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Scaling of electrical and thermal conductivities in an almost integrable chain
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Many low-dimensional materials are well described by integrable one-dimensional models such as the Hubbard
model of electrons or the Heisenberg model of spins. However, the small perturbations to these models required to
describe real materials are expected to have singular effects on transport quantities: integrable models often support
dissipationless transport, while weak nonintegrable terms lead to finite conductivities. We use matrix-product-state
methods to obtain quantitative values of spin/electrical and thermal conductivities in an almost integrable gapless
(XXZ-like) spin chain. At low temperatures, we observe power laws whose exponents are solely determined
by the Luttinger liquid parameter. This indicates that our results are independent of the actual model under
consideration.
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The physics of many one-dimensional systems with ideal-
ized interactions is rather special: the quantum Hamiltonian
has infinitely many independent conserved quantities that
are sums of local operators. Such Hamiltonians are called
“integrable” in analogy with classical Hamiltonian systems
that decompose into independent action and angle variables.
Examples relevant to experiments on crystalline materials
include the Hubbard model of electrons and the XXZ model
of spins; ultracold-atomic systems can realize integrable
continuum models of bosons. However, in all these cases it is
expected that integrability is only an approximation to reality
and that experimental systems have integrability-breaking
perturbations which, while small, drastically change some of
the physical properties.

Transport properties provide an experimentally important
example of the effects of nonintegrable perturbations. In
integrable systems, parts of charge, spin, or energy currents are
conserved, and thus transport is dissipationless even at nonzero
temperature. This corresponds to a finite “Drude weight” D in
the frequency-dependent conductivity:1–16

σ (ω) = 2πDδ(ω) + σreg(ω). (1)

In reality, many quasi-one-dimensional (quasi-1D) systems
are expected to be well described by integrable Hamil-
tonians plus weak nonintegrable perturbations. The zero-
frequency conductivity is regularized (D = 0) by these
perturbations.4–7,12,14,17–21 An experimental example is the
large (but not dissipationless) anisotropic thermal transport
observed in Sr14Cu24O41 attributed to a long mean-free
path of quasi-1D magnons.22–24 However, computing σreg(ω)
quantitatively for a microscopic nonintegrable Hamiltonian is
a challenging problem.

We study a generic gapless nonintegrable system (an XXZ-
like spin chain) using density matrix renormalization group
(DMRG) methods, which were developed in the past few years
to access finite-temperature dynamics of correlated systems.
Using linear prediction, we extrapolate current correlation
functions to large times. This allows us to quantitatively
observe the destruction of the thermal and electrical Drude
weights; we compute the corresponding conductivities and

analyze how they depend on temperature and the strength of the
nonintegrable perturbation. Our key observation is power-law
scaling behavior at low temperatures. The corresponding
exponents are functions of the equilibrium Luttinger liquid
parameter, which indicates that our results should hold for any
gapless nonintegrable model in which no conserved quantity
protects the current. We compare our numerics to a low-
energy field-theory calculation adapting previous bosonization
techniques8,9 to the nonintegrable perturbation in our model.

Model. We use the XXZ model in presence of a staggered
magnetic field which breaks integrability (which we will
demonstrate explicitly by considering level statistics). Its
Hamiltonian is given by H = ∑L

i=1 hi with

hi = Sx
i Sx

i+1 + S
y

i S
y

i+1 + �Sz
i S

z
i+1 + (−1)i hSz

i . (2)

Without the staggered field, (2) is gapless for |�| � 1 and
gapped for |�| > 1. Bosonization leads to the low-energy
effective Hamiltonian for −1 < � � 1 and infinitesimal h:

H = v

2

∫
dx(�2 + (∂xφ)2) + ch

∫
dx cos(2

√
πKφ)

+Humklapp + Hband curv. + Hhigher terms in h, (3)

where � is the conjugate momentum of the bosonic field
φ with the canonical commutation relation [φ(x),�(y)] =
iδ(x − y). The first term in (3) describes a Luttinger liquid.
The Luttinger liquid parameter K is given through Bethe
ansatz: 2K arccos(−�) = π , and the coefficients v and c are
also known exactly.28,29 As the scaling dimension of h is
2 − K , the second term in (3) is relevant and opens a gap
for K < 2 or −√

