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Anomaly induced chiral magnetic current in a Weyl semimetal: Chiral electronics
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Electric circuits involving Weyl semimetals possess unusual properties induced by the quantum anomaly. The
chiral magnetic current in a Weyl semimetal subjected to magnetic field modifies the behavior of such circuits
in a drastic way. We consider two explicit examples: (i) a circuit involving the “chiral battery” and (ii) a circuit
that can be used as a “quantum amplifier” of magnetic field. The unique properties of these circuits stem from
the chiral anomaly and may be utilized for creating “chiral electronic” devices.
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Recently, the 3D materials with linearly dispersing
excitations' have attracted significant attention. The existence
of these “chiral” excitations stems from the point touchings of
conduction and valence bands. The corresponding dynamics is
described by the Hamiltonian H = *vro - k, where vy is the
Fermi velocity of the quasiparticle, k is the momentum in the
first Brillouin zone, and o are the Pauli matrices. This Hamil-
tonian describes massless particles with positive or negative
(depending on the sign) chiralities, e.g., neutrinos, and the
corresponding wave equation is known as the Weyl equation,
hence the name Weyl semimetal.' Weyl semimetals are closely
related to 2D graphene,” and to the topological insulators’—
3D materials with a gapped bulk and a surface supporting
chiral excitations. Specific realizations of Weyl semimetals
have been proposed, including a multilayer structure composed
of identical thin films of a magnetically doped 3D topological
insulator, separated by ordinary-insulator spacer layers.*

Weyl semimetals provide a unique opportunity to study
the macroscopic behavior of systems composed by chiral
fermions. In particular, they allow to study, in a condensed
matter system, the chiral magnetic effect expected,ﬁ‘10 and
possibly observed experimentally at Relativistic Heavy Ion
Collider,'! in chirally imbalanced quark-gluon plasma in the
presence of an external magnetic effect as a consequence of
axial anomaly in QCDxQED. Closely related phenomena
have been discussed in the physics of neutrinos,'? conductors
with mirror isomer symmetry,'>!'* primordial electroweak
plasma,'> and quantum wires.'® Note that the role of axial
anomaly and the corresponding Chern-Simons dynamics are
crucial for the existence of the chiral magnetic current; without
the anomaly, this current has to vanish in thermal equilibrium,
in contrast to naive arguments. The effects of the anomaly on
the transport in Weyl semimetals, including the chiral magnetic
effect, have recently been investigated in.!’~20

In this paper, we would like to consider some of the
electric circuits involving Weyl semimetals. We will argue that
the existence of chiral magnetic current in Weyl semimetal
subjected to magnetic field can cause an interesting, and
potentially useful for practical applications, behavior of such
circuits. To be specific, we will consider two explicit examples:
(i) a circuit involving the chiral battery;’ and (ii) a circuit that
can be used as an amplifier of magnetic field, possibly opening
a way to creating a sensor of ultraweak magnetic fields.
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Consider first a cylindrical sample of Weyl semimetal
put inside a solenoid that provides an external, constant
magnetic field of strength B along the longitudinal direction
of cylindrical geometry, say 3, see Fig. 1. The top and bottom
of the Weyl semimetal are touching metallic plates that can
conduct electric currents flowing through the sample. These
two metallic plates are then connected to an outside circuit
which is characterized by a resistance R. Let the cross section
area of the Weyl semimetal sample be A and the longitudinal
length be d.

When an external magnetic field is present, there exists
an anomaly-induced chiral magnetic current density along £,
given by

2
e
Jo=1- le,-mB, (1)

where w; is the chiral chemical potential specifying the
difference between the chemical potential of excitations with
opposite chiralities, and the sum is over different kinds of
band touching Weyl points (“flavors” of chiral fermions). The
chiral chemical potential can either be a property of the Weyl
semimetal,’ or can be stored in the system through the anomaly
equation in parallel electric and magnetic fields.” However in
the former case it is a conserved quantity (for a fixed geometry
of the sample) and thus does not give rise to the chiral magnetic
current in equilibrium. Once an external magnetic field is
applied, the energy stored in the difference of the chemical
potentials of left- and right-handed fermions can be released
by generating the current [Eq. (1)], hence the name chiral
battery.’

