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Uniform electron gas at finite temperatures
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We calculate the free energy of the quantum uniform electron gas for temperatures from near 0 to 100 times the
Fermi energy, approaching the classical limit. An extension of the Vashista-Singwi theory to finite temperatures
and a self-consistent compressibility sum rule is presented. Comparisons are made to other local-field correction
methods, as well as recent quantum Monte Carlo simulation and classical map-based results. Accurate fits to the
exchange-correlation free energy from both theory and simulation are given for future practical applications.
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I. INTRODUCTION

The uniform, or homogeneous, electron gas (UEG), also
known as jellium or as a one-component plasma, is a well-
studied system in physics. It is important as a proving ground
for method development. Accurate results provide a better
understanding of the rich underlying physics of classical and
quantum Coulomb correlations, as well as providing a basis
for approximations in more complicated real systems. One
important case of note is density functional theory at zero
temperature, in which local density approximations (LDAs)
using the UEG results for the exchange-correlation (XC)
energy have proved remarkably successful in systems as
diverse as molecules to exotic phases of highly compressed
matter.1,2 A challenge in current research is simulations of
warm dense matter, motivating the pursuit of accurate finite-
temperature UEG results for the corresponding development
of temperature-dependent functionals.

The zero-temperature UEG was the subject of much
theoretical development in the 1960s and 1970s of the last
century. Random phase approximation (RPA) and beyond-
RPA dielectric approximations were particularly successful3–6

in appropriate limits. However, in 1980 Ceperley and Alder7

produced benchmark quantum Monte Carlo (QMC) results
with nearly exact accuracy across a wide range of densities,
though the fixed-node approximation does lead to small errors
in the results for high densities. These accurate values for
the UEG XC energy provided the essential LDA needed
for designing functionals beyond the LDA.8 Almost all
subsequent zero-temperature density functional theory (DFT)
formulations make use of this LDA obtained from the UEG
simulation in some explicit way. The corresponding LDA for
development of finite-temperature DFT, firmly based in the
finite-temperature UEG, has been lacking up until now.

There has been much less development for the
finite-temperature UEG, due in part to lack of experimental
motivation. Today, experimental conditions of warm dense
matter span the range from zero temperature to far above
the Fermi temperature. Until very recently9 there have not
been any QMC-type simulations in this range to extend those
of Ceperley and Alder at zero temperature. However, there
have been QMC investigations into more realistic systems at
finite temperature, such as hydrogen.10–12 For the UEG, RPA
calculations were originally done by Gupta and Rajagopal13

and later revised and fits provided by Perrot and Dharma-
wardana.14 Shortly afterward, beyond-RPA calculations were

done including static15,16 and dynamic17 local-field corrections
(LFCs). A finite-temperature Vashista-Singwi (VS)–type cal-
culation was done using an approximate form for the LFCs.18

In addition other methods have been proposed including the so-
called modified convolution approximation19 and interpolation
approximations.20 Most recently, methods of mapping the
quantum problem to a corresponding classical system have
been proposed,21,22 where effective classical strong coupling
methods such as molecular dynamics simulation and liquid
state theory can be applied.23 Further details of some of these
theories are given in the results and comparisons sections.

Two thermodynamic parameters are required to describe
the equilibrium UEG, chosen here to be the density n

and temperature T . When measured relative to the Fermi
temperature, the dimensionless temperature is

t ≡ kBT /EF , (1)

where EF = h̄2q2
F /2me is the Fermi energy, and

qF = (3π2n)1/3 is the Fermi wave vector. The density
is typically specified in terms of the electron Wigner-Seitz
length r0 = (4πn/3)−1/3. When measured relative to the Bohr
radius aB = h̄2/(mee

2), its dimensionless form is

rs ≡ r0/aB. (2)

Dimensionless thermodynamic properties therefore can be
expressed as functions of t and rs . The importance of Coulomb
coupling is measured by a coupling constant defined as the ra-
tio of the Coulomb energy for a pair at distance r0 relative to the
kinetic energy per particle. In the classical limit the appropriate
kinetic energy is kBT and the classical coupling constant is

� ≡ e2/(r0kBT ). (3)

It is related to rs and t by � = 2λ2rs/t , where λ = (4/9π )1/3.
At very low temperatures the relevant kinetic energy is EF

and the corresponding coupling constant at t = 0 is a function
of rs only.