2/2 < � � 1; the term is irrelevant and (2)
remains in the gapless Luttinger liquid phase for K > 2 or
−1 < � < −√

2/2 (Fig. 1). In the regime where h is relevant,
its effects have been studied perturbatively30,31 and compared
to experiments on spin diffusion in copper benzoate.32,33

Integrability is well defined in classical mechanics, but
the definition of its quantum counterpart remains a subject
of debate.34 It is generally believed that the level-spacing
distribution (the distribution of the differences of the adjacent
eigenenergies) is the exponential distribution for an integrable
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FIG. 1. (Color online) The phase diagram (Refs. 25 and 26) of
(2). The points share the same Luttinger liquid parameter K ≈ 2.4
computed by DMRG (Ref. 27).

model, as levels appear as a Poisson process, and the Wigner-
Dyson distribution for a nonintegrable model. Intuitively, two
nearby levels in an integrable model likely have different
values of at least one integrable quantity, and thus live in
different sectors of Hilbert space that are independent of each
other; hence, their energies are uncorrelated. Nonintegrable
models do not have an extensive number of such sectors
and show energy-level repulsion. The belief has been verified
numerically on a variety of models.35,36 We perform an exact
diagonalization of (2) with periodic boundary conditions.
Figure 2 shows the level-spacing distributions, and the
crossover from Poissonian behavior at h = 0 to the Wigner-
Dyson distribution at nonzero h is clear. Hence, (2) is
nonintegrable for nonzero h.
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FIG. 2. (Color online) The distributions of {Ei+1 − Ei}, where
E1 � E2 � · · · � E4862 are the eigenenergies of (2) for L = 18,� =
−0.8 in the Sz = 1,k = 2π/9 sector (the total magnetization Sz =∑L

i=1 Sz
i and the momentum k are conserved). The green curve and

red curve are best-fit exponential and Wigner-Dyson (orthogonal
ensemble) distributions, respectively. Neither the exponential nor the
Wigner-Dyson distribution appears clearly if we do not restrict to
a symmetry sector of the model. The crossover to Wigner-Dyson
with increasing h is observed independent of the choice of � and
symmetry sector.

Numerical approach. The dc charge (c) and heat (h)
conductivities can be computed via the Kubo formula

σ = lim
tM→∞ lim

L→∞
1

LT
Re

∫ tM

0
〈J (t)J (0)〉 dt, (4)

where the corresponding current operators J = ∑L
i=1 ji are

defined through a continuity equation4

∂thi = jh,i − jh,i+1 ⇒ Jh = i

L∑
i=2

[hi−1,hi],

(5)

∂tS
z
i = jc,i − jc,i+1 ⇒ Jc = i

L∑
i=2

[
hi−1,S

z
i

]
.

The current correlation functions 〈J (t)J (0)〉 can be computed
efficiently using the real-time finite-temperature density matrix
renormalization group (DMRG) algorithm37–46 introduced in
Ref. 11. DMRG is essentially controlled by the so-called
discarded weight ε (we ensure that ε is chosen small enough
and that L is chosen large enough to obtain numerically
exact results in the thermodynamic limit). The simulation is
stopped when the DMRG block Hilbert space dimension χ

reaches χ ∼ 1000–1500. This allows us to access time scales
t ∼ 10–20 which are larger than the inherent microscopic scale
t = 1.

Results for 〈J (t)J (0)〉 are shown in Fig. 3. In the integrable
case h = 0, the heat and charge Drude weights

D = lim
t→∞ lim

L→∞
Re〈J (t)J (0)〉

2LT
(6)
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FIG. 3. (Color online) Heat and charge current correlation func-
tions 〈J (t)J (0)〉 at � = −0.85. Their Fourier transform determines
the corresponding conductivities through Eq. (4). Our data are
consistent with the following picture: the Drude weight [Eq. (6)]
is nonzero only in the integrable case h = 0; a nonintegrable
perturbation h > 0 renders the conductivity finite. DMRG data (solid
lines) are extrapolated using linear prediction (dashed lines).
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FIG. 4. (Color online) Scaling of the heat and charge conductivities of a nonintegrable gapless spin chain. At low temperatures, σc(T ) ∼
T αc(K) is governed by power laws whose exponents are a universal function of the Luttinger liquid parameter K only. At fixed T , σ diverges as
h−2 for h → 0 with h being the strength of the nonintegrable perturbation (Ref. 21). Note that our definition of σh via Eq. (4) differs from the
most common one (Ref. 14) by a factor T −1. The conductivity data points shown have a statistical error of at most 5%. This error results from
the extrapolation of 〈J (t)J (0)〉 via linear prediction and can be estimated by carrying out linear prediction using a variety of fit parameters.
The error associated with the error of the raw DMRG data for 〈J (t)J (0)〉 is negligible compared to this.

