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Electronic Raman scattering and the Fano resonance in metallic carbon nanotubes
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The Fano resonance spectra for the G band in metallic carbon nanotubes are calculated as a function of
laser excitation energy, in which the origin of the resonance is given by an interference between the continuous
electronic Raman spectra and the discrete phonon spectra. We found that the second-order scattering process of
the q �= 0 electron-electron interaction is more relevant to the continuous spectra rather than the q = 0 first-order
process because the q = 0 direct Coulomb interaction vanishes due to the symmetry of the two sublattices of a
carbon nanotube.
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I. INTRODUCTION

Raman spectroscopy of single-wall carbon nanotubes
(SWNTs) and graphene has provided us with a better un-
derstanding of many optical properties, which are important
for characterizing SWNTs and graphene, not only for basic
science understanding but also in applications.1 In particular,
most of the excitonic physics in the Raman spectra of SWNTs
has been investigated intensively in terms of, for example,
the excitation energy dependence (resonance Raman effect),2,3

the chirality dependence (the Kataura plot),4–6 the Fermi
energy dependence (the Kohn anomaly),7–9 the polarization
dependence,10–12 and even the strain dependence.13,14 How-
ever, the origin of the Fano resonance in metallic SWNTs
(mSWNTs), indicated by the presence of a Breit-Wigner-Fano
(BWF) lineshape (which is an asymmetric lineshape) in the G

band (∼1600 cm−1)1 of mSWNTs, is still not well-explained
theoretically. In a previous study, Brown et al. showed the
diameter (dt )-dependent asymmetric spectral lineshape of
the G band, in which the asymmetric factor 1/qBWF depends
on the density of states at the Fermi energy.15 Additionally, the
BWF line shapes appear in graphite intercalation compounds
(GICs), where the 1/qBWF factor depends on the staging
number of GICs and thus also depends on the density of states
at the Fermi energy.16 Therefore, electrons in the gapless linear
energy band of mSWNTs should be expected to exhibit these
same asymmetry-related phenomena, and this asymmetry in
the G band of mSWNTs will be the main focus of this paper.

In the early 1960s, Fano pointed out that the asymmetric
feature of a broadened spectrum comes from an interference
between a discrete excitation spectrum and a continuum
spectrum.17 Now, in our discussion of mSWNTs, electrons
in the linear energy band may play an important role in
giving rise to the continuum spectra, while phonons give
discrete spectra. However, the detailed mechanism of the BWF
line shapes in mSWNTs remains a long-standing debatable
topic. Some reports suggest that the coupling of a collective
excitation (plasmon) with a phonon could explain the origin
of the BWF asymmetry,15,18–20 and some others argue that
the single-particle electron-hole pair and phonon coupling via
the Kohn anomaly are more relevant.21,22 Recently, Farhat

et al. have observed a new feature of the continuum spectra
exclusively in mSWNTs, which is ascribed to the electronic
Raman scattering (ERS).23 The ERS feature (at ∼500 cm−1)
is observed in the energy region between the radial breathing
mode (RBM)1 at ∼200 cm−1 and the G band (∼1600 cm−1). It
also shows no phonon-related feature based on the following
arguments: (1) in comparison to the phonon spectral width
(∼1–50 cm−1), the ERS width is much broader (∼500 cm−1)
and has a smaller peak intensity (IERS ≈ 0.6IG); (2) the energy
of the inelastic scattered light (h̄ωs) in the phonon Raman
spectra increases linearly by increasing the laser excitation
energy EL, while the ERS peak position does not change—it
remains constant at Mii (the ith Van Hove singularity transition
energy); and (3) the ERS feature is suppressed by changing the
Fermi energy, which indicates that the origin of this spectrum
comes from electron-hole pair excitations in the linear band of
mSWNTs by the Coulomb interaction.