As previously noted the t = 0 limit has seen much
development, culminating in high-accuracy ab initio simula-
tions. This has also been the case for the classical limit, where
the Fermi degeneracy goes to 0, represented by t � 1.24 The
theoretical development in the intermediate Fermi-degeneracy
region mentioned above has not been benchmarked so that the
relative accuracy of the various methods is unknown. The
objective here is to present an improvement of the finite-
temperature VS model by including a consistency requirement
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on the dielectric function and the pressure derived from
it [the exact compressibility sum rule (CSR) for the small
wave-vector limit of the dielectric function]. The temperature
dependence of the structure (pair correlation function) and
thermodynamics (free energy, compressibility) is calculated
from this improved VS approximation (VSa) in the range
0 � t � 10 for a wide range of rs corresponding to warm
dense matter conditions. The approach of the free energy to
the classical limit is explored also at much higher temperatures.
Comparisons with several other theoretical models and the new
QMC simulation results are also given. In this way, some as-
sessment of the quality and trends of the results is established.

II. VASHISTA-SINGWI MODEL WITH SELF-CONSISTENT
COMPRESSIBILITY

We calculate the UEG at finite temperature by means of an
approximate dielectric function of the form

ε(q,ω) = 1 − vqχ0(q,ω)

1 + G(q)vqχ0(q,ω)
, (4)

where vq = 4πe2/q2 is the Coulomb potential and χ0(q,ω)
is the finite-temperature polarizability of the non-interacting
UEG, and G(q) is the static LFC. For simplicity of notation,
the dependence of these functions on rs and t is not made
explicit except where needed for clarity or emphasis.

The static structure factor is found by the fluctuation-
dissipation theorem as a sum over the Matsubara frequencies
for the polarizabilities of the interacting system15 as

S(q) = −(βn)−1
∞∑

l=∞

1

vq

(
1

ε(q,zl)
− 1

)

= −(βn)−1
∞∑

l=∞

χ0(q,zl)

1 − [1 − G(q)]vqχ0(q,zl)
, (5)

where zl = 2πil/βh̄ and in the second line we have made the
static LFC approximation consistent with Eq. (4).

We choose for G(q) the form given originally by VS6 in
the temperature-dependent generalization

G(q) =
(

1 + a(rs,t)n
∂

∂n

)

×
(

−1

n

∫
dq′

(2π )3

q · q′

q ′2 [S(q − q′,rs,t) − 1]

)
, (6)

where a(rs,t) is a parameter determined below. Contained
within this form are the LFCs for other finite-temperature
calculations. For example, G = 0 is the RPA and a = 0 is
the finite-temperature STLS approximation. In the original
introduction by VS, a was taken as a constant equal to 2/3 for
the zero-temperature UEG. This value was chosen to provide
better agreement with the CSR (below) for metallic densities,
with discrepancies only becoming noticeable around rs = 4.