are finite. A nonzero h > 0 renders the model nonintegrable;
one expects that the current correlation functions decay to zero
at large times and that the conductivities become finite. Our
data are consistent with this. In order to compute the integral
in Eq. (4) quantitatively, 〈J (t)J (0)〉 needs to be extrapolated.
The heat current correlation function at intermediate to large
temperatures 0.5 � T � ∞ [see Fig. 3(b)] can be fitted by a
single exponential function exp(−λt).47 Oscillations develop
at small T , but it is reasonable to assume that 〈J (t)J (0)〉
can be described by sums of exponentially decaying terms
exp(−λnt + iωnt) (the same holds for the charge current
correlation function). This motivates us to use so-called linear
prediction37,45,48 as an extrapolation procedure. Its stability can
be tested by varying fit parameters (e.g., the number of terms
or the fit interval) and by checking sum rules (see following);
we can obtain accurate results for the heat conductivity at any
h and temperatures 0.2 � T � ∞ as well as for the charge
conductivity at intermediate to large h and small T � 0.3.

Scaling of the conductivities: Numerical results. DMRG
data for the heat and charge conductivities are shown in Fig. 4.
For fixed T and small h, one expects σ to diverge as21

σ ∼ h−2 for h → 0. (7)

This is consistent with our results [for the thermal case see the
inset to Fig. 4(a); data for � = −0.95 (not shown) are similar].
At small T , σc features power laws with nontrivial exponents:

σc ∼ T αc for T → 0. (8)

Our model is a Luttinger liquid at low energies and one thus
expects αc to be a universal function of the Luttinger liquid
parameter K only. This is verified in Fig. 4(b) which shows
σc(T ) for different parameter sets (�,h) sharing the same K

[K is a continuous function of h and �; it can be obtained from
an independent ground-state DMRG calculation,27 and the
parameter sets (�,h) in Fig. 4(b) are determined numerically
such that they all correspond to the same K]. The exponent
αc(K) varies strongly with K; it is consistent with the analytic

prediction αc = 3 − 2K established below [see the insets
to Fig. 4(b)]. The heat conductivity is only accessible at
intermediate to high temperatures T � 0.2; our data in this
regime are almost independent of K [see Fig. 4(a)], suggesting
that we have not reached the limit of low T .

Since for h = 0 the heat current is conserved by the
Hamiltonian, the ac conductivity σh(ω,h = 0) = 2πDδ(ω)
features a Drude peak only. By generalizing Eq. (4) to finite
frequencies,8,9 we can straightforwardly compute σh(ω,h) and
demonstrate that it indeed becomes a δ-function series for
h → 0; the frequency-integrated heat conductivity just yields
the Drude weight (“sum rule”). This is illustrated in Fig. 5
and provides an independent test for the reliability of our
extrapolation procedure.

Bosonization. We now present an analytic calculation
of the low-temperature behavior of the charge conductivity
using bosonization. We closely follow Refs. 8 and 9 which
derive a parameter-free result for σc that is supposed to be
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FIG. 5. (Color online) ac heat conductivity. A Drude peak
emerges as h → 0: the integrated conductivity is independent of h

(right inset) and equal to the Drude weight (left inset).
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correct if no conserved quantity protects the Drude weight.
The current operator (5) reads as Jc = −v

√
K/π

∫
dx �,

and the Kubo formula for the ac conductivity reduces to
σc(ω) = iKω〈φφ〉r (ω)/π . The retarded correlation function
〈φφ〉r is obtained by a perturbative field-theory calculation
to leading order in h, in Humklapp, and in Hband curv.. The
overall leading term governing the dc conductivity reads as
σc = h−2T 3−2K/C(K), which is consistent with Eq. (10).49

This term can be attributed to the staggered field, i.e., the term
which breaks integrability in the lattice model.

