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We study the thermoelectric effect of two-dimensional metals on a square lattice within semiclassical
Boltzmann transport theory with particular focus on electron-electron scattering. We compute the electrical
conductivity and the Seebeck coefficient as a function of band filling and temperature for generically chosen
hopping parameters in a two-dimensional tight-binding model. The Boltzmann equation is solved numerically
after computing the full collision integral, taking the angular and radial degrees of freedom into account. These
degrees of freedom of the collision integral, neglected in the standard single-relaxation-time approximation,
play an important role if the transport coefficients show unconventional features. Within our detailed numerical
simulation, we show that the widely used Mott formula to compute the Seebeck effect is not sufficient to describe
the thermoelectric effect in the presence of strong electron-electron scattering. Furthermore, we study the Seebeck
coefficient and its temperature dependence in the vicinity of a Lifshitz transition and demonstrate that it shows
remarkable parallels to transport features near a quantum critical point.
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I. INTRODUCTION

The search for an efficient conversion of heat, in many
cases waste heat, into electrical energy1,2 is the motivation for
a long-standing investigation of thermoelectricity of various
materials.3–8 While for technical applications semiconductors
are so far the materials with the highest figures of merit
or efficiency, there has been also much effort to examine
conditions under which metals would perform optimally.
Metals are typically good conductors but have usually a rather
low Seebeck coefficient Q and figure of merit.

Besides the interest in potential applications, the study of
the thermoelectric effect in metals is also of more conceptual
interest. In recent years, the study of quantum critical phenom-
ena has received great attention.9–14 The measurement of the
Seebeck coefficient is a useful tool to detect deviations from
Fermi-liquid behavior as, for example, found in the vicinity of
quantum phase transitions. In order to use thermopower as an
identifying criterion, one first has to fully understand the phe-
nomenology in the noncritical region of the phase diagram. In
a previous study15 on the normal-state transport of overdoped
La2−xSrxCuO4, we have demonstrated that one can find highly
unconventional behavior of the Seebeck coefficient in a model
of a correlated metal with a nontrivial band structure.

In our present paper we address the thermoelectric proper-
ties of interacting two-dimensional Fermi liquids on a square
lattice. This choice is motivated in parts by the widespread
studies of layered transition-metal-oxide systems.16–21 More-
over, it was shown by Hicks and Dresselhaus that for metallic
systems low dimensionality can have a beneficial impact on
thermopower.22 We discuss the influence of momentum space
constraints for two-particle scattering on the charge transport
in general. These constraints are influenced essentially by the
Fermi-surface geometry. In particular, we address two essential
features in this context, the onset of umklapp scattering
upon varying electron band fillings and the Lifshitz transition
between an electronlike and a holelike Fermi surface. Both
can be tuned by changing the chemical potential and allow for
tuning of the thermoelectricity, in principle.

Our study is based on the numerical solution of the
Boltzmann transport equation for a two-dimensional electronic
system with a single-orbital tight-binding band structure. We
concentrate on the effect of impurity and especially electron-
electron scattering, where the latter contributes intriguing fea-
tures to the transport properties. In order to highlight the contri-
bution of electron-electron scattering, we completely neglect
electron-phonon scattering in this study. For simple metals, it
is well known that phonons play an important role regarding
the transport of charge and heat for temperatures on the order
of 100 K. In the context of oxides or other strongly correlated
materials, the contribution from electron-phonon scattering is
often less clear. By neglecting phonons, we do not aim for a
realistic description of any real system, but we point out the
nontrivial effects that electron-electron scattering can have.

We start this paper with a short introduction of our model,
followed by a discussion of the structure of the electric
conductivity as a function of the band filling. In Sec. IV we
analyze the validity of the widely used Mott’s formula in the
context of interacting Fermi liquids. We compare predictions
of Mott’s formula to an explicit calculation of the Seebeck
coefficient based on our computational solution of the Boltz-
mann equation. Given the Seebeck coefficient as a function
of the temperature, we discuss unconventional temperature
dependencies of the Seebeck coefficient in the vicinity of a van
Hove singularity and the onset of umklapp scattering in Sec. V.
Eventually we demonstrate that non-Fermi-liquid behaviors,
similar to those observed in the vicinity of a quantum critical
point (QCP), can also naturally occur in interacting Fermi
liquids without any loss of quasiparticle properties.