For a given value of a, Eqs. (5) and (6) form a coupled
pair of equations that must be solved self-consistently. The
resulting S and G may then be used to calculate the dielectric
function and other properties of the UEG. The CSR is an exact
property of the UEG given by

lim
q→0

ε(q,ω = 0) = 1 + vqn
2κ, (7)

where κ is the thermodynamic compressibility defined in terms
of the pressure by

1

κ
= n

∂P

∂n
. (8)

Calculation of the compressibility from an approximate
dielectric function will generally result in a value different
from that obtained from the derivative of the associated
pressure. In order to enforce consistency of the pressure and
dielectric forms we define a(rs,t) for satisfaction at all rs and
t . The two expressions for the compressibility can be written
in the equivalent form

κ0

κ
= 1 + κ0n

2 ∂2(nfxc(n,t))
∂n2

= 1 − κ0n
2γ 4πe2, (9)

where κ0 is the compressibility for the noninteracting UEG. In
the first equality the pressure has been expressed in terms of
the XC free energy per particle fxc. In the second equality the
dielectric function in the form of Eq. (4) has been used, with
the definition γ ≡ limq→0 q−2G(q).

In order to calculate fxc we perform an integration of the
interaction energy over the Coulomb coupling constant. In the
following this integration is replaced as an integration over rs

at constant t :17

fxc(rs,t) = 1

r2
s

∫ rs

0
dr ′

s r ′
seint(r

′
s ,t). (10)

Here eint(rs,t) is the average interaction energy per particle
(average Coulomb potential energy), as distinct from the
corresponding XC energy. This average interaction energy
can be expressed in terms of the structure factor S(q) for
evaluation from the above dielectric theories. From this point
on, the reduced wave vector x = q/qF and Hartree atomic
units (h̄ = me = e = 1) are used. The XC free energy per
particle is then given by

fxc(rs,t) = 1

πλr2
s

∫ rs

0
dr ′

s

∫ ∞

0
dx [S(x) − 1] . (11)

For numerical evaluation Eqs. (5) and (6) are written in the
forms

S(x) = 3

2
t

∞∑
l=−∞

�(x,l)

1 + (2�t/πλx2)[1 − G(x)]�(x,l)
, (12)

where

�(x,l) = −π2

qF

χ0(q,zl)

= 1

2x

∫ ∞

0

dy y

ey2/t−η + 1
ln

∣∣∣∣ (2πlt)2 + (x2 + 2xy)2

(2πlt)2 + (x2 − 2xy)2

∣∣∣∣
(13)

is the dimensionless free-electron polarizability. Here η =
βμ0, where μ0 is the chemical potential of the noninteracting
system, which may be found from t through the Fermi integral

I1/2(η) = 2

3
t−3/2. (14)

Additionally, we make use of the equivalent expression for
S(x) given in Ref. 15 [their Eq. (27)], which allows for efficient
computation in the short-wavelength regime.
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FIG. 1. (Color online) Top: Compressibility ratio from the sum
rule is plotted for various approximate dielectric functions, along
with the ratio from the equation of state. Bottom: The self-consistent
a(rs,t) which satisfies the CSR at t = 1.

Equation (6) is then given by

G(x) = GI (x) + a(rs,t)

(
−x

3

∂

∂x
− rs

3

∂

∂rs

)
GI (x), (15)

where

GI (x)=−3

4

∫ ∞

0
y2 [S(y) − 1]

(
1 + x2 − y2

2xy
ln

∣∣∣∣x + y

x − y

∣∣∣∣
)

dy.

In practice, the derivatives with respect to x and rs are taken
by finite-difference approximations. For x this is simply done
for a calculation at any rs and t . However, for rs this requires
having G(x) for neighboring rs so we solve self-consistently
five points simultaneously [rs − 2δ, rs − δ, rs, rs + δ, rs +
2δ]. The derivative and second derivative of the central point
are solved using finite differences, and the derivatives of the
neighboring points are given by Taylor expansion about the
central point using its second derivative.