In this work, we propose that the BWF feature of mSWNTs
comes from the interference between the G band and the
ERS spectra. We calculate the exciton-exciton interaction
matrix elements, which are responsible for the experimental
observation of the ERS spectra. Based on the fact that
exciton effects in mSWNTs are not negligible due to the
one-dimensional carrier confinement even in the presence of
the screening effect,24,25 the electron-hole pair excitations in
mSWNTs should be described by exciton wave functions.
In parabolic energy bands of mSWNTs, excitons can exist
with a binding energy ∼50 meV, and even in a linear energy
band, the exciton binding energy from calculation is found
to be ∼10 meV, which is of the same order of magnitude
as the ERS energy and thus the exciton effect cannot be
neglected.6 From the calculated results of the present work,
we found that the zero momentum transfer (q = 0) vanishes
in the direct Coulomb interaction because of the symmetry
of the two sublattices in a graphene unit cell, which is a
building block of the SWNT’s unit cell. This finding holds
in the general case, not only for carbon sp2 systems, but also
for other materials that have the same symmetry. This fact also
implies that a higher-order Raman process is relevant to the
ERS phenomenon. By considering the second-order Raman
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FIG. 1. (Color online) Electronic Raman scattering (ERS) may
occur in terms of first-order processes or second-order processes,
and intravalley interactions (AV) or intervalley interactions (EV).
For simplicity, we only draw the direct Coulomb interactions in
this diagram, while the exchange Coulomb interaction processes are
shown in Figs. 2(b) and 2(c). In EV, the interaction between the
photoexcited carrier in the parabolic band and the electron(s) in the
linear band takes place in different valleys (K and K ′ points). It should
be noted that we do not consider a direct Coulomb interaction with a
large momentum transfer q connecting the K and K ′ points, because
its matrix element is two orders of magnitude smaller than that of q
within the same valley [compare the direct interaction described in
the legend of Fig. 2(d) with the exchange interaction described in the
legend of Fig. 2(e) for the EV case].

process, we are able to reproduce the experimental results of
the ERS spectra systematically.

II. THEORETICAL METHOD

Optical processes of the ERS are described in Fig. 1 and
consist of (i) an exciton generation via an exciton-photon
interaction, (ii) excitation of another exciton in the linear
energy band by the Coulomb interaction with the photoexcited
exciton, and (iii) finally, the photoexcited exciton goes back
to the ground state by emitting a photon. The exciton-exciton
interaction in (ii) may occur in either first-order or high-order
processes. Here, we consider up to second-order processes
for simplicity. For the first-order process, the photoexcited
exciton relaxes vertically (q = 0) from a virtual state �vir to
the Mii state after photoabsorption at a wave vector k, while
the other exciton is created in the linear band at wave vector
k′ by the Coulomb interaction. In the second-order process,
the photoexcited exciton is scattered twice by transferring
momentum q and −q by creating two excitons in the linear
band. Due to the existence of two gapless energy bands (the
Dirac cones) in two inequivalent K and K ′ points in the
graphene Brillouin zone, both the first-order and the second-
order processes always have two cases where the electrons in
the parabolic and linear bands may exist in the same valley (AV
intravalley interaction), or they may exist in different valleys
(EV intervalley interaction). After going through the electronic
scattering process, the photoexcited exciton then returns to
the ground state by emitting a photon with resonance energy
h̄ωs = Mii . This is the reason why the ERS peak remains at
Mii , even though we change the laser energy EL.

Considering all the processes shown in Fig. 1, we write the
perturbed Hamiltonian as

He-e =
∑

k,k′,q

W
(±)
k+q,k′−q,k,k′c

†c
k+qc

†c′
k′−qc

v′
k′c

c
k, (1)

where k and k′ denote, respectively, an electron state in the
parabolic and the linear band, while c

†c
k (cv

k) is the creation
(annihilation) operator in the conduction (valence) band.
Although there are many other Coulomb interaction processes,
we only consider those processes described by Eq. (1),
which are responsible for the ERS spectra. The rest of the
Coulomb interaction has already been taken into account in
the exciton calculation.6 The direct (exchange) interaction
Kd (Kx) contributes to the two-body Coulomb interaction W

as follows: W (±) = Kd ± Kx , in which +(−) gives a singlet
(triplet) state for the two electrons. Kd and Kx are expressed
as (see Appendix A for the details):

Kd =
∑

ss ′=A,B

Cc∗
s,k+qC

c∗
s ′,k′−qC

c
s,kC

v
s ′,k′Re[wss ′ (q)], (2)

Kx =
∑

ss ′=A,B

Cc∗
s,k+qC

c∗
s ′,k′−qC

c
s ′,kC

v
s,k′Re[wss ′ (k′ − k − q)],

(3)

where C
c(v)
s,k are the tight-binding coefficients for s = A or B

atomic sites of the conduction (valence) band, and the screened
potential w(q) is given by the random phase approximation
(RPA): w(q) = v(q)/κ[1 + v(q)�(q)].6,12 Here v(q) denotes
the Fourier transform of the Ohno potential, �(q) is the RPA
polarization function, and κ is the static dielectric constant
due to electronic core states, σ bands, and the surrounding
material. In this calculation we use a constant κ = 2.2.6

The exciton-exciton matrix element for the photoexcited
exciton and another exciton in a linear energy band is
calculated using the following formula:

M±
ex-ex(q) = 〈�f |He-e|�vir〉

=
∑
k,k′

Z∗
(k+q)c,kvZ

∗
(k′−q)c,k′vZkc,kvW

(±)
k+q,k′−q,k,k′ .

