictly above the
exact energy, unlike the simple GTERG approach, which can
overestimate the ground-state energy for small Dcut. However,
for large enough Dcut, the two approaches converge to the same
values, as expected. We further use the algorithm to study the
critical model with larger inner dimension D. Up to D = 6,
we find that the ground-state energy from the GTPS approach
is almost the same as the exact one (relative error ∼ 0.1%).

V. SUMMARY

In this paper, we first derive a standard form of GTPS that
only contains one species of Grassmann variables for each
inner index and significantly simplifies the representations in
our numerical calculations. Based on the fermion coherent
state representation, we further generalize the imaginary time
evolution algorithms into fermion systems. We study a simple
free fermion example on honeycomb lattice, including both
off-critical and critical cases to test our algorithms. Finally,
we discuss the importance of the environment effect of the
TERG/GTERG method and present a simple improvement by
introducing proper environment weights.

Although the simple time evolution algorithm discussed
here is not generic enough, it has already allowed us to
study many interesting and important models, such as the
Hubbard/t − J model, whose ground state is believed to be
a superconductor. The evidence for the existence of supercon-
ductivity in these models based on the GTPS algorithm will be
discussed and benchmarked with other methods elsewhere.38

Of course, the generic algorithm is also very important and
desired, especially for those systems with topological order.
Actually, the general discussions in Sec. II have already made
some progress along this direction, but not efficient and stable
enough at this stage.

On the other hand, further improving the efficiency of
contracting (Grassmann) tensor net is also very important.
Although the GTERG/TERG algorithm provides us promising
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results in many cases, it is still not efficient enough since the
algorithm is not easy to be parallelized. Recently, an idea of
combining the concept of renormalization and Monte Carlo
(MC)35 has made great success for boson/spin systems, it
would be very natural to generalize it into fermion/electron
systems based on the Grassmann variable representations.
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