Beyond the self-consistency for S and G we impose
self-consistency of Eqs. (9) and (11) to find a(rs,t). Figure 1
shows the results for t = 1 as a function of rs . The top panel
shows the compressibility ratio calculated from the equation
of state (EOS) [first equality of Eq. (9)] in comparison with
that calculated from the dielectric function [second equality of
Eq. (9)]. Several choices for G are illustrated: RPA (G = 0),
STLS (a = 0), the t = 0 VS0 (a = 2/3), and the CSR
constrained result here, the VSa [a(rs,t)]. All of the methods

produce nearly identical results for the EOS calculations and
are shown by the single curve labeled EOS. Clearly the only
results that satisfy the CSR is our curve where it is enforced.
The lower panel shows the self-consistent value of a(rs,t = 1)
as a function of rs . Qualitatively similar results are obtained
at other temperatures as well.

We perform the self-consistent calculation for a(rs,t)
over the temperature and density plane at the values t =
[0.0625,0.125,0.25,0.5,1.0,1.5,2,3,4,6,8,10] and rs at inte-
ger and half-integer values from 0 to 10. For rs , however, the
self-consistent calculation requires a fit of a(rs,t) for all rs and
so those calculations for a given t are performed for rs at 0.01
spacing from 0 to 10. Integration for S(x) and G(x) are done
up to x = 240, and the Matsubara frequencies are summed up
to |l| = 1000.

III. RESULTS AND COMPARISONS

Before presenting the results of our calculations we pro-
vide a brief list of other methods and note those used for
comparisons here. First, we consider the dielectric models
described above, the RPA, STLS, and VSa (present work).
The above method for calculation is applied to all three,
and it is confirmed that the RPA and STLS results are in
agreement with those provided in the original studies.13–15

The STLS was extended to include dynamic LFCs in the
“quantum” STLS (QSTLS) method,17 though the QSTLS
shows negligible energy differences from the STLS for t > 1.
The modified convolution approximation makes use of a static
LFC but solves a different set of integral equations for S and
G.19 Interpolative Padé fits for high density, low density, and
classical limits are given by Ebeling20 and Kremp et al.25 A
quite different approach attempts to apply classical strong-
coupling methods to the UEG using a quantum modified
Coulomb potential and effective thermodynamic parameters.
The classical-map hypernetted-chain method (CHNC) maps
a quantum system with temperature T to a classical system
with temperature Tcf for which classical calculations of
correlation energy, pair distribution functions, etc., are taken
for the quantum system.21 Another classical map enforces the
equivalence of the grand potential and two of its derivatives
between a quantum and a classical system.22 Finally, restricted
path integral Monte Carlo (RPIMC) simulation results have
been performed over the temperature and density range of
interest.9 The presentation below compares our VSa results
with other dielectric models (RPA, STLS), classical map
(CHNC), and quantum simulations (RPIMC). Also shown for
reference are the classical Monte Carlo (CMC) simulations.24

A. Interaction energy

Two equivalent expressions for the XC free energy are given
in Eqs. (10) and (11) as integrations over the coupling constant
(converted to rs) of the interaction energy or structure factor,
respectively. The latter is convenient for evaluation of the the-
ories above, but the former is useful for analysis of the results
provided by RPIMC. In the RPIMC the primary results are the
total average kinetic k and average potential energies v, which
give the total internal energy etot = k + v (lowercase letters
indicate per particle). v is in fact the interaction energy eint

that appears in Eq. (10). This is different from the XC energy,
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exc, whose RPIMC values are the basis for the numerical fit
which is provided in Ref. 9: exc = etot − e0, where e0 = k0 is
the ideal-gas kinetic energy. The XC energy is related to the XC
free energy by the thermodynamic identity exc = fxc + T sxc,
where sxc is the excess entropy. Here we prefer to work with
eint(rs,t), also provided in the RPIMC results.9

To facilitate the comparison of theory and simulation, we
first fit the RPIMC interaction energy data (see Appendix).
The corresponding eint(rs,t) from theory is obtained by a
comparison of Eqs. (10) and (11) for the identification

eint(rs,t) = 1

πλrs

∫ ∞

0
dx [S(x) − 1] |t,rs

. (16)

The numerical fit using STLS has been given in Ref. 29; the
corresponding fit using VSa is given here (Appendix). Next,
these fits are used in Eq. (10) to obtain the XC free energy fxc

for RPIMC, STLS, and VSa. Existing fits for fxc from CHNC
and CMC are also considered in the following.