From the point of view of the field theory alone, the umklapp
and staggered field terms have the same cosine structure; one
of those terms is insufficient to break integrability of the
field theory. One might thus question the above reasoning
and expect different temperature exponents in the conductivity
depending on which of the two cosines was the “integrability-
breaking small perturbation” on the integrable theory obtained
by the other (i.e., different exponents for large and small h). As
mentioned above, this picture is not supported by our DMRG
data for the lattice model which agrees with the bosonization
result over a broad range of values of h; however, we can not
rule out different behavior at even lower temperatures.

Scaling analysis. We finally carry out a simple scaling
analysis. Combining several assumptions, which are likely to
hold for other 1D models, we establish a scaling form for
the conductivity in which all the exponents are determined
up to one number, the scaling dimension of the integrability-
breaking perturbation. For our model, this is consistent with the
bosonization result (which also yields the scaling dimension).

It is reasonable to assume that Re〈J (t)J (0)〉/LT ≈
A(�,h,T ) exp[−γ (�,h,T )t] at long time as correlations
typically decay exponentially at finite T . The oscillation of
this correlation function (see Fig. 3) is not taken into account,
as it cancels out in computing the integral (4). We also assume
the amplitude A(�,h,T ) does not vanish as T → 0 [note that
the Drude weight D(�,h = 0,T ) is nonzero and continuous as
T → 0]. Then, (4) implies σc ∼ γ −1, and σc takes the scaling
form

σc(�,h,T ) = f (�/T [�],h/T [h])/T , (9)

where [�] and [h] are the scaling dimensions of � and h,
respectively. Note that σc ∼ T −1 for [�] = [h] = 0 or at the
phase transition � = −√

2/2,h = o(1).
In the perturbative regime (i.e., infinitesimal h), [�] = 0

as there is no renormalization of � (it is exactly marginal).
Then, (9) simplifies to σc(�,h,T ) = f (�,h/T [h])/T . As one
expects σ to diverge as h−2 by a golden-rule argument21 unless
this perturbation is insufficient in inducing scattering, we take
f (�,x) ∼ x−2 [the coefficient (not shown) is a function of �

only]. Then,

σc ∼ h−2T 2[h]−1 = h−2T 3−2K, (10)

where in the second equality we have substituted the bosoniza-
tion result [h] = 2 − K . Note that σc ∼ T −1 for K = 2 or at
the phase transition � = −√

2/2,h = o(1).
The scaling-analysis result is consistent with the bosoniza-

tion calculation, which more convincingly justifies the as-
sumptions in this section. However, it is worth pointing
out that from the scaling analysis we still expect scaling
of conductivity at low temperature in a gapless 1D system
even when bosonization is inapplicable. In general, a gapless
1D system with a single velocity of low-energy excitations
will be described by a conformal field theory (CFT) at long
distances, and such theories are effectively ballistic as left- and
right-moving excitations decouple. We expect that the basic
picture that conductivity is controlled by the leading irrelevant
operator that induces scattering will still apply even when the
CFT is more complicated than a free boson.

Outlook. Our work demonstrates an approach valid for
many actual 1D materials, in which integrability-breaking
terms are likely to be present but small. We studied one specific
model but expect that our key result, a power-law scaling of the
conductivity σ ∼ T α with a universal exponent determined by
the Luttinger liquid parameter, should be a general qualitative
feature of any gapless nonintegrable model in which no
conserved operator protects the current. Quantitative results
for other nonintegrable perturbations can be obtained by the
numerical framework used in this paper. It should be possible
to compute optical charge conductivities for comparison to
experiments on conducting polymers and other systems.

On a more basic level, quantum critical transport in one
dimension is controlled by the leading irrelevant operators if
and only if those destroy integrability. In higher dimensions,
quantum critical transport is different because the critical
theory is believed to be nonintegrable, and transport properties
are actively being studied by methods from high-energy
physics. Our results provide a constraint on these methods
in a case where direct computation of transport coefficients is
possible.
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23A. V. Sologubenko, K. Giannó, H. R. Ott, U. Ammerahl, and

A. Revcolevschi, Phys. Rev. Lett. 84, 2714 (2000).
24N. Hlubek, P. Ribeiro, R. Saint-Martin, A. Revcolevschi, G. Roth,
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