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Superconductivity in the two-dimensional Hubbard model: Gutzwiller wave function solution
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A systematic diagrammatic expansion for Gutzwiller-wave functions (DE-GWF) is formulated and used for the
description of superconducting (SC) ground state in the two-dimensional Hubbard model with electron-transfer
amplitudes t (and t ′) between nearest (and next-nearest) neighbors. The method is numerically very efficient
and allows for a detailed analysis of the phase diagram as a function of all relevant parameters (U , δ, t ′) and
a determination of the kinetic-energy driven pairing region. SC states appear only for substantial interactions,
U/t � 3, and for not too large hole doping, δ � 0.32 for t ′ = 0.25t ; this upper critical doping value agrees well
with experiment for the cuprate high-temperature superconductors. We also obtain other important features of
the SC state: (i) the SC gap at the Fermi surface resembles dx2−y2 -wave only around the optimal doping and the
corrections to this state are shown to arise from the longer range of the pairing; (ii) the nodal Fermi velocity
is almost constant as a function of doping and agrees quantitatively with the experimental results; (iii) the SC
transition is driven by the kinetic-energy lowering for low doping and strong interactions.
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Introduction. High-temperature superconductivity in
cuprates is often discussed starting either from the Hubbard
model1,2 or from its projected version in the strong-correlation
limit, the t-J model.3,4 These models incorporate, in the
simplest manner, the strongly correlated nature of the 3d

electrons due to copper spins in CuO2 planes. The t-J
model contains real-space operators for their antiferromag-
netic coupling explicitly.5 The coupling of the spin degrees
is less obvious in the Hubbard model unless one introduces
antiferromagnetic spin fluctuations as a pairing mediator from
the outset,6,7 a model which can be analyzed reliably only
for low values of the Hubbard interaction U . In general,
methods are desirable which can treat the Hubbard model
for weak to strong correlations, where a possible pairing in
momentum space may transform into pairing in real space
as a function of U . Such evolution of pairing with the
increasing interaction strength is particularly interesting in
view of the circumstance that iron-pnictide superconductors
can be regarded as moderately correlated systems.8,9

The variational Monte Carlo (VMC) method is among the
few available numerical many-particle methods which treat
the superconducting (SC) state.1 However, it is limited
to single-band, small-size systems, containing typically up
to 16 × 16 lattice sites for the two-dimensional Hubbard
model.10–12 Comparable in accuracy (and limitations) is the
density-matrix renormalization group approach.13,14 Lastly, an
extensive numerical analysis of the Hubbard model at nonzero
temperature and for t ′ = 0 has also been carried out within
the 2 × 2 (Ref. 15) and 8-site16 cluster dynamical mean-field
theory (DMFT). The normal phase has been investigated on
4 × 4 cluster.17

In this work we evaluate the Gutzwiller wave function
(GWF) for the SC ground state of the two-dimensional
Hubbard model. We extend a recently devised (for the normal
state) systematic diagrammatic expansion (DE-GWF), which
provides essentially exact results for the GWF up to moderately
strong correlations.18 The DE-GWF method has been tested
against the exact results in one spatial dimension,19 where it

removes the spurious Brinkman–Rice metal-insulator transi-
tion present in the Gutzwiller approximation and compares
favorably with the exact Lieb-Wu solution.20 In this respect,
our approach provides one of the canonical solutions for the SC
phase, appearing solely as a result of interparticle correlations.

Our method is numerically very efficient so that we
can determine a detailed ground-state phase diagram of the
Hubbard model, with normal (paramagnetic, PM) and SC
phases as a function of the Hubbard interaction U , the hole
doping δ, and t ′. One principal advantage of our approach is the
ability to account, for nonzero pairing amplitudes beyond the
nearest neighbors (n.n.). In the following we study the doping
dependence [Fig. 1(c)] and k dependence (Fig. 2) of the SC
gap obtaining deviations from the dx2−y2 -wave gap symmetry.
We investigate the kinetic energy gain upon the condensation
[Fig. 1(b)] and the nodal Fermi velocity (Fig. 3) to show that
the present approach reproduces the principal experimental
findings. We also compare our results with those of VMC
(Fig. 4).