We stress the importance of fits for fxc value for finite-
temperature DFT and other applications, rather than those for
exc. It is the former that is required for the finite-temperature
LDA in the construction of XC functionals. The remainder of
this paper continues analysis of the various methods for cross
validation and assessment of the best approximation to be used.

The interaction energy per particle divided by the temper-
ature is directly compared in Fig. 2 for the RPIMC, VSa, and
STLS at t = 1. The uncertainties for the interaction energy
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FIG. 2. (Color online) Interaction energy from RPIMC data and
fits for RPIMC, VSa, and STLS as given in the Appendix. The bottom
panel shows differences of RPIMC data and VSa and STLS fits
compared with the RPIMC fit.

as quoted in Ref. 9 are shown but not visually discernible
in these plots. The trends seen here hold for all t : the fit for
the RPIMC is a very accurate representation of the raw data;
the finite-temperature STLS is a very good approximation
to the RPIMC, while its “improved” version, the VSa, is
also good but with a larger discrepancy from the RPIMC. All
subsequent figures utilize the RPIMC fit in lieu of the limited
RPIMC data.

B. Equation of state

The free energy is defined here as the sum of the nonin-
teracting free energy and the XC free energy F = F0 + Fxc,
where we consider the free energy per particle F/N = f . The
noninteracting free energy per particle is given by

f0 = F0/N = − 2

3β

I3/2(η)

I1/2(η)
+ η

β
. (17)

The XC free energy per particle, fxc, for this work is given
by Eq. (11). Similarly, the pressure is P = P0 + Pxc and
found from the derivative of the free energy per particle
for the components, P = n2 d(n(f0 + fxc))/dn. Additionally,
one may separate fxc into exchange only (X) and correlation
(C) components using the known value for fx ,

fx = − 1

2π

(
β

2

)1/2
∫ η

−∞[I1/2(x)]2 dx

I1/2(η)
, (18)

leaving the correlation component as the only value to
calculate. However, direct evaluation of Eq. (11) provides
the XC contribution as a single term and fits are usually
given for XC, so we plot in Fig. 3 the XC free energy
per particle, fxc, relative to the XC energy at zero tempera-
ture (known from zero-temperature QMC calculations). The
classical, high-temperature Debye-Hückel (DH) limit has no
exchange contribution and the correlation component to first
order is fc = − 1

3λD + · · ·, with λD = (4πnβ)1/2. However,
encompassing this limit are the CMC results of Hansen,24

which are shown (Ref. 24 also provides quantum corrections,
but only the classical excess free energy is shown here).

In Fig. 3, we note first that there is a significant temperature
dependence predicted by all models for both rs = 1 and rs = 4
over the whole range considered, 0 � t � 10. Our VSa results
lie between those for the RPA (not shown) and the STLS. This
trend holds true for other properties, such as G(q), S(q), and
g(r), as well. The CHNC (using the fit provided in Ref. 21)
is systematically below these; like the STLS it is a better
approximation to the RPIMC than the VSa, although all are
quite similar. All of the methods appear to be approaching
the classical limit in the same manner. The outlier is the
Padé interpolation, due in large part to the low-t limit being
constructed to go to the Gell-Mann Brueckner limit as opposed
to the exact limit for larger rs .

C. Pair correlation function

The pair correlation function g(r) is calculated from the
static structure factor by

g(r) = 1 + 3

2r

∫ ∞

0
x sin(xr)[S(x) − 1]dx, (19)

where r is in units of q−1
F .
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FIG. 3. (Color online) XC free energy for several calculations,
with the classical limit plotted for comparison, relative to the known
zero-temperature XC energy.

