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Exact spectral function for hole-magnon coupling in a ferromagnetic CuO3-like chain
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We present the exact spectral function for a single oxygen hole with spin opposite to ferromagnetic order
within a one-dimensional CuO3-like spin chain. We find that local Kondo-like exchange interaction generates
five different states in the strong-coupling regime. It stabilizes a spin polaron which is a bound state of a moving
charge dressed by magnon excitations, with essentially the same dispersion as predicted by mean-field theory.
We then examine in detail the evolution of the spectral function for increasing strength of the hole-magnon
interaction. We also demonstrate that the s and p symmetries of orbital states in the conduction band are
essentially equivalent to each other and find that the simplified models do not suffice to reproduce subtle aspects
of hole-magnon coupling in the charge-transfer model.
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I. INTRODUCTION

The theoretical analysis of transition-metal oxides, includ-
ing cuprates, manganites, and iron pnictides, requires a faithful
description of strongly correlated electrons which localize due
to Coulomb interactions in partly filled 3d orbitals.1 These
interactions lead to Mott insulators in undoped compounds,
with spin and orbital degrees of freedom which interact
with charge defects arising under doping2—then the magnetic
order and transport properties change due to subtle interplay
between charge and magnetic/orbital degrees of freedom.
Good examples are high-temperature superconductivity in
cuprates,3–5 and colossal magnetoresistance in manganites.6–8

In these systems, the interaction between charge carriers and
localized spins is of crucial importance and drives the observed
evolution of magnetic order and transport properties, captured
in the double-exchange mechanism.9–12 These changes may
also depend on subtle quantum effects in systems with coupled
spin-orbital-charge degrees of freedom.13

A well-known problem is the dynamics of one hole added
to oxygen orbitals, which interacts with S = 1/2 spins at Cu
ions in CuO2 planes of high-temperature superconductors.
The spins form an antiferromagnetic (AF) order due to
the superexchange interaction. A complete treatment of this
problem involves a three-band model,14 with Cu x2-y2 orbitals
occupied by one hole each and O 2p orbitals along the bonds.
Instead, theoretical studies focus frequently on simplified
treatments which do not include all quantum effects related
to charge carriers interacting with spin excitations in phases
with magnetic order. For example, following the idea of Zhang
and Rice,15 a simplified single-band model has been derived
for CuO2 planes from the charge-transfer model,16 and next is
used to study the evolution of magnetic order with increasing
hole doping. However, such effective models do not accurately
describe the electronic states in lightly doped materials. For
instance, even low doping of less than 5% charge carriers is
sufficient to change the magnetic order in vanadates17 or in
manganites.18

Electronic states change radically when electrons or holes
propagate in a background with magnetic order. The well-
known example is a single hole which is classically confined in
an antiferromagnet19 but develops a quasiparticle propagating

on the scale of superexchange by its coupling to quantum
spin fluctuations.20 In contrast, a conduction electron in the
ferromagnetic (FM) background propagates as a free particle,
as known in FM semiconductors such as EuO or EuS.21 Here
the electron spin oriented in the opposite way to the FM
background scatters on magnon excitations which leads to
a rather complex many-body problem22 and to changes of
the electronic structure with increasing temperature.23 It was
pointed out24 that a repeated emission and reabsorption of
a magnon by the conduction electron results in an effective
attraction between magnon and electron. This gives rise to
a polaronlike quasiparticle, the magnetic polaron. Another
excitation is due to a direct magnon emission or absorption
by the electron, thereby flipping its own spin, leading to
scattering states. Modifications of electronic structure due to
polarons were also discussed in manganites,25 cobaltates,26

and vanadates.27

The purpose of this paper is to analyze the formation of
polaronlike features and scattering states in a tight-binding
model motivated by the physical properties known from
cuprates. Due to strong local Coulomb repulsion U at x2-y2

orbitals of Cu ions, the model including holes in these
orbitals and in the surrounding oxygen orbitals, also called
a three-band model, reduces to a spin-fermion model.28,29 The
latter describes an oxygen hole coupled to the neighboring
spins by a Kondo-like AF exchange interaction. This local AF
coupling frustrates the AF superexchange in CuO2 planes and
is responsible for a rapid decay of AF order under increasing
doping. The main difficulty in treating the dynamics of a doped
hole is the AF quantum fluctuations of the spin background,
which must be treated in an approximate way.3–5