Method. The main features of the DE-GWF method for the
PM state have been provided in Ref. 18. Here, we summarize
the essential steps and subsequently generalize the approach to
the description of SC ground states. We start from the Hubbard
Hamiltonian on L sites of a square lattice

Ĥ = Ĥ0 + U
∑

i

d̂i, Ĥ0 =
∑

i,j,σ

tijĉ
†
i,σ ĉj,σ , d̂i ≡ n̂i,↑n̂i,↓,

(1)
where i = (i1,i2) is the two-dimensional site index, tij = −t

and t ′ are the hopping integrals for nearest and for next-nearest
neighbors, respectively, and σ = ↑,↓ is the spin quantum
number. The Gutzwiller wave function21 for the correlated
state has the form

|�G〉 = P̂ |�0〉 =
∏

i

P̂i|�0〉, (2)

where |�0〉 is a single-particle product state (Slater deter-
minant) to be defined later. We define the local Gutzwiller
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FIG. 1. (Color online) (a) Phase diagram comprising param-
agnetic (PM) and superconducting (SC) phases as a function of
interaction strength U and doping δ for selected values of t ′. The
gray curve marks the optimal doping, the shaded region corresponds
to kinetic energy gain in the SC phase (a non-BCS behavior),
whereas the curve inside it provides the boundary between the
region with positive (below) and negative (above) potential energy
change upon condensation. (b) Top: condensation energy (in Kelvin,
for t = 0.35 eV) as a function of doping for selected values of U .
Bottom: the kinetic energy part �Ekin of the condensation energy for
selected interaction values. (c) Top: correlated gap as a function of
doping; bottom: correlated gap (for U = 10) in orders 0–5 to which
the expansion is carried out.
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FIG. 2. (Color online) (a) Variational gap parameters as a function
of doping for U = 10. Inset: the gap components relative to dominant
contribution �eff

10 . (b) Effective gap in momentum space at the Fermi
energy for selected doping values and U = 10. The black line
corresponds to a pure dx2−y2 dependence. The gaps are normalized,
so that �eff

k = 1 in the antinodal direction.

correlator as

P̂i ≡
∑

�

λ�|�〉i i〈�|, (3)

P̂ 2
i ≡ 1 + xd̂HF

i . (4)

Equation (3) presents a general form of the correlator with
variational parameters λ� ∈ {λ∅,λ1↑,λ1↓,λd}, which describe
the occupation probabilities of the four possible local states
{|�〉i} ≡ {|∅〉i,|↑〉i,|↓〉i,|↑↓〉i}. In Eq. (4), a particularly useful
form of the local correlator is given, where the Hartree-Fock
operators are defined by d̂HF

i ≡ n̂HF
i,↑ n̂HF

i,↓ and n̂HF
i,σ ≡ n̂i,σ − n0

with n0 = 〈�0|n̂i,σ |�0〉. This form of P̂ 2
i decisively simplifies

the calculations by eliminating the “Hartree bubbles”.18,22,23

We calculate all required expectation values diagram-
matically as a power series in x: the norm, 〈�G|�G〉, the
double occupancy 〈�G|d̂i|�G〉 ≡ 〈d̂i〉G, and the hopping term
〈ĉ†i,σ ĉj,σ 〉G, see Refs. 18 and 24 for details. Here, we discuss
the new features appearing in the presence of SC pairing.

First, apart from the “normal” lines, as represented by
Pl,l′ ≡ P σ

l,l′ ≡ 〈�0|ĉ†l,σ ĉl′,σ |�0〉 − δl,l′n0, we also have to take

into account the anomalous (SC) lines Sl,l′ ≡ 〈�0|ĉ†l,↑ĉ
†
l′,↓|�0〉,
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FIG. 3. (Color online) Universal Fermi velocity in the nodal
direction as a function of doping for selected values of U . The
experimental values are taken from Ref. 38 and references therein
and have typically an uncertainty of 20%. The DMFT results are
taken from Ref. 45.

which leads to much more involved computations as there are
up to 1000 times more SC diagrams than PM diagrams in the
fifth order. Note that we consider only the d-wave spin-singlet
SC order without a local pairing, i.e., with Sl,l ≡ 0.

Second, since the correlated number of particles, nG ≡
〈n̂i,σ 〉G and its noncorrelated correspondent n0 may differ in
the SC phase, the minimization procedure is different. Namely,
we minimize the generalized grand-canonical potential F =
〈Ĥ 〉G − 2μGnGL instead of minimizing the ground-state
energy EG ≡ 〈Ĥ 〉G.