The approximate dielectric methods are compared with
the RPIMC and the classical map of the Perrot and Dharma-
wardana CHNC in Fig. 4. Another classical map,22 (not shown
in figure) also gives results close to those of RPIMC, and both
classical maps have the advantage of preserving the positivity
of g(r). Again, there is a significant t dependence between
t = 1 and 8 in the range r < 1 for both rs = 1 and 4. The
dielectric methods all have non-physical negative values at
short distances for larger rs as can be seen in the rs = 4 panels.
STLS is least negative, though the VSa is much closer to the
STLS than it is to the RPA.

D. Compressibility

Our VSa, by construction, is the only approximate dielectric
function considered here that satisfies the CSR; the STLS,
for example, does not. For comparison of the VSa with the
nondielectric methods we consider the compressibility as
calculated from the EOS as given in Eq. (9) for all methods.
We evaluate the required derivatives for the compressibility
from the fxc fits mentioned above. The CHNC is not shown,
as the fxc fit has some irregularity, which shows up in the
derivatives as occasional wiggles in the compressibility ratio.
We note that those fits were constructed for the free energy,
not the compressibility.

In Fig. 5 the compressibility ratio κ0/κ is plotted at several
values of t as a function of rs . A first surprising observa-
tion is that the purely classical simulation (CMC) provides
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FIG. 4. (Color online) Pair correlation functions at given t and rs .
The y and x axes represent g(r) and r (in units of q−1

F ), respectively.

semiquantitative agreement with the quantum theories and
simulations, except at the smallest t shown. At the lowest
temperature all of the quantum methods are close to the
original VS T = 0 results, crossing 0 just above rs = 5. As
with the fxc shown in Fig. 3, the STLS results lie in between
the VSa and the RPIMC results. At the highest temperature
these three results are essentially indistinguishable.

An interesting feature of the UEG is that at all temperatures
there is a maximum rs beyond which the compressibility
becomes negative. This apparent instability of the UEG system
is not necessarily a true thermodynamic instability, however,
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FIG. 5. (Color online) Compressibility ratio κ0/κ (y axis) as a
function of rs (x axis) for a given t .
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TABLE I. Values of rs for which the compressibility becomes
negative for several t . Also shown are the Coulomb coupling constant
and Debye-Hückel parameter evaluated at the VSa rs .

t VSa STLS RPIMC CMC � λD

0.0625 5.23 5.29 5.38 3.85 45.4 2.23
1 9.88 10.3 10.6 10.1 5.36 0.406
4 33.2 35.0 35.2 34.4 4.51 0.111
10 82.8 86.0 85.4 84.5 4.49 0.044

as we have assumed a uniform background which adjusts to
neutralize the system at no energy cost.26,27 At zero tempera-
ture this maximum is just above rs = 5. For the case of real
metals, which of course are not true UEGs, Cs has the largest
value, at rs = 5.63.28 This instability is far above the density
for the onset of Wigner crystallization. Also known at zero
temperature is a crossover to a spin-polarized system before
Wigner crystallization and, also, the possible existence of more
exotic states such as charge density wave and spin density
wave.26,27 Here we only examine the non-spin-polarized UEG
system and the onset of negative compressibility in such a
state. In Table I we record this maximum rs as given by
the VSa, STLS, RPIMC, and CMC (which includes classical
strong-coupling contributions beyond DH).24 Also listed are
the Coulomb coupling constant, � = 0.543 rs/t , and the DH
parameter, λD = 1.276/

√
trs , both evaluated at the value of rs

for the instability predicted from the VSa.