Note that according to Eq. (1) a Weyl semimetal is a kind
of battery that provides a definite amount of current, contrary
to conventional batteries that support a definite voltage. The
total anomaly-induced current through the sampleis I, = AJ,,
where A is the area. However, this is not the entire current.
Let the entire current be /, then there is a voltage drop along
the resistance R given by AV = I R. Since the same amount
of voltage drop should also occur along the Weyl semimetal
sample, there is an electric field along %3 direction with a
magnitude

AV IR
E=-=F=-—% @)
d d
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FIG. 1. (Color online) The chiral battery: Weyl semimetal (shown
in gray) connected to the circuit with resistance R in an external
magnetic field B.

note the negative sign of E. This electric field gives rise to a
normal current through conductivity o

I =AcE=—27R, __R, 3)
= o = - = ——1,

" d Ry

where Ry = -4 is the intrinsic resistance of the Weyl
semimetal sample. The total current / should be the sum of 1,
[Eq. (1)]and I, [Eq. (3)], that is determined self-consistently as

I=1,+1 L > kB R,
— fa n — 4]T2i ll’l’l R

0
N A 62 Zk B — Ia (4)
_1+R%4”2 : i —1+R%.

This is the equation governing the performance of the chiral

battery.

Let us now see how the energy discharge works for the
chiral battery. From the total current [Eq. (4)] through the
resistance R and the normal current I, through Ry, the energy
discharge rate can be found using Eqs. (3) and (4) as

2
d€ R e?

Z =RI’+R)JI*=—A*|—) ku; | B~
dt + Kol (1+R%) (4;1221,: M)

&)

This should match the reduction of internal energy of the Weyl
semimetal sample. In the presence of both electric field E as
in Eq. (2) and the magnetic field B, the charge density of the
ith Weyl point changes via triangle anomaly as
doi  kie? kie* IR
i ke p op_ M€ I%p (6)
dt  4m? 472 d
The total volume of the sample is Ad, so that the total rate of
increase of the ith charge is
do; kie?
— = ———AIRB, @)
dt 472
from which the rate of internal energy change is

d&in dQ; kipie?*
int _ il AIRB
d Z“ dr Z 4m2
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using the expression [Eq. (4)] for /, which indeed agrees
precisely with Eq. (5). The time dependence of the chiral
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FIG. 2. (Color online) The quantum amplifier: Weyl semimetal
(shown in gray) wrapped by a solenoid that is connected to the
circuit with resistance R. The chiral magnetic anomalous current
1, is generated in response to magnetic field; the resulting voltage
drop across the Weyl semimetal sample induces a normal component
of the current /,. The total current flowing through the resistance
is ] =1,+ 1, —dQ/dt, where Q is the charge accumulated in the
capacitor formed by the metal leads attached to the sample (shown in
black); note that 7, is negative, see Eq. (12).

battery performance relies on the detailed equation of state
relating po; and w;.

Although the above example requires an external magnetic
field, one can think of another setup that is completely
self-driven, as shown in Fig. 2. A cylindrical Weyl semimetal
sample is put between two metallic plates that form a
capacitor with capacitance C. The longitudinal distance and
the transverse area of the sample are again d and A. In addition
there is a solenoid that wraps the Weyl semimetal sample
N times over the distance d; this solenoid is connected to the
two metal plates. An external circuit with a resistance R is
loaded to the solenoid circuit. Let the total current along the
solenoid and the external resistance R be /. The strength of
the induced magnetic field along £* inside the solenoid is

B N I 9

=l ©))

from the Maxwell’s equation V x B = J, which gives rise to
the anomaly-induced current:

&2 é? AN
L=AJ, = A S kuiB= =N ki ) 251,
47:2; H 47{le il
(10)

Let the charge stored inside the capacitor formed by the two
metallic plates be Q. Since the voltage drop along the capacitor
is AV = Q/C, there exists a longitudinal electric field (note
the negative sign from our definition of Q)

N

E=—r="ca® (an

and we have a normal current along the Weyl semimetal
sample:

I =AcE=-2%0 L) (12)
n = o = —— = —— s
cd CRo

where Ry is the intrinsic resistance of the sample. The charge
conservation law for the capacitor dictates
dQ

— =L+ L+, 13
o +1, + (13)
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whereas the Kirchhoff’s law of vanishing voltage drop along
a closed circuit trajectory gives us

R+t oo (14)
di  Cc~ 7

where L = ATNZ is the inductance of the solenoid. Using
Egs. (10) and (12), the equations (13) and (14) acquire the
form

d 1
2. [( nsz,u,)—+ }I—RO—CQ, (15)

dl R / Q (16)
dt L LC~’
These equations comprise a complete dynamical system given
an initial data (Ip, Qo) at ¢ = 0, and assuming that the chemical
potentials p; are approximately constant during the discharge
process. The time evolution of this system can be solved
analytically by the Ansatz

00\ (C1\ ..,
<1<t>>‘<cz)e ’ an

where the characteristic exponents A1 of the above system are
solutions of

PENT (LI P
R/C L RoLC
1 & AN
— | = kiw; | — + 1| =0, 18
+LC[<4n2lZ “)d +} (18)

one of which has a positive real part, and hence instability, if

: R
_<4%Zk,u,-> >—N<1+R—0>. (19)

When this condition is met, the system has a particular
mode in a discharging phase which develops an exponentially
increasing current I (and Q).

To see how it can be used for detecting an ultraweak
magnetic field, let us introduce a small background external
magnetic field Be that is to be detected. The equation (9) is
modified to

N
B = EI + Bexlv (20)

so that the above equations of motion (15) and (16), now
including an external magnetic field By, become

2-[(m) )

e
-5 —5 D _kili | Bext, 21
ROCQ (4”22,»: M) ot (21)
dI _ R, 1Q )
dt L LC~’

where we have a new source term in the first equation
proportional to the external magnetic field. The above
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inhomogeneous linear differential equation can be solved to
give

()= (8)e e (1)+(8)
(23)

where (Q4,I+)T are the eigenvectors of the eigenvalue
equation with our previous eigenvalues A4,

_ 1 (e ) AN
[ me (i Sikow) “}(Qi):xi(Qi),(%)

yn i

T IC L

and (Q,,1,)" is a particular solution sourced by the external
magnetic field,

(2 X, ki) ARC 1

Q = Xt I)Z__Q
" (47.[22 ktMI)AN+1+— - ! g

RC
(25)

The integration constants Cy are determined by the initial
condition which is naturally Q(0) = 1(0) =0. For any
nonzero By, one finds that Cy are proportional to Bey;.
In particular C; # 0 is induced by having By, so that the
mode growing exponentially as a function of time is indeed
triggered by the external magnetic field Bex:.

One can control the instability condition (19) by varying
the external resistance R of the circuit. Increasing R beyond a
critical value

R>RCER0|:—<4 ZZ/W,>——1} (26)

will remove the instability from the system, so that the device
can stay in a stable condition. One can decrease R below R,
for a detection of an ultraweak magnetic field.

Let us see whether our instability condition (19) can be met
with reasonable parameters of the current Weyl semimetals.
We take 5 meV (millielectron volts) as a typical value for
the chemical potential of Weyl semimetals, and assume a
system of a centimeter size. Note that our formulas are based
on the unit system where i = ¢ = 1, so that the length and
energy are related by 1 cm™' =2 x 1072 meV, and the fine
structure constant is % =uo = % With these values, the 1L.h.s.
of Eq. (19) is

ki L
12 % 102 (2 KH ) ey, 7
—5 meV

whereas the r.h.s. of Eq. (19) is

d 1em?\ /20 [1+ &
1.0x10_2<1cm>( Zm><ﬁ>( loRo)meV. (28)

We see that the condition (19) for the instability can easily be
met with a centimeter size of Weyl semimetal device.

As the system evolves in time, at some point one can
no longer treat u; constant and the system goes out of the
discharging phase [Eq. (19)], so the current [ starts to decrease.
This happens because of the triangle anomaly that yields for
the ith charge density

dp,- _ k,-ez
dt — 4m?