II. A SEMICLASSICAL MODEL OF CHARGE
AND HEAT TRANSPORT

A. The tight-binding dispersion

We consider a system of electrons on a two-dimensional
square lattice. This system is represented by a quadratic
Brillouin zone in reciprocal space. The dispersion of the
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quasiparticles is conveniently described with a two-
dimensional single-orbital tight-binding model, where we
restrict ourselves for simplicity to nearest- and next-to-nearest-
neighbor hopping,

εk = −2t(cos kx + cos ky) + 4t ′ cos kx cos ky. (1)

It is useful to include next-nearest-neighbor hopping t ′
to avoid particle-hole symmetry in the model, which also
introduces flexibility for the Fermi-surface curvature at inter-
mediate filling levels. The nearest-neighbor hopping integral
t defines the natural energy scale of our model. It is related
to the bandwidth via w = 8t , as long as t ′ < 0.5t . Tuning the
chemical potential μ changes the band filling and thus allows
for a scan through the entire band from the bottom to the top.

B. Scattering mechanisms and momentum relaxation

While impurity scattering gives rise to a rather obvious
contribution to the momentum relaxation, two-particle scat-
tering is more complicated in this respect. The electrical
conductivity of ultraclean materials in the low-temperature
regime is actually limited by the umklapp-scattering processes,
the only possibility to relax the momentum of the Fermi sea
to the lattice, in the absence of impurity and electron-phonon
scattering. Without momentum relaxation no resistive state can
be realized. The presence and extent of umklapp scattering,
however, depends on the shape of the Fermi surface as well
as the Brillouin zone geometry. This opens the possibility for
finding rich features in the conductivity and the thermoelectric
power by changing the electronic dispersion parameters.

As an illustrative example let us consider a circular Fermi
surface around the � point with a diameter smaller than π/a

(half the length of a basic reciprocal lattice vector). In this case
no umklapp-scattering processes for particles on the Fermi
surface are possible. Such umklapp is only possible on Fermi
surfaces which cross the umklapp lines (dashed lines within the
Brillouin zone in the right panel of Fig. 1). In this case, the max-

imal momentum transfer within a scattering event is sufficient
for one particle to be scattered to the Fermi surface in a neigh-
boring Brillouin zone. Thus, two-particle umklapp-scattering
processes which conserve both energy and the lattice momen-
tum are possible, and they transfer momentum to the lattice.

At finite temperature, states involved in scattering are
thermally smeared around the Fermi surface. This yields finite
but exponentially small scattering contributions even for a
Fermi surface just below the umklapp threshold, leading to
ρ ∝ exp{−T0/T } with kBT0. The resistivity can be interpreted
as a measure for the difference between the chemical potential
and the band filling level, allowing for umklapp scattering at
zero temperature. Note that if just a small segment of the Fermi
surface crosses the umklapp lines, only states in the close
vicinity to the crossing points contribute to this scattering,
which is consequently highly anisotropic. Only with this
umklapp contribution can the well-known Fermi-liquid T 2

scaling of the resistivity at low temperature be observed.
In our simulation, we study this system over a temperature

range from kBT = 0.01t to kBT = 0.2t , measured in units of
the nearest-neighbor hopping energy. For typical metals, this
corresponds to a temperature range from O(10 K) to a few
hundred Kelvin. The relative strength of the impurity scattering
potential compared to the electron-electron scattering is
chosen in such a way that impurity scattering dominates at the
lowest temperatures of our study, while two-particle scattering
strongly dominates at high temperature. This crossover from
isotropic to anisotropic scattering has important consequences
that are discussed below.