Third, the minimization procedure leads18,24,25 to an effec-
tive single-particle Hamiltonian which, in the present situation,
contains also the SC pairing contribution,

Ĥ eff
0 =

∑

i,j,σ

teff
i,j ĉ†i,σ ĉj,σ +

∑

i,j

(
�eff

i,j ĉ
†
i,↑ĉ

†
j,↓ + H.c.

)
, (5)

teff
i,j = ∂F(|�0〉,x)

∂Pi,j
, �eff

i,j = ∂F(|�0〉,x)

∂Si,j
. (6)

From Ĥ eff
0 we can deduce the quasiparticle dispersion

εeff(k) = (1/L)
∑

i,j t
eff
i,j exp[ik · (i − j)], and the quasiparticle
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FIG. 4. (Color online) Left: Comparison of DE-GWF (lines) for
U = 8 and t ′ = 0 with variational Monte Carlo results (points with
error bars; from Ref. 12). (a) Gap parameter �G and (b) condensation
energy as a function of doping. The solid lines give the DE-GWF
result where the effective single-particle Hamiltonian contains only
nearest-neighbor and on-site terms, the dashed lines give the full
DE-GWF result.

gap function �eff(k) = (1/L)
∑

i,j �
eff
i,j exp[ik · (i − j)]. The

latter must be distinguished from the correlated gap, defined
by �G ≡ 〈c†i↑c

†
j↓〉G for n.n. 〈i,j〉, see Ref. 24 for an explicit

analytical expression. The Hamiltonian Ĥ eff
0 also defines |�0〉

which is its ground state.
Results. If not stated otherwise, we present the results to

the fifth order of the expansion for the parameter value t ′ =
0.25t , with t = 1 as our unit of energy. Moreover, we take
into account only those lines Pi,j ≡ P0,(i−j) ≡ PXY (with X =
i1 − j1, Y = i2 − j2) which fulfill X2 + Y 2 � 10. The same
condition applies for Si,j, teff

i,j , and �eff
i,j . We have checked that

this truncation in real space does not influence the results
qualitatively in the parameter regime discussed in this work.
Note that the complete phase diagram is calculated within a
few days on a modern PC.

Figure 1 summarizes the ground-state characteristics of
the SC phase (defined as that with �eff

10 > 10−4). As can be
seen from Fig. 1(a), the SC region expands with increasing t ′
towards higher doping values.26,27 For fixed t ′, the critical value
δc above which the SC state disappears is fairly independent
of U (for U � 8) and the universal value δc ≈ 0.32 (for
t ′ = 0.25) is in good agreement with experimental data for
virtually all single-plane cuprates and with recent sophisticated
renormalized mean-field theory (RMFT) calculations for the
t-J model.28 The reentrant behavior of the SC phase as a
function of doping is associated with the domelike SC [cf.
the U = 6 curve in (c)]. The onset of the SC phase requires a
minimal on-site interaction U > 3 even for the optimal doping.
There may still be a tendency towards SC below U = 3 and
above δc = 0.32: We see an exponential tail of the gap and the
condensation energy in this regime, similar to Ref. 27.

The condensation energy �E ≡ E
(SC)
G − E

(PM)
G shown in

Fig. 1(b) is measured in Kelvin (for t = 0.35 eV). It shows that
our method provides an energy gain in the proper range of the
critical temperature for the cuprates. The corresponding kinetic
energy change �Ekin in Fig. 1(b) (bottom) proves that the
superconductivity is kinetic-energy driven15,16,27,29–37 for the
cases of low doping and the large interaction values U � 12, in
agreement with Refs. 27 and 33 analyzing more sophisticated
wave functions. This region is marked in the phase diagram
[cf. Fig. 1(a)] as the shaded area. For U = 14 ÷ 16, the doping
at which superconductivity becomes kinetic-energy driven
coincides with the optimal doping, in agreement with the
experimental results for the cuprates.29–32 This phenomenon
has also been studied theoretically within the VMC27,33,34

method, as well as within the cluster DMFT for the t-J 15

and, very recently, the Hubbard16 models. The DMFT studies
are limited to nonzero temperature (e.g., β = 60/t in Ref. 35)
and t ′ = 0 what has been pointed out32 as a possible source
of a quantitative disagreement with experimental results. The
validity of the t-J model for such analysis has been disputed
in view of the viral theorem violation.35

In Fig. 1(c) the correlated gap shows a domelike structure
as a function of doping for U � 10. The maximal value for the
correlated gap is achieved for U � 10 near doping δ ≈ 0.1.27