(4)

Here the photoexcited exciton state is defined by

|�vir〉 =
∑

k

Zn=0
kc,kvc

†c
k cv

k|g〉, (5)

where Zn∗
kc,kv

is the eigenvector of the nth exciton state solved
from the Bethe-Salpeter equation, kc and kv denote wave
vectors for the electron and hole states, respectively, with
kc = kv for a bright exciton, and |g〉 denotes the ground state.6

In Eq. (5), we only use the lowest exciton state n = 0, since
it gives the dominant contribution to the Raman spectra (see
Appendix B). The final state of Eq. (4) is given by

|�f 〉 =
∑
k,k′

Z(k+q)c,kvZ(k′−q)c,k′vc
†c
k+qc

†c
k′−qc

v
k′c

v
k|g〉. (6)

In Figs. 2(a)–2(c), we schematically illustrate the direct
and the exchange Coulomb interaction processes for the AV
and EV interactions. We show the separate contributions from
Kd and Kx in M±

ex-ex of Eq. (4) for a (23,14) mSWNT,
respectively, in Figs. 2(d) and 2(e). Surprisingly, we find
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FIG. 2. (Color online) (a) The direct (AV), (b) the exchange
(AV), and (c) the direct (red) and exchange (green) (EV) Coulomb
interaction process. (d) and (e) contribution from the direct Coulomb
interaction [Eq. (2)] and the exchange Coulomb interaction [Eq. (3)],
respectively, in the exciton-exciton matrix elementM±

ex-ex [Eq. (4)] of
a (23,14) tube (dt = 2.53 nm). The label AV (EV) inside each panel
shows the states, in which two electrons lie in the same (different)
valley. The one-dimensional (1D) wave vector q is projected on the
1D SWNT cutting lines and is expressed in terms of the translational
vector length T . We have T = 0.46 nm for the (23, 14) tube.

that the direct interaction Kd vanishes at q = 0. At q = 0,
only the exchange interaction Kx gives a small contribution
from the AV interaction. The vanishing Kd can be explained
by the presence of three Cc

s and one Cv
s coefficients in Eq. (2).

The product of wave functions always gives an opposite sign
when we exchange A → B in s or s ′ and thus the total
summation over the A and B sublattices vanishes at q = 0
(see Appendix A). As long as we incorporate three Cc and
one Cv coefficients into Kd , the vanishing direct Coulomb
interaction at q = 0 is a general phenomenon in graphene and
SWNT systems. The results from Figs. 2(d) and 2(e) thus imply
that the first-order Raman processes corresponding to the AV
and EV interactions at q = 0 make only minor contributions
to the Raman spectra. Consequently, we should consider the
second-order ERS process, in which the q �= 0 term in Kd

becomes important. It is important to note that in Kd , the
dominant matrix elements arise from q ≈ ±0.1π/T , which
is only 5% of the cutting line length and thus the transition
is almost vertical. In this case, the almost vertical transition
will give a similar Fermi energy dependence to that which is
supposed to be happening for q = 0.23

III. RESULTS AND DISCUSSION

Next, to explain the Fano resonance in mSWNTs, we
calculate the Raman intensity by taking into account each
contribution from the RBM, ERS, and G bands. Here we also
consider that the G band consists of two distinct phonon modes,
namely the in-plane transverse optic (iTO) and longitudinal
optic (LO) modes. Summing up all possible initial (i) and

FIG. 3. (Color online) (a) Calculated result (this work) and
(b) experimental results (adapted from Ref. 23) for the Raman
intensity versus scattered photon energy h̄ωs for a (23,14) tube
where we have the calculated ML

22 = 2.10 eV, and the experimental
ML

22 = 2.08 eV and MH
22 = 2.20 eV. Here ML

22 and MH
22 are the

splitting of the transition energy in mSWNTs due to the trigonal
warping effect.5 The laser excitation energies EL are taken as 2.00,
2.07, 2.10, 2.14, and 2.20 eV.

final (f ) states, we express the Raman intensity as26

I =
∑

i

∣∣∣∣∣
∑
f

(ARBM + AERS + AG)

∣∣∣∣∣
2

, (7)

where ARBM and AG = AiTO + ALO are the phonon spectral
amplitudes, and AERS is the electronic scattering amplitude
(see Appendix C). We do not consider the G′ band because its
position (∼2700 cm−1) is quite far from the ERS and might
not interfere with the ERS, as indicated in Farhat’s experiment
[Fig. 3(b)].