C. Seebeck coefficient within Boltzmann transport theory

The Seebeck coefficient Q is defined by the electric field
E that is generated in the presence of a thermal gradient for
vanishing electric current (open circuit geometry),

E = −Q∇T . (2)
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FIG. 1. (Color online) Conductivity as a function of the band filling labeled by the chemical potential μ. The conductivity for a two-
dimensional electron system on a square lattice with a dispersion (1) for the generic choice of t ′ = 0.2t is plotted. To the right we show the
Fermi surface for the special filling levels, indicated by the horizontal lines in the conductivity plot. The red circles highlight regions of the
Fermi surface that touche a geometric umklapp-scattering boundary.
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The mechanism that drives the thermoelectric effect includes
thermal diffusion of charge carriers and drag effects. Here
we ignore the latter and concentrate on purely electronic
contributions.

For a metal in the low-temperature limit, T � TF , the
coefficient Q is often computed by taking the logarithmic
derivative of the electrical conductivity with respect to the
chemical potential,23

QMott = −π2

3

k2
BT

e

d

dμ
ln σ (μ). (3)

This expression, known as Mott’s formula, is based on a
Sommerfeld expansion of the integral kernels in the gen-
eral transport coefficients.24 An important condition for this
approximation is scattering behavior that is isotropic over all
the Fermi surface, a property which we discuss in detail in
Sec. IV.

For the computation of the Seebeck coefficient beyond
Mott’s formula, we make use of Boltzmann transport theory.
The solution of the Boltzmann equation in the presence of an
external thermal gradient and an induced electric field,

−∂f (k)

∂εk
vk ·

(
∇rT

εk − μ

T
− E

)
= ∂f (k)

∂t

∣∣∣∣
coll

, (4)

is the nonequilibrium steady-state distribution function f =
f0 + δf , which can be used to compute electrical and thermal
currents.

The collision integral on the right-hand side is a weighted
integral over all possible collision processes that the charge
carriers can undergo. We consider two contributions to the col-
lision integral, impurity potential scattering and two-particle
scattering. While the collision integral from impurity scatter-
ing is relatively simple with only energy conserving scattering
rates �imp, the collision integral for two-particle scattering
processes consists of a complicated multidimensional inte-
gration over all momenta with a strongly peaked kernel due
to the energy and momentum conservation in the scattering
transition rates �ee. The transition rates are computed via
Fermi’s golden rule from an repulsive on-site Hubbard-U -type
coupling (�ee) and from nonmagnetic impurity scattering
modeled by isotropic delta-potential scatterers (�imp),

∂f (k1)

∂t

∣∣∣∣
coll

= −
∫

dk2

(2π )2

dk3

(2π )2

dk4

(2π )2
�ee(k1,k2,k3,k4)

×{f (k1)f (k2)[1 − f (k3)][1 − f (k4)]

− [1 − f (k1)][1 − f (k2)]f (k3)f (k4)}
−

∫
dk2

(2π )2
�imp(k1,k2){f (k1)[1 − f (k2)]

− [1 − f (k1)]f (k2)}. (5)

In the spirit of linear response theory, we first linearize
the Boltzmann equation (4) in the external fields. We solve
the linearized Boltzmann equation by computing the collision
integral (5) in a discretized Brillouin zone. The discretization
scheme is designed to match the curvature of the Fermi surface,
allowing for a high resolution analysis of the nonequilib-
rium distribution function in the low-energy sector of the
momentum space. With this numerical approach, introduced
in Ref. 15, the anisotropy and the full energy dependence of

two-particle scattering events are explicitly taken into account.
Computing the full collision integral represents a substantial
sophistication compared to the conventional treatment of
the Boltzmann equation within the single-relaxation-time
approximation and is essential to derive the results below.