Only very few many-body problems are exactly solvable.
Exact solutions are typically limited to one-dimensional (1D)
models or to a very special choice of interaction parameters.
However, an exact solution (i) provides always important
physical insights into the nature of quantum states involved,
(ii) could serve to test approximate treatments, and (iii) may
be used to draw useful conclusions for experimental studies.
Recently, it was pointed out that a hole in a FM system with
a single magnon excitation provides valuable insights into the
spectral properties of a doped hole moving in a spin-polarized
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system.30 Here we introduce a CuO3-like spin-chain model,
as studied for YBa2Cu3O7 high-temperature superconductors.
Recently, excited states were investigated in AF CuO3 chains31

in Sr2CuO3 and an interesting interplay due to spin-orbital
entanglement13 was pointed out.32 Here we analyze exactly
the spectral properties in a FM chain. As we show below, they
include the polaronlike and scattering states when the moving
carrier interacts with magnons.

The paper is organized as follows. In Sec. II we introduce
a 1D model for a CuO3 spin chain. The spectral function
of a single charge added to the oxygen orbital with the spin
opposite to the FM order is obtained exactly using the Green’s
function method in Sec. III A. In Sec. III B we present an
approximate perturbative solution for the same problem of a
charge carrier coupled to the FM background in the strong-
coupling regime, while the mean-field solution is given in
Sec. III C. The numerical results are presented in Sec. IV and
the exact results are compared with the approximate ones.
Summary and conclusions are given in Sec. V, while certain
details of the derivation outlined in Sec. III A are presented in
the Appendix.

II. THE MODEL

We consider a 1D model presented in Fig. 1, with the same
structure as a CuO3 1D chain in YBa2Cu3O7, and assume
that spins with a general value S occupy the transition-metal
sites. In the case of copper oxides, holes localize at Cu ions
and S = 1/2. Spins {Si} are coupled here by FM Heisenberg
exchange interactions as in the case of simpler 1D models
considered before,30 while holes in oxygen orbitals represent
charge degrees of freedom which couple to spins by a local
AF exchange, similar to a hole added to a CuO2 plane.28 We
label the oxygen orbitals as follows: (i) ai±ξ is located in
between the magnetic sites, where ξ is a vector pointing from
the Cu site towards the a site on its right, and (ii) bi±ζ is
located above and below the magnetic sites, where ζ is a vector
pointing from the Cu site towards the b site above it. Taking
the charge-transfer model for a charged Cu2+O2−

3 chain as a
reference (physical vacuum) state, these orbitals are filled with
electrons and contain no hole.

The 1D model Hamiltonian,

H = T + HS + HK, (1)

FIG. 1. (Color online) Graphic depiction of the CuO3-like FM
chain with localized spins indicated by arrows and oxygen ions
indicated by solid circles. A hole added to an oxygen orbital (either
ai±ξ or bi±ζ ) interacts with the neighboring spin Si by the Kondo-like
AF exchange J0 while the localized spins interact by the FM exchange
J . The hole hops between neighboring oxygen orbitals by the
hopping t .

includes the kinetic (hopping) part T , the FM exchange
between localized spins, HS, as well as Kondo-like AF
exchange interactions between a charge carrier (hole) in
different orbitals and neighboring localized spins, HK. The
hopping couples the a and b orbitals; see Fig. 1. Depending
on the orbital symmetry, only one of the local combinations
of b orbitals contributes to T and HS, so it is convenient to
introduce their symmetric (+, for s orbitals) or antisymmetric
(−, for p orbitals) combinations, b±

i = (bi+ζ ± bi−ζ )/
√

2.
The various terms in the Hamiltonian (1) are

T = −t
∑
iσ

[(a†
i+ξ,σ ± a

†
i−ξ,σ )b±

iσ + H.c.], (2a)