In Fig. 3(a) we show the calculated result of the EL

dependence of the Raman intensity as a function of h̄ωs . In
the present work, we only calculate the EL dependence of
the Raman intensity near ML

22 with some fitting parameters
for the spectral linewidth, which can be found in Appendix
C. We cannot reproduce exactly the relative intensity scale
in Fig. 3(a) with that of the experimental data in Fig. 3(b)
because there are many optical processes interfering with
these spectra other than ERS, G, and RBM. Nevertheless, our
calculated result can explain the behavior of the observed ERS
as shown in Fig. 3(b). The ERS feature has a very broad spectral
width (FWHMERS ≈ 50 meV) with a peak intensity almost
comparable to that of the RBM. Unlike the other phonon
modes, whose peak positions are shifted by changing EL,
the ERS peak remains at the frequency of the Mii transition.
At EL = 2.07 eV, the ERS spectrum starts to appear and
modifies the RBM and the G-band line shapes. At that point,
although EL is 30 meV below Mii , the energy-momentum
conservation during the exciton-exciton scattering process
may be violated by the Heisenberg uncertainty principle
(�t ≈ 10 fs corresponding to �E ≈ 100 meV).

Each Raman intensity calculated from Eq. (7) actually gives
a Lorentzian shape for all phonon modes and also for the ERS
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FIG. 4. (Color online) (a) Calculated Raman spectra for a (23,14)
SWNT with EL = 2.14 eV. The total intensity shown is represented
by the solid line. The dashed lines show contributions from the RBM
and G modes, while the dotted blue line is the contribution from the
ERS. Each line shape for the RBM, the G modes, and the ERS is
Lorentzian. The inset shows the G-band spectra after subtracting the
ERS spectrum. Filled squares are calculated results and the solid
line shows the BWF fitting [Eq. (8)]. (b) The asymmetric factor
(1/qBWF), and (c) spectral width (	) and peak position (ω0) of the
G band as a function of resonance condition (EL − ML

22) for the
(23,14) tube. The solid and dashed arrows are given as a guide for
the corresponding axes.

as presented in Fig. 4(a). However, the broad feature of the
ERS overlaps with the phonon modes and thus the interference
between them gives rise to the asymmetric line shape, peak
shifting, and the enhancement of the G band, which can be
seen in the inset of Fig. 4(a). We find that the asymmetric line
shape of the G band after subtracting the ERS contribution
clearly shows the BWF line shape, fitted by

I (ω) = I0
[1 + (ω − ω0)/qBWF	]2

1 + [(ω − ω0)/	]2
, (8)

where qBWF, 	, and ω0 are parameters to be determined. From
this fitting, we can find and analyze the EL dependence of the
asymmetric factor 1/qBWF, the spectral width 	, and the peak
position ω0 [see Figs. 4(b) and 4(c)]. According to Fano,17

1/qBWF is proportional to the coupling constant between the
continuum spectrum and the discrete spectrum. In our case,
|1/qBWF| (	 or ω0), as a function of EL − ML

22, has a “
”
(“V”) shape, with the maximum (minimum) peak ∼40 meV
above the resonance, as depicted in Fig. 4(b) [Fig. 4(c)].
Moreover, |1/qBWF| reaches a maximum value because the
intensity and the peak position of the ERS allows it to have a
very strong overlap with the G band at that point. This coupling
also induces the narrowing [Fig. 4(c), left y-axis label] and the
shifting of the G-band peak [Fig. 4(c), right y-axis label] closer
to the ERS peak position.

In this study, we do not calculate the dt dependence of
1/qBWF, which was discussed experimentally by Ref. 15. The
reason is that the 1/qBWF is very sensitive to the relative energy
separation between Mii and EL [see Fig. 4(b)]. Thus, in order
to study 1/qBWF dependence of dt , the EL and chiral index
(n,m) should be well-defined in the experiment. However,
Ref. 15 did not discuss either the EL dependence of 1/qBWF

or the characterization of (n,m) for their SWNTs since their
samples are SWNT bundles, and thus we cannot compare the
calculated result with Ref. 15. If we discuss the dt dependence

of 1/qBWF we need to define the EL values relative to Mii

for each mSWNTs. This dt dependence of 1/qBWF will be
discussed elsewhere.