_ ke 0
B = (CdZIQ-I‘aBext), (29)
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using Egs. (11) and (20) for electric and magnetic fields.
The previous equations (21) and (22), combined with the
above equation (29), form a more complete set of dynamical
equations governing the time evolution of the system. One
needs the equations of state

wi = pil{p;}) (30)

to solve the system in detail for a concrete realization of
the Weyl semimetal. Around the Weyl points, the dispersion
relation of the Weyl excitations is linear in momentum

€29}

with an effective “speed of light” v. In the regime of u > T
(low temperature regime), the density from the Fermi-Dirac
distribution with the above dispersion relation is given by

€ =vlp|,

3

pl<pr Q)3 6% 6203’

(32)

using i = vpr. In the opposite regime of high temperature
T > u, the same computation gives

TZ

N —q. 33
PRI (33)

The above equations of state (32) and (33) can be used to
solve the time evolution of the system after our unstable mode
is triggered by an external magnetic field. Since the room
temperature 7, =~ 25 meV is larger than y & 5 meV, the latter
relation (33) can be used to describe a device operating at a
room temperature.
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Let us provide an exemplar solution of the time evolution
assuming a centimeter size device operating at the room
temperature with velocity v = 0.01 (in units of c). We
assume the value of an external magnetic field to be Bex =
10~® Gauss = 0.5 cm™2 which is about the magnetic field
in the human brain. We also take the resistance Ry = R =1
which is dimensionless in our unit system. Noting that the
capacitance and the inductance are given by

A AN?
C=—=1cm, L=7=4000m,

7 (34)

with A=1cm?, d=1 cm, and N =20, our equa-
tions (21), (22), and (29) become

d
d—? = (0.046p + DI — QO+ 1.2 x 103p,
dl 1 1
—=——1]-—0, 35
dt 200" " 2002 (33)
d

2.6 x 1o”d—’; — 00461 0 —12x 10720,

where different quantities are measured in the following units:
The electric charge Q is dimensionless, the current I is
measured in cm™!, the chemical potential © in cm~!, time
in cm.

These units can be easily converted into conventional
ones by restoring the speed of light ¢ = 3 x 10'° cm/sec and
noting that the charge in Coulombs can be obtained from
our (dimensionless) charge by dividing by 6.24 x 10'8. For
example, the typical current on Fig. 3is / =2 x 105 cm™! =

1(t)

500 1000 1500
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I
500 1000

L L Time (cm)
1500 2000

FIG. 3. (Color online) The numerical solution of Egs. (21), (22), and (29) with the parameters, B, = 10~® Gauss and v = 0.01, for a

centimeter size device operating at the room temperature. In conventional units, / = 2 x 10% cm

is 1000 cm = 30 ns (nanoseconds).

~1 = 0.01 Amperes, and the typical time scale
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0.01 Amperes, and the typical time scale is 1000 cm = 30 ns
(nanoseconds).

The initial condition is 7(0) = Q(0) =0 and w(0) =
—5meV = —2.5 x 10> cm~'. In Fig. 3, we show the numeri-
cal solution of Q(#),1(t), and () as a function of time. As we
see in the plots, the system initially develops an exponentially
large signal triggered by the external magnetic field before
the signal eventually dies off. We have checked numerically
that this feature is robust and is observed for a wide range of
parameters.

Even though we need the equation of state to evaluate
the detailed time evolution of the system, there exists a
sufficiently general and interesting feature of the circuit of
Fig. 2. Namely, the instability of that circuit driven by quantum
anomaly makes it a quantum amplifier of magnetic field. In
principle, this instability can be induced by a single quantum
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of magnetic flux through the sample. Therefore the considered
circuit may be utilized as a sensor of ultraweak magnetic
fields.

The circuits discussed above represent only a couple
of examples from a vast array of devices that one can
envision. We hope that the chiral electronics based on
Weyl semimetal circuits can serve as a fascinating way to
explore the macroscopic dynamics induced by the chiral
anomaly, and perhaps open a path towards new electronic
devices.
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