HK = J0

∑
i

(
sa
i+ξ + sa

i−ξ + sb
i

) · Si , (2b)

HS = −J
∑

i

(Si · Si+1 − S2), (2c)

where Si is a spin operator for the magnetic ion at site i, sm

is a spin operator for the respective oxygen hole in orbital
m = a,b, and S is the magnitude of a single localized spin on
the magnetic sublattice. All the energy constants are positive
(t > 0, J0 > 0, J > 0) and thereforeHS provides FM coupling
between the localized spins, while HK describes an AF
Kondo-like coupling between localized spins and conduction
electrons.28

We study below the dynamics of a single hole injected into
either of the conduction bands arising after T is diagonalized;
one considers then two orbitals per unit cell and the Cu-Cu
distance a = 1. We use the fermion representation for spin
operators in the conduction band, sm. By transforming all
the fermion operators to the reciprocal space by means of
discrete Fourier transformation one arrives at the following
representation of the Hamiltonian:

T =
∑
kσ

(εka
†
kσ bkσ + H.c.), (3a)

HK = J0

∑
kq

[
2 cos(q/2) sa

kq + sb
kq

] · Sq, (3b)

where εk follows from the Fourier transformation and is
given by

εk =
{−2t cos(k/2) for s symmetry,

+2it sin(k/2) for p symmetry.
(4)

This leads to two bands εk = ±|εk| for each value of
k ∈ [−π,π ). The reciprocal-space spin operators are given
by

Sq = 1

N

∑
i

e−iqRi Si , (5)

sμ

kq =

⎛
⎜⎜⎝

1
2 (μ†

k↑μk+q↑ − μ
†
k↓μk+q↓)

μ
†
k↑μk+q↓

μ
†
k↓μk+q↑

⎞
⎟⎟⎠ =

⎛
⎜⎝

sz
kq

s+
kq

s−
kq

⎞
⎟⎠, (6)

where μ is an index labeling the states {a,b}. It should be
emphasized that, strictly speaking, the operators sμ

kq are just a
shorthand notation for the respective fermionic operators and
should not be confused with regular spin operators. However,
their effect in the spin subspace is similar.

115132-2



EXACT SPECTRAL FUNCTION FOR HOLE-MAGNON . . . PHYSICAL REVIEW B 88, 115132 (2013)

As for HS, its following eigenstates are easily identified:

HS|FM〉 = 0|FM〉, (7)

HSS
−
q |FM〉 = �qS

−
q |FM〉, (8)

where |FM〉 is the physical vacuum state, and S−
q |FM〉, defined

by Eq. (5), is a magnetic excited state with one magnon (spin
wave) created in the FM background and its energy dispersion

�q = 4JS sin2(q/2). (9)

Since the Hamiltonian under consideration conserves the total
spin, these magnon states are the only attainable in the problem
of a single hole with spin s = 1/2 coupled to the FM spin
background.

III. SPIN POLARON AND SCATTERING STATES

A. Exact solution by Green’s functions

To obtain the hole spectral function we calculate first the
Green’s function, defined by the expectation value of the
resolvent,

G(ω) = [ω − H + iη]−1, (10)

for the ↓-spin states of an added hole. Therefore, the Green’s
function has a 2 × 2 matrix structure:

Gμν(k,ω) = 〈FM|μk↓G(ω)ν†
k↓|FM〉, (11)

where μ,ν are again indices going over the states {a,b}.
Following a method similar to the one described by Berciu
and Sawatzky,33 we divide the Hamiltonian into the free part,
H0 = T + HS , corresponding to G0, and the term V = HK

which couples the two subsystems by the AF interaction ∝J0.
It is convenient to represent the Hamiltonian (3a) in terms

of the following matrices:

T (k) =
(

0 εk

ε∗
k 0

)
, (12a)

V (q) =
(

cos(q/2) 0
0 1

2

)
, (12b)

while the form of T leads us to the matrix representation of
G0(ω),

G0(k,ω) =
(

ω + iη −εk

−ε∗
k ω + iη

)−1

, (13)

and in the case of the single-magnon state (8), the magnon en-
ergy �q (9) is taken into account by substituting ω → ω − �q .
The inverse could also be calculated explicitly; however, it is
not necessary for the present derivation.