The distribution function f that solves the Boltzmann
equation (4) in the presence of a thermal gradient carries
a heat current and an electric current. These two currents
represent the linear response of the system to the external
fields. The typical setup of a thermopower measurement is the
open circuit geometry with j e = 0, which defines the value of
the electric field E . The Seebeck coefficient, defined in Eq. (2)
as the ratio of the applied thermal gradient and the induced
electrochemical potential, is then given by

Q ≡ |E|/|∇T | = K11/K12, (6)

with the transport coefficients Kij defined by

j e = K11E + K12∇T . (7)

III. THE ELECTRICAL CONDUCTIVITY

We compute the electrical conductivity σ for several
temperatures in the range from kBT = 0.01t to 0.2t for
a generic choice of t ′ = 0.2t . We scan through the band
from very low filling, μ ≈ −2.8t , to the almost completely
filled band, μ ≈ 4.2t , by tuning the chemical potential (see
Fig. 1, right panel). We observe a rich structure in σ (μ),
which emphasizes the importance of band-structure effects.
In the following we analyze the mechanism leading to these
structures for different band fillings.

A. Special band fillings

We start our discussion of the band filling dependence
of the conductivity at low fillings which corresponds to
a small, almost circular Fermi surface closed around the
� point. In the previous section we have explained that
umklapp scattering is suppressed for sufficiently small Fermi
surfaces, i.e., kF < π/(2a). To be precise, the absence of
umklapp scattering is only true at zero temperature. At
finite temperatures umklapp-scattering processes are possible
through thermal activation because there are always states
with nonvanishing occupation numbers and k � π/(2a). Thus,
the onset of umklapp scattering in the zero-temperature limit
is bound to a chemical potential μ = μU1 for which the
condition kF = π/(2a) is first satisfied somewhere on the
Fermi surface (cf. Fig. 1, marked by a red circle). A possible
umklapp-scattering event could be of the form

{(u,0),(u,0)} �−→ {(3u,0)︸ ︷︷ ︸
(−u,0)

,(−u,0)}, (8)

with u = π/(2a) and obviously transfers a momentum of
(4u,0) to the lattice.

There is also a second kind of umklapp scattering with a
momentum transfer of (4u,4u) to the lattice, for which one
can find with similar arguments that the Fermi surface must
intersect with the so-called umklapp-surface, a diamond that
connects the four saddle points of the dispersion at (2u,0)
and (0,±2u). Depending on the sign of t ′, this intersection
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takes place first at (±u,±u) for t ′ < 0, or at the saddle points
for positive t ′. In the limit of zero temperature this umklapp
channel is only available if the Fermi surface intersects the
umklapp surface and is turned off otherwise.

When the Fermi surface approaches the saddle points, one
observes another intriguing feature of this model. Due to the
vanishing slope of the dispersion, the density of states diverges
as a van Hove singularity. This property of the density of states
is associated with a Lifshitz transition, as the Fermi surface
changes from electronlike, i.e., closed around the � point, to
holelike, closed around the corner of the Brillouin zone. Due
to the flat dispersion in the proximity of the saddle points, the
phase space for scattering through thermally activated states
is expected to be very large. This large phase space leads to a
strong dip in the conductivity (see Fig. 1). The chemical poten-
tial at which the Lifshitz transition is located is denoted as μL.

Because μL also defines the onset of the (4u,4u)-umklapp
scattering, the end of this umklapp regime is labeled μU2 >

μL. For μ > μU2, the Fermi surface no longer intersects with
the umklapp surface. A further umklapp boundary towards the
top of the band is again connected to the (4u,0)-momentum
transfer to the lattice. The corresponding critical chemical
potential is denoted as μU3 and it is related to μU1 by
particle-hole symmetry. We refer to the filling levels that
represent boundaries for umklapp scattering as umklapp edges.

In summary, there are four special filling levels in our
model, the umklapp edges at μU1,μU2,μU3 and the filling level
of the Lifshitz transition μL. They give a tag to each anomaly
observed in the resistivity or conductivity as a function of the
chemical potential μ. In the absence of umklapp scattering,
μ < μU1 and μ > μU3 only impurity scattering constrains
the electric transport which, thus, is roughly temperature
independent. Moreover, we would like to emphasize again
the pronounced dip in the conductivity is associated with van
Hove filling.