From our theoretical point of view, we predict that the ERS,
which originates from nonzero q, should be suppressed in a
very short mSWNT (L ≈ 50 nm). The discrete k point arises
due to the finite length of the nanotube, which will prevent the
nonvertical transition from satisfying the energy-momentum
conservation. Therefore, to observe the ERS intensity, a
typical length of the mSWNTs should be more than 1 μm.
We also suggest additional conditions as to how the ERS
and asymmetric phonon modes in mSWNTs can best be
observed experimentally. Since the Coulomb interaction is
inversely proportional to dt and since a curvature-induced
band gap (∼ cos θ/d2

t meV) appears for small chiral angles
θ for dt < 1 nm,27 the dt range of mSWNTs that allows us to
observe the ERS and Fano resonance should be around 1–2 nm.
The energy of the second-order exciton-exciton interaction is
only ∼10 meV lower than the first-order process because the
linear band slope is steeper than that of the parabolic band.
Therefore, in order to identify the dominant contribution of
the second-order process, a low-temperature (10–100 K) gate
voltage experiment must be performed. In addition, we expect
that the RBM spectra should exhibit a similar BWF asymmetry
as that shown in the G band due to interference with the ERS.
This phenomenon is open for future clarifications.

IV. SUMMARY

We have formulated a theoretical picture of the ERS by
considering the exciton-exciton interaction. We have shown
that in the direct Coulomb interaction, the zero-momentum
transfer process q = 0 vanishes due to the symmetry properties
of the SWNT sublattices. We found that this fact is a general
phenomenon occurring not only in carbon sp2 systems, but also
in any material that has the same symmetry. Furthermore, by
considering a q �= 0 second-order process, we can consistently
reproduce theoretically the ERS spectra from experiment as
a function of EL. This ERS spectrum is strongly coupled
with the G band and the interference with the ERS spectrum
shows a BWF line shape for the G band. The asymmetry,
narrowing, and frequency shifting of the G band induced by
the interference with the ERS are all sensitive to the peak
intensity ratio IG/IERS and the peak distance between the ERS
and the G band (EL − Mii).
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APPENDIX A: CALCULATION OF THE
ELECTRON-ELECTRON INTERACTION

MATRIX ELEMENT

Here we analytically show that for the electron-electron
interaction between the photoexcited electron and the linear
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band electron, the direct interaction Kd vanishes at q = 0 (and
thus the exciton-exciton matrix element for the direct interac-
tion also becomes zero). This is not due to the exciton effect
but simply comes about because of symmetry considerations.
The direct interaction Kd already vanishes by considering
the symmetry of the A and B sublattices, before taking into
account the summation on k weighted by the exciton wave
function Zk [see Eqs. (2) and (4) in the main paper]. The
interaction between an electron in the parabolic-band and an
electron in the linear band of a metallic single-wall carbon
nanotube (mSWNT) without the screening effect is given by

V
(±)

1,2,3,4 =
∫

drdr′�∗(±)
12 (r,r′)

e2

|r − r′|�
(±)
34 (r,r′), (A1)

where (1,2,3,4) = (k1a1,k2a2,k3a3,k4a4) corresponds to
{(k + q)c,(k′ − q)c,kc,k′

v} in Eq. (1), ai denotes either c

(conduction) or v (valence) band states, and k (k′) is an
electronic wave vector for the parabolic (linear) band. In the
case of SWNTs, the allowed wave vectors are on the so-called
cutting lines and can be expressed by k = μK1 + kK2/|K2|,
where μ = 0,1,...,N − 1 and −π/T � k � π/T .28 Vectors
K1 and K2 are the reciprocal lattice vectors along the
circumferential and axial directions, respectively, while N and
T are the number of hexagons in a SWNT unit cell and the
length of the translational vector, respectively.