We then proceed by utilizing the Dyson equation,

G(ω) = G0(ω) + G(ω)VG0(ω), (14)

which, after separating G(k,ω), leads to the following matrix
equation:

G(k,ω) = [I + J0F (k,ω)]G0(k,ω)QG(k,ω), (15)

where the various auxiliary matrices are given by

F (k,ω) =
∑

q

F̃(k,q,ω)V (q), (16)

F̃μν(k,q,ω) = 〈FM|μk↓G(ω)ν†
k−q,↑S−

q |FM〉. (17)

Here F̃(k,q,ω) is the anomalous Green’s function, calculated
between different magnon states, resulting from the S− terms
in V , and

QG(k,ω) = [I + J0SV0G0(k,ω)]−1, (18)

V0 =
∑

q

V (q)δq0 =
(

1 0
0 1

2

)
, (19)

where QG(k,ω) is a transformation of G0(k,ω), performing
a constant shift by J0S. However, this cannot be written
shortly as G0(k,ω + J0S) because of the matrix V0 present
in QG(k,ω), which causes a different shift of J0S/2 in the
Gbb

0 (k,ω) sector.
The next step is to eliminate F (k,ω) from Eq. (15). In order

to do this, one needs to express F̃ (k,ω) explicitly in terms of
G(k,ω) by applying the Dyson equation (14) once again and
next solving for F (k,ω). After inserting it back into Eq. (15)
and solving for G(k,ω), one arrives at the final result,

G(k,ω) = G0(k,ω)QG(k,ω)[I − 2J0S(I − M−1(k,ω))G0(k,ω)QG(k,ω)]−1, (20)

where M is a complicated matrix expressed solely in terms of
various sums of G0(k − q,ω − �q) over q. More details are
presented in the Appendix. We note that this solution is almost
identical to the one obtained by Berciu in Ref. 33, only here
we arrive at a more general expression for the transformation
of G0(k,ω). Finally, having calculated the Green’s function,
one finds the spectral function,

A(k,ω) = − 1

π
Im[G(k,ω)], (21)

which is closely related to the density of states as well as to the
photoemission spectra, and can be directly measured in angle-
resolved photoemission spectroscopy experiments. The main

physical problem is its structure and possible quasiparticle
(QP) states.

The Green’s function G(k,ω), as calculated from Eq. (20),
is generally not diagonal. This is usually not a problem,
since both diagonal components of the spectral function are
measured at once in experiment, which corresponds to the
trace of the corresponding matrix (21),

A(k,ω) = TrA(k,ω), (22)

a quantity invariant under the change of basis. Thus, we also
present here the traced spectral function A(k,ω). In order to get
more physical insight into the exact solution, we now derive
the approximate solutions of the problem in two opposite
parameter regimes, strong and weak hole-magnon coupling.
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B. Perturbative solution at strong coupling

The first approach is the perturbation expansion, with the
problem treated in the eigenbasis of V . This solution is valid in
the strong-coupling limit J0 � t and J0 � J , since we treat
T and HS as small perturbations to HK.

Given the conjectured states of the form μ
†
k↓|FM〉,∑

q b
†
k−q,↑S−

q |FM〉, and
∑

q e±iqξ a
†
k−q,↑S−

q |FM〉, a straight-
forward calculation shows that the eigenstates of V are

|ā〉k =
√

4S

4S + 1

[
a
†
k↓ − 1

2S

∑
q

cos
(q

2

)
a
†
k−q,↑S−

q

]
|FM〉,

(23a)

|b̄〉k =
√

2S

2S + 1

[
b
†
k↓ − 1

2S

∑
q

b
†
k−q,↑S−

q

]
|FM〉, (23b)

|m〉k = 1√
S

∑
q

sin
(q

2

)
a
†
k−q,↑S−

q |FM〉, (23c)

|b〉k = 1√
2S + 1

[
b
†
k↓ +

∑
q

b
†
k−q,↑S−

q

]
|FM〉, (23d)

|a〉k = 1√
4S + 1

[
a
†
k↓ + 2

∑
q

cos
(q

2

)
a
†
k−q,↑S−

q

]
|FM〉.