If one takes �G as a measure of the superconductivity strength,
one can conclude that moderate to strong interactions and not
too small dopings are optimal for superconductivity as is also
observed for cuprate superconductors. Since the results for
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�G obtained in the fourth and the fifth orders [see Fig. 1(c),
bottom] do not differ remarkably for the investigated parameter
range, we may say that our method provides very accurately the
ground-state properties of GWF for moderate to strong corre-
lations. Note also that the zeroth-order calculations, which can
be viewed as a sophisticated renormalized mean-field theory
(RMFT) calculations, do not yield a stable SC state.

In the Gutzwiller approach, the structure of the gap
function in the effective single-particle Hamiltonian Ĥ eff

0
is optimized variationally. The effective dispersion relation
of the Hamiltonian (5) defines the quasiparticle spectrum
and is thus related38 to the quasiparticle peaks observed in
photoemission experiments. Figure 2(a) shows the effective
components of the quasiparticle (d-wave symmetry) gap
function �eff

i,j ≡ �eff
XY = −�eff

YX (with X = i1 − j1 and Y =
i2 − j2) as a function of doping. The dominant component is
the n.n. contribution �eff

10 , so that the gap has mainly dx2−y2

dependence. However, the other components, particularly �eff
30

and �eff
21 lead to a noticeable deformation of the gap function

away from the optimal doping, δ ∼ 0.1, as shown in Fig. 2(b)
which displays the effective gap in reciprocal space across the
Fermi surface. The deviations from the dx2−y2 -dependence are
most prominent in the antinodal direction. Such deviations
have been observed in high-Tc superconductors39–43 and
investigated theoretically within VMC44 (without inclusion of
effective hoppings beyond third-nearest neighbors). Inclusion
of the longer-range effective parameters is usually omitted in
VMC probably because of the computational cost. Our results
do not necessarily reflect the physics of this phenomenon in
cuprate superconductors where the deviation may be caused by
two energy scales corresponding to a two-gap structure.40 Note
that in the overdoped regime (δ � 0.2) the gap components
become of comparable magnitude [cf. inset in Fig. 2(a)]. This
may be interpreted as a gradual evolution from real-space
pairing for the optimal doping to momentum-space pairing
close to the upper critical concentration δc ≈ 0.32.

One of the most important physical characteristics of the
cuprates is the universal nodal Fermi velocity vF

46 (i.e.,
vF is independent of δ). This quantity, defined as vF =
∇kε

eff(k)|εeff (k)=0, is exhibited in Fig. 3 and the trend agrees
very well with the experimental results (we assume the
lattice constant a = 4 Å and t = 0.35 eV). We also show
the DMFT results for the Hubbard model45,47 in the physical
units (assuming the same values of a and t). RMFT does not
reproduce such behavior28,38 due to lack of momentum-space
differentiation47 (i.e., band renormalization factors qσ are
independent of k), whereas the VMC results were obtained
(to the best of our knowledge) only for the t-J model.48,49

Therefore, our results provide the first quantitative agreement
for the Hubbard model. Note however, that recently the Fermi
velocity for the underdoped samples has shown a doping
dependence.50 The result of Ref. 50 is that the velocity has
the two components: one near the Fermi surface which is
doping dependent and the velocity slightly below the Fermi
surface which is doping independent. We believe that a purely
electronic model should provide only a doping-independent
nodal Fermi velocity (cf. also Ref. 51).

In Fig. 4 we compare the results of our DE-GWF with
VMC results of Ref. 12, obtained for U = 8 and t ′ = 0.

The “VMC-like” DE-GWF results were obtained in the fifth
order by setting the effective parameters teff

i,j and �eff
i,j to

zero beyond n.n. Moreover, we use teff
10 ≡ −t , and �eff

10 ≡ �,
as well as teff

00 as our remaining variational parameters.24

The data “DE-GWF” are the result of the full fifth-order
expansion.

The VMC results12 and the DE-GWF VMC-like results
are close to each other near the half filling, with quantitative
differences away from half filling. The sources of these
discrepancies are approximations of both methods. First, in
VMC calculations, an 8 × 8 lattice is used which may be too
small to emulate the infinite lattice used in DE-GWF. This
can be seen explicitly from Ref. 52 (cf. Fig. 3.21), where the
extrapolation of the gap value in the thermodynamic limit is
shown. The nonzero gap obtained at δ ≈ 0.19 by VMC for the
8 × 8 system extrapolates to zero gap in the thermodynamic
limit obtained from finite-size scaling (which agrees with our
result in Fig. 4.). Second, in our method we perform the
expansion up to the fifth order and we use the |�0〉 lines up to
seventh neighbors.