IV. THERMOPOWER AND THE LIMITATIONS
OF MOTT’S FORMULA

We use now our numerical simulation scheme and compute
the Seebeck coefficient Q according to Eq. (6) (Fig. 2, left

panel) and compare it to QMott, the prediction of Mott’s
formula (3) (Fig. 2, right panel). The differences between
Q and QMott are striking. Most prominently, at the umklapp
edges Mott’s formula predicts a largely enhanced Seebeck
coefficient, as expected from the strong energy dependence
of the conductivity due to the onset of umklapp scattering.
Our calculation, however, shows that Q is not enhanced at
all, and at μ = 2 t , Q is even strongly suppressed. Moreover,
a sign change at the Lifshitz transition point, visible for all
temperatures in QMott, cannot be directly associated with
the Lifshitz transition, at least when two-particle scattering
becomes relevant above intermediate temperature, as shown
in the plot of Q. Instead, there is a sequence of sign changes
away from the Lifshitz point.

The discrepancy can be understood by scrutinizing the
approximations made in the derivation of Eq. (3).24 While the
Sommerfeld expansion should, in principle, be applicable for
T � TF , Mott’s formula rests on the further assumption that
scattering rates are essentially isotropic over the whole Fermi
surface and are only energy dependent. Obviously this latter
condition is not satisfied in the case of umklapp scattering,
which provides strongly anisotropic scattering rates due to
strict momentum space constraints. Especially close to the
umklapp edges, only small parts of the Fermi surface allow
for umklapp processes and, therefore, the scattering rates for
these states are much greater than for the states unaffected by
umklapp scattering.

The sign of the Seebeck coefficient is often considered
as a way to identify the charge of the quasiparticles. Thus,
a sign change is expected at the Lifshitz transition as seen
in QMott,25 which represents a transition from an electronlike
system to a holelike system due to the change of Fermi-surface
topology. In fact, sign changes do occur, in particular, at low
temperatures. The situation looks, however, more complex,
as actually several sign changes occur. Counterintuitively, the
sign change at the Lifshitz transition (positive to negative)
is opposite to what is naively expected, when turning from
an electronlike (negative Q expected) to a holelike Fermi
surface (positive Q expected). This behavior illustrates that
the simple interpretation of the sign of the Seebeck coefficient
in terms of quasiparticles as particles or holes is not valid for
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FIG. 2. (Color online) Left: Numerical results for the Seebeck coefficient Q = K12/K11 [cf. Eq. (6)] as a function of the band filling with
the same dispersion as for the conductivity. Right: Calculation of QMott within Mott’s formula [cf. Eq. (3)]. Note that Mott’s formula yields
especially bad predictions at the umklapp edges μU1,μU2,μU3.
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FIG. 3. (Color online) Direct comparison of the Seebeck coeffi-
cient Q (black lines) with the approximation QMott based on Mott’s
formula, Eq. (3).

nontrivial situations as encountered, for instance, in lattice
systems at intermediate filling levels. In the vicinity of a
van Hove singularity, the conductivity shows a strong dip,
especially pronounced at low temperature. Due to this dip,
the slope of the conductivity as a function of the band
filling qualitatively corresponds to −σ ′(μ) at the band edge
with the same Fermi-surface topology. Thus, Mott’s formula
[QMott ∼ σ ′(μ)] predicts a sign change opposite to the naive
expectation based on the band edges.