(23e)

The first two are bound polaronic states, and the last two are
the respective excited states. The remaining state |m〉k is dom-
inated by magnons which dress an ↑-spin hole that propagates
over a orbitals. These definitions allow us to infer something
about the approximate nature of different bands calculated
from the Green’s function. Further, because V does not involve
any three-site interaction terms but only self-renormalizing
exchange interaction, there is no distinction between s and
p orbitals, and therefore in both cases the states derived in
perturbation theory (23) are the same. Using them, one can
calculate the perturbation corrections to their energy coming
fromHS and T . Owing to the specific orbital symmetries in the
latter, in order to get a nontrivial contribution (i.e., dispersion)
one needs to conduct the perturbation expansion at least up
to second order. The resulting energies for the states (23) are,
respectively,

Eā(k) = −J0
(2S + 1)

2
+ J

2S

4S + 1

− ε2
k

J0

1

(2S + 1)

[
(4S + 1)

S
+ 2S

(4S + 1)(3S + 1)

]
,

(24a)

Eb̄(k) = −J0
S + 1

2
+ J

2S

2S + 1
+ ε2

k

J0

4S + 1

S(2S + 1)

− ε2
k−π

J0

1

3S(2S + 1)
, (24b)

Em(k) = J0
2S − 1

2
+ J2S + ε2

k−π

J0

1

2S + 1

[
1

3S
− 2S

1 − S

]
,

(24c)

Eb(k) = J0
S

2
+ J

4S2

2S + 1
+ ε2

k−π

J0

2S

(2S + 1)(1 − S)

+ ε2
k

J0

2

4S + 1

[
S

(2S + 1)(3S + 1)
− 2S + 1

S

]
,

(24d)

Ea(k) = J0S + J
8S2

4S + 1
+ ε2

k

J0

2(2S + 1)

S(4S + 1)
. (24e)

C. Mean-field approximation

Another approximate approach to the problem is the mean-
field (MF) approximation for V . In this case the principle is to
neglect the quantum spin fluctuations inHK, effectively setting
sm · Si ≈ sz

mSz
i , where sm stands for a spin in itinerant orbital,

a or b, in the neighborhood of site i. This assumption is valid
provided the whole HK brings only a minor contribution to the
overall energy, therefore implying J0 
 t and J0 
 J . From
Eq. (17) it follows that neglecting spin fluctuations implies
F̃ (k,q,ω) = 0, and thus Eq. (15) reduces to the MF solution
of the Green’s function,

GMF(k,ω) = G0(k,ω)QG(k,ω). (25)

This equation depends only on G0(k,ω) and can be solved
analytically, yielding the mean-field energy dispersion,

E±
MF(k) = −3J0S

4
±

√(
J0S

4

)2

+ ε2
k . (26)

This is also an exact solution of the model (1) with Ising
interactions in HK, and the deviation from it, reported in
Sec. IV, is due to quantum spin fluctuations.

FIG. 2. (Color online) Spectral function A(k,ω) density map
for s-orbital symmetry (shaded areas) compared with the analytic
solutions (24) obtained in perturbation theory in the strong-coupling
regime, shown by dashed (blue) lines. The dash-dotted (red) lines
represent the MF states (26). Parameters: J0 = 10t , J = 0.05t ,
η = 0.02t , and S = 1/2.

115132-4



EXACT SPECTRAL FUNCTION FOR HOLE-MAGNON . . . PHYSICAL REVIEW B 88, 115132 (2013)

FIG. 3. (Color online) Spectral function A(k,ω) density maps obtained for a hole with ↓-spin added to a FM chain (1) for s-orbital
symmetry. The dash-dotted (red) lines represent the MF states (26). Note the strongly nonlinear scale of the map, employed in order to bring
out the low-amplitude incoherent spectra. Parameters: J = 0.05t , η = 0.02t , and S = 1/2.