E. Classical limit

The ideal Fermi gas thermodynamics depends on n and T

only through t , and at t = 10 the classical limit is approached.
For the interacting UEG, properties depend on both t and
rs through the Coulomb interactions and the large-t classical
limit is not uniform in rs . For a fixed rs there is a sufficiently
large t above which the classical limit applies. However, within
this limit the DH limit need not apply. The latter requires, in
addition, a small �. In order to examine the classical limit
we consider the case rs = 1 in the large-t limit. In this limit
correct results should come into agreement with the DH result
since � is small, and the fits are mostly constructed to do so.
Figure 6 shows the XC free energy for rs = 1 and t from 10
to 100. In the top panel the XC free energy shows agreement
among all of the quantum methods: the VSa, STLS, RPIMC,
and CHNC. Additionally, the classical DH and CMC are in
very good agreement with each other, with small differences
becoming visible below t = 25. The difference between these
classical results and the quantum results is mainly due to
the exchange contribution, fx , which is shown near the top
of the plot. In the bottom panel, to highlight the differences
of the quantum methods, fxc is multiplied by t1/2, since the
DH limit is proportional to t−1/2 for a fixed rs . In addition, the
classical methods are shown with fx added.

IV. CONCLUSIONS

In this work we have presented calculations for the UEG
from an approximate dielectric function method based on a
finite-temperature version of the VS static LFC, modified to
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FIG. 6. (Color online) Comparison of XC free energies for large
t at rs = 1. In the bottom plot the exchange free energy fx has been
added to the classical results.

enforce the CSR at all t and rs . This sum rule is violated by the
original t = 0 VS(0) and by previous finite-temperature RPAs
and STLS approximations.

We have made comparisons of equilibrium structure and
thermodynamics calculations with other finite-temperature
RPA, STLS, and classical mapping methods and with RPIMC
results. Our VSa method in general produces results between
those for the RPA and the STLS, though closer to the STLS,
for the UEG properties considered: G(k), S(k), g(r), fxc, and
κ . For fxc, dielectric methods and classical map methods
are similar, as is our fit for the RPIMC. The results for the
compressibility follow these same trends. This includes some
deviation of the VSa from the STLS and RPIMC methods for
intermediate rs , and t values. For g(r) the dielectric methods
produce unphysical negative values at small r and large rs ,
with the VSa slightly more negative than the STLS, while both
the RPIMC and classical map methods produce non-negative
g(r). The simplest dielectric approach, RPA, is not shown
here [except for the g(r) results], as the deviation from other
methods is generally quite large.

Perhaps surprisingly, the VSa with internal consistency for
the CSR deviates somewhat more from the RPIMC results
than its underlying STLS method without this consistency. We
believe the reason for this can be seen in Fig. 1. There, in
order for the CSR to be satisfied, the STLS curve must shift up
towards the RPA curve, the result being a more RPA-like result.
The results then demonstrate a lack of flexibility of the VS/VSa
static local-field model in that, while correcting for the CSR,
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the resulting fxc energies and g(r) accuracy are diminished,
results that are consistent with the original zero-temperature
STLS and VS results.

Finally, we see that the STLS and RPIMC in fact cross-
validate each other very nicely. It has long been known
that STLS gives quite good zero-temperature XC energies
compared to QMC results, and this seems to be true for finite
temperatures as well. This good agreement is also seen to
apply for the interaction energy (e.g., Fig. 2). This contrasts
somewhat with the comparisons of XC energy and RPIMC in
the recent fit analysis by Brown et al.9 One must also consider
the RPIMC data, which show increasing error for smaller rs

and are currently uncorroborated by other QMC-type results.
In summary, we have compared the most accurate

approximations of fxc and found them to be close, but in
particular, the STLS and RPIMC seem to pin down the correct
results. This lends theoretical support for the simulations and
their extension by the fit for the RPIMC fxc given here.
An important application, to be discussed further elsewhere,
is the implementation as a local density functional and the
construction of more complex functionals needed for finite-
temperature DFT.
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APPENDIX: FITS FOR THE EXCHANGE-CORRELATION
FREE ENERGY

An effective fitting procedure for STLS calculations has
been given by Ichimaru in Ref. 29 (p. 290); that fit has been
used for all STLS plots above. We extend that method in this
Appendix to the VSa calculations and RPIMC results. First,
the same functional form is chosen for the interaction energy,
expressed in terms of �,t instead of rs,t , and a least-squares
fitting for the parameters is performed. With the coefficients
known and dependence on � displayed explicitly, the coupling
constant integration of Eq. (10) can be performed to get the
XC free energy per particle, fxc.