A further intriguing feature is the sign change at interme-
diate temperatures away from the Lifshitz transition, which is
in contrast to the prediction from Mott’s formula. This is also
noteworthy, as sign changes are commonly understood as a
precise way to detect the location of the Lifshitz transition.25

In Fig. 3 we highlight the discrepancy between Q and QMott.
We plot both Q and QMott as a function of the temperature for
four different band fillings. We select filling levels at the first
[Fig. 3(a)] and the third umklapp edge [Fig. 3(c)] because the
scattering rate anisotropy is particularly pronounced due to
the restriction of umklapp scattering to only small portions
of the Fermi surface. In Fig. 3(b) we plot the comparison for
van Hove filling, while in Fig. 3(d) we demonstrate that both
approaches yield quantitatively comparable results outside of
the umklapp regime, where umklapp scattering cannot yield
anisotropic scattering rates.

V. UNCONVENTIONAL THERMOPOWER RELATED
TO THE LIFSHITZ TRANSITION AND

THE UMKLAPP EDGES

A linear low-temperature dependence of Q, much as the
T 2 behavior of the resistivity, can be interpreted as a hallmark
of Fermi-liquid behavior. Deviations from this behavior are
consequently considered as a signature of unusual, so-called
non-Fermi-liquid physics. In this spirit, Q/T has been used as
an experimental probe to explore non-Fermi-liquid transport
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FIG. 4. (Color online) Plot of Q/T , for which the temperature
derivative can be interpreted as a measure of non-Fermi-liquid
transport behavior. As a function of the band filling, one finds several
sign changes at low temperature. In particular, the low-temperature
sign change at the Lifshitz transition μ = −0.8t is pronounced. Note,
however, that the sign change is from positive (holelike) to negative Q

(electronlike). This contradicts the naive expectation that the Seebeck
coefficient is directly related to the topology of the Fermi surface.

properties. In particular, using the temperature dependence of
the Seebeck coefficient as a probe for quantum critical behavior
was recently put forward by several groups.26–28

We have investigated the properties of Q(T ) in this respect
near the Lifshitz transition as well as near the upper umklapp
edge (μU3). For both cases we observed clear deviations from
the expected Q ∼ T behavior.

First, we discuss the thermoelectric effect near the Lifshitz
transition which is combined with a singularity in the density
of states. In Fig. 4 a phase diagram of Q/T around the
Lifshitz transition (μ = −0.8t) is shown for the same model
as displayed in Fig. 2. We find the multiple sign changes
of Q at low temperature and verify that the sign change is
opposite to the naive expectation that predicts a change from
an electronlike Seebeck coefficient to a holelike Q, crossing
the Lifshitz transition from below. Moreover, Q/T increases
towards low temperature, again not in agreement with Q ∼ T .
All the temperature dependencies that can be found in Fig. 4 are
evidence for unconventional behavior, however, the deviation
from Q ∼ T can be even better visualized by taking the
temperature derivative of Q/T .

Our quantitative measure for the deviations from the
conventional Fermi-liquid behavior, ∂(Q/T )/∂T , is shown in
Fig. 5. For convenience, we have overlaid the phase diagram
with a plot of the density of states which shows the presence
of the van Hove singularity.

The deviations from a linear-T Seebeck coefficient around
the Lifshitz transition are clearly visible from Fig. 5. The
quantity ∂(Q/T )/∂T shows a pronounced peak at the Lifshitz
transition in the low-temperature limit and it has an opposite
sign on both sides of the transition, just as the Seebeck
coefficient itself.
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The color scale was truncated at 0.2 times the maximal value of
∂(Q/T )/∂T . The density of states in this range of chemical potential
is shown in arbitrary units.

As mentioned above, large deviations from standard Fermi-
liquid behavior are often interpreted as evidence for a non-
Fermi-liquid state in the vicinity of a QCP. Another property
that is considered as a typical feature is a low-temperature
logarithmic divergence of Q/T .27,28 Motivated by the uncon-
ventional properties of Q/T that we have observed so far,
we have plotted the low-temperature regime of Q/T on a
logarithmic temperature scale for a band filling level close to
the Lifshitz transition (Fig. 6). We clearly identify a regime
below kBT ≈ 0.02t in which Q/T grows logarithmically with
T → 0. This behavior is indicated by the linear fit in the graph.
It is intriguing to find signatures that are typical for a QCP also
to appear generically in the vicinity of a Lifshitz transition
without the loss of quasiparticle properties of the carriers. It is
well known that the singular form of the density of states can
alter generic scaling properties.