Furthermore, as already stated, Eq. (25) really corresponds
to G0(k,ω) shifted by J0S in the case of the a band, and by
J0S/2 in the case of b states. Therefore, we expect the MF
solution (26) to resemble the free hole dispersion, shifted to
the lower energy range by the appropriate value, and with
an energy gap of J0S/2. Indeed this is the case, as we show
in a broad range of parameters in Sec. IV. We analyze there
whether this prediction of the MF approximation holds beyond
the regime of weak coupling, J0 
 t .

On the one hand, the two approximations described
above are expected to coincide with the exact solution in
their respective parameter ranges. Being among the most
established approximate methods for quantum many-body
systems, they serve as benchmarks of the method used here.
On the other hand, comparing their predictions with the exact
solution in the intermediate parameter range, i.e., J0 ∼ t and
J0 ∼ J , can give us a better understanding of how biased
exactly those methods are. This is especially the case for the
MF approach, which is often employed as a first attempt at
tackling a complicated problem.

IV. NUMERICAL RESULTS

The obtained result for the Green’s function Eq. (20) is
exact (i.e., it follows from a rigorous derivation with no
approximations employed), but unfortunately it does not allow
one to calculate G(k,ω) analytically. In particular, its central
part, the matrixM(k,ω), has to be obtained numerically. Below
we present the numerical results obtained for the spectral
function A(k,ω) using this exact scheme. In the numerical
calculations we take t = 1 as the energy unit and set J = 0.05t ,
η = 0.02t . We consider the case of S = 1/2, where quantum
spin fluctuations are the most important. We then explore the
dependence of the spectra on the value of the coupling constant
J0 which controls the strength of the interaction between
localized spins and a hole in V .

Let us consider first the strong-coupling limit of J0 = 10t ;
see Fig. 2. In this regime one expects that the spectral function
A(k,ω) consists of five features which correspond to the
perturbative states (23), with distinct energies and rather weak
dispersion. This analytic result is confirmed by a numerical
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FIG. 4. Comparison of the exact solutions for the spectral
function A(k,ω), Eq. (22), obtained for s-symmetry orbitals in Fig. 1
(left) and for oxygen orbitals of p symmetry (right). Parameters:
J0 = 5t , J = 0.05t , η = 0.02t , and S = 1/2.

solution, with the largest intensities obtained for the two states
with the lowest energies. We remark that the states obtained
in the perturbative regime have the same splitting of J0S/2 at
k = π as in the MF theory, but they appear at a much lower
energy due to formation of polaron states. This demonstrates
the importance of quantum spin fluctuations in the binding
energies of these polaronic states, which are neglected in the
MF approximation. Quantum spin fluctuations enhance the
binding energy roughly by J0/2.

Consider next the systematic changes of the spectral
functions with increasing exchange coupling J0. Figure 3
shows the spectral function density maps for the s-orbital
symmetry for a wide range of J0 values. For intermediate
values of J0 it consists of distinct QP states and shaded
areas of scattering states. A nonlinear map scale has been
applied in order to amplify the low-amplitude incoherent part
of the spectrum, which in reality is negligibly small. The
diversification of QP states caused by the interaction V can
clearly be seen.

Starting from J0 = 0 two branches are seen, corresponding
to the free hole propagation of a ↓-spin hole, and they exactly
replicate the MF solution. Since in this situation there is no
interaction whatsoever, the added charge (hole) propagates
without coupling to the magnetic background.

Next, for J0 = 0.5t the two branches are seen to have
widened considerably and two new distinct features can
be identified: (i) one directly below the lower band and
corresponding to the first polaronic state |ā〉, as shown by
solutions obtained within perturbation theory and compared
to the exact solution for large J0 = 10t (see Fig. 2), and (ii)
the other one located slightly above ω = 0 and extending into
the whole Brillouin zone for higher values of J0. This latter
feature fades away considerably and gradually develops into
the upper bound of the lower incoherent region, corresponding
to |b〉 in the high-coupling regime. At J0 = t the original two
branches have all but disappeared, and the lowest polaron state
has almost fully developed.

FIG. 5. The spectral function A(k,ω) for selected values of
k = 0,0.25π,0.5π,0.25π,π , shown also in Fig. 3(f). Parameters:
J0 = 5t , J = 0.05t , η = 0.02t , and S = 1/2.