The interaction energy per particle is given in Hartree units
by

eint(rs,t) = −�

β

a(t) + b(t)
√

� + c(t)�

1 + d(t)
√

� + e(t)�
. (A1)

Here a(t) is given by the exchange parametrization given in
Ref. 14 as

a(t) = 0.610887 tanh

(
1

t

)

× 0.75 + 3.04363t2 − 0.09227t3 + 1.7035t4

1 + 8.31051t2 + 5.1105t4
.

(A2)

TABLE II. Fit parameters for the exchange-correlation free
energy for the STLS, VSa, and RPIMC given by Eqs. (A1)–(A7).
STLS parameters as given in Ref. 29.

STLS VSa RPIMC

x1 3.4130800 × 10−1 1.8871493 × 10−1 3.4130800 × 10−1

x2 1.2070873 × 101 1.0684788 × 101 8.7719094 × 101

x3 1.148889 × 100 1.1088191 × 102 4.4699486 × 103

x4 1.0495346 × 101 1.8015380 × 101 3.4072692 × 102

x5 1.326623 × 100 1.2803540 × 102 5.1614521 × 103

x6 8.72496 × 10−1 8.3331352 × 10−1 8.6415253 × 10−1

x7 2.5248 × 10−2 −1.1179213 × 10−1 −9.2236194 × 10−2

x8 6.14925 × 10−1 6.1492503 × 10−1 6.1492503 × 10−1

x9 1.6996055 × 101 1.6428929 × 101 2.5191969 × 101

x10 1.489056 × 100 2.5963096 × 101 1.8208366 × 101

x11 1.010935 × 101 1.0905162 × 101 1.8659964 × 101

x12 1.22184 × 100 2.9942171 × 101 1.8463421 × 101

x13 5.39409 × 10−1 5.3940898 × 10−1 5.3940898 × 10−1

x14 2.522206 × 100 5.8869626 × 104 2.9390225 × 102

x15 1.78484 × 10−1 3.1165052 × 103 1.1501733 × 101

x16 2.555501 × 100 3.8887108 × 104 3.2847098 × 102

x17 1.46319 × 10−1 2.1774472 × 103 8.7963510 × 100

Terms b–e are given by

b(t) = √
t tanh

(
1√
t

)
x1 + x2t

2 + x3t
4

1 + x4t2 + x5t4
, (A3)

c(t) =
[
x6 + x7 exp

(
−1

t

)]
e(t), (A4)

d(t) = √
t tanh

(
1√
t

)
x8 + x9t

2 + x10t
4

1 + x11t2 + x12t4
, (A5)

e(t) = t tanh

(
1

t

)
x13 + x14t

2 + x15t
4

1 + x16t2 + x17t4
. (A6)

The fit parameters are chosen to give the correct high-t limit.
In Table II we provide our new fit parameters for both the VSa
and the RPIMC, as well as those for the STLS from Ref. 29.
The coupling constant integration to give the XC free energy
is also given in Ref. 29 as

fxc(rs,t) = −c

e

�

β
− 2

e

(
b − cd

e

)√
�

β
− 1

βe

[(
a − c

e

)

− d

e

(
b − cd

e

)]
ln |e� + d

√
� + 1|

+ 2

βe
√

4e − d2

[
d

(
a − c

e

)

+
(

2 − d2

e

)(
b − cd

e

)]

×
[

tan−1

(
2e

√
� + d√

4e − d2

)
− tan−1

(
d

4e − d2

)]
.

(A7)
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