We now focus on the umklapp edges which are examples
for unconventional transport behavior that is not related to
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FIG. 6. (Color online) Plot of Q/T on a logarithmic temperature
scale for band filling which corresponds to μ = −0.76t . The low-
temperature linearity in this plot is a signature of the Q ∼ log(T )
dependence which is often associated with the presence of a QCP.
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FIG. 7. (Color online) Plot of ∂(Q/T )/∂T in the vicinity of the
third umklapp edge (μU3 = 2t), for which finite values are interpreted
as a signature of non-Fermi-liquid transport properties. The color
scale covers the entire range from the minimal to the maximal value of
∂(Q/T )/∂T . The density of states in this range of chemical potential
is shown in arbitrary units.

any singular feature in the density of states. Unconventional
transport properties in this case can be attributed to the strong
anisotropy in the scattering rates along the Fermi surface near
umklapp edges, as indicated by the strong deviations between
Q and QMott. Let us focus here on the third umklapp edge at
μ = μU3 (see Fig. 1).

In Fig. 7 we show a plot of ∂(Q/T )/∂T as we did for
a region close to the van Hove singularity at the Lifshitz
transition. Note, however, that the maximal value of the color
scale is reduced by a factor of 10 compared to the case
around the Lifshitz transition shown in Fig. 5. Nevertheless,
we find a complex structure in the temperature versus chemical
potential diagram, with multiple sign changes of the quantity
∂(Q/T )/∂T . This rich structure is a consequence of the onset
of umklapp scattering for μ � 2t in the zero-temperature limit.
Moreover, also the temperature driven change of the dominant
scattering mechanism from impurity scattering to two-particle
collisions has nontrivial effects. The change of the dominant
scattering mechanism is associated with a crossover from
isotropic to highly anisotropic scattering rates as two-particle
scattering is dominated by the Fermi-surface geometry. It is
important to note that the deviations from the standard Fermi-
liquid results are not related to a feature in the density of states,
as is illustrated by the smooth form of N (ε) in the top of Fig. 7.

Figure 8 illustrates the unusual behavior of Q(T ) close to
the third umklapp edge. The anisotropy of the scattering rates
results in multiple sign changes of the Seebeck coefficient
with temperature. Sign changes of the Seebeck coefficient
with temperature are also found experimentally as, e.g., in the
cuprates.27,29 Our simple model shows that such features can
appear generically as a consequence of anisotropic scattering,
in this case induced by the proximity to an umklapp edge.

The natural appearance of sign changes of Q with
temperature is a further indication that the sign of the
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FIG. 8. (Color online) Plot of the Seebeck coefficient as a function
of the temperature for μ = 1.88t , close to the third umklapp edge
μU3 = 2t . Note that Q changes sign twice as a function of the
temperature.

Seebeck coefficient cannot be simply interpreted in terms of
electronlike or holelike quasiparticles. In our model such a
simple scheme would only apply in the limit of low carrier
concentration or almost full band filling where only isotropic
impurity scattering dominates the transport properties.

VI. DISCUSSION AND CONCLUSIONS

We have studied the electrical conductivity and the Seebeck
coefficient of the thermoelectric effect for an interacting two-
dimensional Fermi liquid. We have investigated this model by
a numerical solution of the Boltzmann transport equation with
a full resolution of angular and radial degrees of freedom in
the collision integral. Special geometric constraints for two-
particle scattering induce a rich structure in the temperature
and band filling dependence of the electrical conductivity
and the Seebeck coefficient. Particularly important are the
filling levels related to the onset of umklapp scattering and
the critical filling level of the Lifshitz transition. While
it is widely believed that Mott’s formula provides a good
description of the Seebeck coefficient for standard metals, our
numerical simulation demonstrates that strongly anisotropic
scattering rates due to electron-electron scattering that involves
umklapp processes spoils this simple approach. While at
very low temperatures Mott’s formula applies as the effect
of electron-electron scattering is diminished, our analysis of
the temperature dependence shows a pronounced quantitative
as well as qualitative difference with increasing temperature.
Strong anisotropy in the scattering rates is especially pro-
nounced at filling levels close to the umklapp edges. We have
demonstrated that the presence of umklapp edges can also
lead to deviations from the standard Fermi-liquid behavior