Increasing the interaction further to J0 = 2t we see that
another state begins to emerge just slightly above the lowest
polaronic state, starting from k = π . This state, corresponding
to |b̄〉 in the strong-coupling regime, then slowly develops
while lowering further below the incoherent continuum from
which it emerged. Around this point the incoherent part of the
spectrum develops a gap and divides into two distinct parts,
the first of which has already been mentioned. The other one,
situated at a higher energy, develops later into the |a〉 state.
Finally, at J0 = 5t yet another state can be seen situated close
to ω = 0, seemingly with no dispersion. This state can be
identified as |m〉 and is purely magnonic, while the hole has
the reversed ↑-spin.

While it is clear that MF gives good approximations for
the weak-coupling regime, a curious observation can be made
about the strong coupling. Looking at the MF solutions plotted
against the exact results for large values of J0, one notices
a surprising resemblance to the two lowest-lying states |ā〉
and |b̄〉, save for some constant energy shift. This indicates
that MF approximation can give relatively good qualitative
results, predicting correct dispersion for polaronic states, but
introduces a systematic error as it neglects the binding energy
coming from hole-magnon interaction. This explains the huge
discrepancy between MF energies and the exact energies found
for the polaron states.

It is also interesting to note that, while MF predicts the
gap to develop monotonically, the real solution develops a
gap shortly after the |ā〉 state emerges from the incoherent
region of the spectrum. This gap then closes again at around
J0 = 2t and only after that does it reappear and start to
widen monotonically. For more details on the evolution of
the QP spectra with increasing parameter J0/t , please refer
to Ref. 34.

Apart from calculations made for a wide range of J0

values for s symmetry, we have also done calculations for p

orbitals. However, becauseV in our model does not distinguish
between the two, the only difference will come from their
difference in dispersion. Taking into account the identity
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sin(k/2) = cos[(π − k)/2], we expect the solution for p or-
bitals to be a “mirror image” of the s-symmetry solutions with
respect to momentum k = π/2. Figure 4 clearly demonstrates
that this indeed is the case.

While the spectral maps are very useful in presenting all
the spectra obtained for the present exact solution, they do not
give one a good sense of detail. For this reason, in Fig. 5 we
present an example of the spectra obtained for J0 = 5t for a
few selected points k ∈ [0,π ] of the Brillouin zone. All the five
spectral features corresponding to the states |ā〉k , |b̄〉k , |m〉k ,
|b〉k , and |a〉k can be well distinguished from one another. The
two lowest states clearly have the largest spectral weights.

V. DISCUSSION AND SUMMARY

We have used the method developed by Möller, Sawatzky,
and Berciu30 to calculate the exact Green’s function and the
spectral function for a simple model of a single hole moving
in a CuO3-like FM chain. Five distinct spectral features are
identified: three arise from the hole propagating over the
a orbitals along the chain, and the other two follow from
the hole within apical b orbitals in a CuO3-like chain. By
introducing a realistic orbital structure for a multiband model,
we addressed the problem of hole dynamics within p orbitals
in the charge-transfer model for a CuO3 chain. We then
benchmarked this solution against the perturbation theory
at strong-coupling and mean-field approximations. We have
found that both of these approaches coincide quite well with
the Green’s function solution in their respective regimes of
applicability; i.e., the mean-field approximation gives realistic
predictions for weak interactions, while the perturbation theory
reproduces all the states reasonably well in the strong-coupling
regime. The quantum states which develop beyond the
mean-field approximation will decrease their spectral weight
with increasing value of spin S. In addition, the mean-field
approach seems to recreate the shapes of the polaronic bands
at the strong coupling, but highly underrates the binding
energy.