Differences between the “full” and “VMC-like” DE-GWF
curves show that neglecting the longer range effective parame-
ters can lead to the decrease of the condensation energy by 11%
and the increase of the principal gap component (dx2−y2 -wave)
by 26%.

The DE-GWF method in the present formulation is tailor
made for the Gutzwiller wave function. More general wave
functions have been shown to improve the energy (e.g.,
wave functions with the doublon-holon correlation27,33 or
Baeriswyl wave functions12,53,54). Investigation of the possi-
bility of extension of the DE-GWF method in this direction is
planned.

Summary. We have formulated an efficient diagrammatic
evaluation of the Gutzwiller-correlated wave function and
have carried out our DE-GWF to the fifth order for the
superconducting (SC) ground state. Our approach works in
the thermodynamic limit and for general single-particle states
|�0〉 (with the effective pairing and hopping taken up to seventh
neighbors in the present study), whereby we overcome the
limitations of the variational Monte Carlo method. The DE-
GWF method allows for detailed investigation (as a function
of all relevant parameters) of fundamental phenomena for the
cuprates: the universal nodal Fermi velocity, the kinetic-energy
driven (non-BCS) superconductivity, and the deviations from
the dx2−y2 gap symmetry. We obtain agreement with the
experimental results (in some cases better than for any other
method). We also provide a comprehensive phase diagram
of superconductivity in the Hubbard model comprising the
non-BCS regime of pairing. A competition or coexistence of
SC with antiferromagnetic, and/or Pomeranchuk phases, as
well as the extension to multiband systems is cumbersome but
feasible, and should be investigated separately.
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We are also grateful to Jakub Jędrak and Dirk van der Marel for
discussions. The work was supported in part by the Foundation
for Polish Science (FNP) under the “TEAM” program, as well
as by the project “MAESTRO” from National Science Centre
(NCN), No. DEC-2012/04/A/ST3/003420.

115127-4



SUPERCONDUCTIVITY IN THE TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 88, 115127 (2013)

*jan.kaczmarczyk@uj.edu.pl
†ufspalek@if.uj.edu.pl
‡buenemann@googlemail.com
1D. J. Scalapino, in Handbook of High-Temperature Superconduc-
tivity, edited by J. R. Schrieffer and J. S. Brooks (Springer, New
York, 2007), Chap. 13.

2M. R. Norman, J. Supercond. Nov. Magn. 25, 2131 (2012).
3M. Ogata and H. Fukuyama, Rep. Prog. Phys. 71, 036501 (2008).
4P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys. 78, 17
(2006).

5J. Spałek, Phys. Rev. B 37, 533 (1988).
6R. Arita, K. Kuroki, and H. Aoki, Phys. Rev. B 60, 14585 (1999).
7A. V. Chubukov, D. Pines, and J. Schmalian, in The Physics of
Superconductors, edited by K. H. Bennemann and J. B. Ketterson
(Springer, Berlin, 2003), Chap. 7.

8M. R. Norman, Physics 1, 21 (2008).
9V. Cvetkovic and Z. Tesanovic, Europhys. Lett. 85, 37002 (2009).

10B. Edegger, V. N. Muthukumar, and C. Gros, Adv. Phys. 56, 927
(2007).

11M. Lugas, L. Spanu, F. Becca, and S. Sorella, Phys. Rev. B 74,
165122 (2006).

12D. Eichenberger and D. Baeriswyl, Phys. Rev. B 76, 180504 (2007).
13P. Corboz, S. R. White, G. Vidal, and M. Troyer, Phys. Rev. B 84,

041108 (2011).
14L. Liu, H. Yao, E. Berg, S. R. White, and S. A. Kivelson, Phys. Rev.

Lett. 108, 126406 (2012).
15K. Haule and G. Kotliar, Phys. Rev. B 76, 104509 (2007).
16E. Gull and A. J. Millis, Phys. Rev. B 86, 241106 (2012).
17N. S. Vidhyadhiraja, A. Macridin, C. Şen, M. Jarrell, and M. Ma,
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