expected for Q at low temperature. The van Hove singularity
accompanied by a Lifshitz transition in our model constitutes
another interesting band filling. The analysis of Q/T shows
strong signatures of non-Fermi-liquid behavior for a certain
range around the van Hove filling. We also observe here
a logarithmic temperature dependence Q/T ∼ log(T ) for
low temperatures, similar to features usually associated with
quantum critical properties.

In this context it is important to note that the density of states
does not contain information about the scattering geometry,
and thus a calculation based on the structure of the density of
states alone cannot yield the features we have found. Figures 5
and 7 allow for a comparison in this respect. It is important
to notice that the feature of the van Hove singularity is small
compared to the large background of density of states, and
is thus unlikely the leading cause of the strongly anomalous
transport behavior.

We have also discussed an example of a filling level for
which the Seebeck coefficient changes its sign as a function
of the temperature. This nontrivial temperature dependence is
generically found in metals with strong umklapp scattering
and reflects the fact that the transport of an electron system on
a lattice cannot be uniquely considered to be either particlelike
or holelike.

In conclusion, our study demonstrates that even in simple
metals many unconventional transport properties are found as
a consequence of two-particle collisions that require special
Fermi-surface geometries to allow for momentum relaxation.
Signatures of critical transport properties, such as Q/T ∼
log(T ) or temperature induced sign changes of the Seebeck
coefficient, appear naturally due to strong anisotropy in the
scattering rates, induced by umklapp scattering. Moreover, the
Lifshitz transition shows characteristics resembling those at a
quantum critical point, while keeping the quasiparticle nature
of the carriers untouched. Further deviations from standard
Fermi-liquid physics are associated with the umklapp edges,
which go beyond simple effects induced by the structure of the
density of states.
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F. Laliberté, B. Pingault, B. J. Ramshaw, R. Liang, D. A. Bonn,
W. N. Hardy, H. Takagi, A. B. Antunes, I. Sheikin,
K. Behnia, and L. Taillefer, Phys. Rev. Lett. 104, 057005
(2010).

115128-8

http://dx.doi.org/10.1103/PhysRevLett.110.256403
http://dx.doi.org/10.1103/PhysRevLett.110.256403
http://dx.doi.org/10.1103/PhysRevLett.99.147005
http://dx.doi.org/10.1103/PhysRevB.81.205108
http://dx.doi.org/10.1103/PhysRevLett.109.156405
http://dx.doi.org/10.1103/PhysRevB.87.035129
http://dx.doi.org/10.1103/PhysRevB.87.035129
http://dx.doi.org/10.1063/1.4737872
http://dx.doi.org/10.1103/PhysRevB.77.245118
http://dx.doi.org/10.1103/PhysRevB.77.245118
http://dx.doi.org/10.1038/nmat1821
http://dx.doi.org/10.1021/ic800463s
http://dx.doi.org/10.1021/ic800463s
http://dx.doi.org/10.1016/j.solidstatesciences.2011.10.001
http://dx.doi.org/10.1103/PhysRevB.47.12727
http://dx.doi.org/10.1103/PhysRevB.87.224508
http://dx.doi.org/10.1038/ncomms1440
http://dx.doi.org/10.1038/ncomms1440
http://dx.doi.org/10.1103/PhysRevB.79.180505
http://dx.doi.org/10.1103/PhysRevLett.104.057005
http://dx.doi.org/10.1103/PhysRevLett.104.057005