The perturbation solution allows us to identify five distinct
states: two well-defined binding polaronic bands and one
nearly dispersionless purely magnonic band, accompanied by
two distinct excited polaronic states, coupled by a broad con-
tinuum. These latter excited states are much broader and have
smaller spectral weights, even for very strong coupling J0 � t ,
which can be understood as following from the continuum
of magnon excitations. Furthermore, the |b〉k,|a〉k , and |m〉k
states which develop beyond the mean-field approximation
will decrease their spectral weight with increasing value of
spin S in the ferromagnetic chain. Indeed, the modifications of
the spectra arising from quantum spin fluctuations are largest
for S = 1/2 and decrease with increasing S.

We also note that there is no essential difference between s-
and p-orbital symmetries for the injected hole in the model
of Eq. (1), which is a result of taking into account only
the exchange terms (second-order two-site p-d-p hopping).
Therefore, such a simple model cannot properly describe
a system with O-based conductance, reminiscent of doped
cuprates. The simplest generalization of the present model
is to include the three-site p-d-p terms,28 which distinguish

orbital symmetry. This is an interesting problem for future
studies.
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APPENDIX: DETAILS OF THE EXACT
SOLUTION OF EQ. (20)

Here we present the details of the calculation of the anoma-
lous Green’s function F̃ (k,q,ω). After applying the Dyson
equation (14) to the Green’s function appearing in the
definition given in Eq. (17), one obtains

F̃μν(k,q,ω) = 〈FM|μk↓G(ω)Vν
†
k−q,↑S−

q |FM〉
×G0(k − q,ω − �q), (A1)

where the freestanding G0(ω) disappears due to the anomalous
average.

Since the total spin of the system is conserved, only one
spin flip is allowed in the FM background interacting with the
hole. Therefore, in the present case V can only leave the same
defected state (which causes a renormalization of F̃ (k,q,ω)) or
may reproduce the initial FM state by means of a deexcitation
of a magnon by a term ∝S+s−. This leads directly to the
following equation:

F̃(k,q,ω) =
[
−J0

N

∑
p

F̃(k,p,ω)V (q − p)

+ 2J0S

N
G(k,ω)V (q)

]

×G0(k − q,ω − �q)QF (k,q,ω), (A2)

QF (k,q,ω) = [I − J0SV0G0(k − q,ω − �q)]−1. (A3)

One has as well,

V (q − p) =
(

cos q−p

2 0

0 1
2

)

=
(

cos q

2 0

0 1
2

)(
cos p

2 0

0 1
2

)

+
(

sin q

2 0

0 1
2

)(
sin p

2 0

0 1
2

)

= V (q)V (p) + V̄ (q)V̄ (p), (A4)

and one finds

F̃(k,q,ω) =
[
−J0

N
[F (k,ω)V (q) + F̄(k,ω)V̄ (q)]

+ 2J0S

N
G(k,ω)V (q)

]
×G0(k − q,ω − �q)QF (k,q,ω), (A5)
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where

F̄(k,ω) =
∑

p

F̃(k,p,ω)V̄ (p). (A6)

F (k,ω) used here is defined in Eq. (16). Multiplying now
Eq. (A5) either by V (q) or by V̄ (q) and summing over q, one
can find explicit equations for F (k,ω) and F̄(k,ω) in terms of
G(k,ω). Since F̄(k,ω) serves only as an auxiliary function, we
only present F (k,ω) here:

F (k,ω) = 2SG(k,ω)[I − M−1(k,ω)], (A7)

where we have already introduced the matrix M(k,ω), defined
as follows:

M(k,ω) = I + J0Gcc(k,ω)

−J 2
0 Gcs(k,ω)(I + J0Gss(k,ω))−1Gsc(k,ω), (A8)

which is closely related to the self-energy. The auxiliary
matrices introduced in Eq. (A8) are

Gcc = 1

N

∑
q

V (q)G0(k − q,ω − �q)V (q), (A9a)

Gcs = 1

N

∑
q

V (q)G0(k − q,ω − �q)V̄ (q), (A9b)

Gsc = 1

N

∑
q

V̄ (q)G0(k − q,ω − �q)V (q), (A9c)

Gss = 1

N

∑
q

V̄ (q)G0(k − q,ω − �q)V̄ (q). (A9d)

After plugging the solution Eq. (A7) into Eq. (15) and solving
for G(k,ω), one obtains the final result, Eq. (20) of Sec. III A.
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