The two-body wave function �
(±)
i,j (r,r′) is defined as

�
(±)
i,j (r,r′) = 1√

2
[ψi(r)ψj (r′) ± ψi(r′)ψj (r)], (A2)

with i,j = 3,4 (i,j = 1,2) denoting the initial (final) state,
where the parabolic band electron lies around the k3a3 (k1a1)
state and the linear band electron lies around k4a4(k2a2).
The +(−) sign is taken for the spin singlet (triplet) state.
Substituting Eq. (A2) into Eq. (A1), we obtain

V
(±)

1,2,3,4 = Kd ± Kx, (A3)

where

Kd = 1
2 {K1,2,3,4 + K2,1,4,3} (A4)

Kx = 1
2 {K1,2,4,3 + K2,1,3,4}, (A5)

and

K1,2,3,4 =
∫

drdr′ψ∗
1 (r)ψ∗

2 (r′)
e2

|r − r′|ψ3(r)ψ4(r′). (A6)

Now the one-electron wave function ψi can be explicitly
written as a linear combination of atomic orbitals in a unit cell:

|ψi(r)〉 = |kiai〉 = C
ai

A,ki
|A〉 + C

ai

B,ki
|B〉, (A7)

where the atomic site wave function {|s〉, s ∈ (A or B)} is
given by a Bloch function

|s〉 = 1√
N

N∑
u=1

eik.Rus |φ(r − Rus)〉, (A8)

where R is the atomic position, and φ(r − R) is the atomic
orbital. The coefficient Ca

s,k is obtained from a tight binding

FIG. 5. (Color online) (a) The phase factor �(k) = arctan(ky/kx)
in Eq. (A9) where kx (ky) axis is defined by circumferential (axis)
direction of a zigzag SWNT.29 (b) Schematic figure of one-body
electron wave functions at |kc〉 and |kv〉 as defined by Eq. (A7). For
simplicity, we plot the atomic orbitals only along a one-dimensional
line connecting the A and B atoms (x axis). (c) Schematic figure
of the Coulomb integral Eq. (A11) Kkc,k′c,kc,k′v at q = 0. The two-
body wavefunction |ka(x); k′b(y)〉, (a, b = c, v) is substituted from
(b). Generally, |vss(0)| > |vss′ (0)| with [s,s ′ ∈ (A or B), s ′ �= s] as
defined in Eq. (A12). The red (white) color shows a positive (negative)
value. From the approximation in Eq. (A11), the dominant matrix
elements constituting Kkc,k′c,kc,k′v come from the diagonal part.

method. Evaluating Ca
s,k near the K and K ′ point, we get

Cc
A,K+k = 1√

2
, Cc

B,K+k = − 1√
2
e−i�(k),

Cv
A,K+k = 1√

2
, Cv

B,K+k = 1√
2
e−i�(k),

(A9)

Cc
A,K′+k = 1√

2
, Cc

B,K′+k = 1√
2
ei�(k),

Cv
A,K′+k = 1√

2
, Cv

B,K′+k = − 1√
2
ei�(k),

where �(k) = arctan(ky/kx) is measured from the K or K ′
points [see Fig. 5(a)], vectors corresponding to the K and K ′
points are denoted by K and K′, respectively.12 The shape of
the |ka〉 wavefunctions near the K point at �(k) = 0 show
an antisymmetric (symmetric) function under the A → B

exchange for |kc〉 (|kv〉), as illustrated in Fig. 5(b).
Substituting Eq. (A7) into Eq. (A6), we get

K1,2,3,4 = 1

N2

∑
s1u1,s2u2

⎡
⎣ ∑

s ′
1u

′
1,s

′
2u

′
2

C
a1∗
s1,k1

C
a2∗
s ′

1,k2
C

a3
s2,k3

C
a4

s ′
2,k4

× e
−i(k1.Ru1s1 +k2.Ru′

1s′1
−k3.Ru2s2 −k4.Ru′

2s′2
)

×
∫

drdr′φ
(
r − Ru1s1

)
φ
(
r′ − Ru′

1s
′
1

)

× e2

|r − r′|φ
(
r − Ru2s2

)
φ
(
r′ − Ru′

2s
′
2

)⎤⎦ . (A10)
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The largest contribution from the integrand in Eq. (A10)
comes from (u1s1) = (u2s2) ≡ (us) and (u′

1s
′
1) = (u′

2s
′
2) ≡

(u′s ′). Thus, we can obtain

K1,2,3,4
∼= δ(k3 + k4,k1 + k2)

×
∑
ss ′

C
a1∗
s,k1

C
a2∗
s ′,k2

C
a3
s,k3

C
a4
s ′,k4

vss ′ (k4 − k2),

(A11)

where

vss ′ (q) = 1

N

∑
u′

eiq.(Ru′s′ −R0s )
∫

drdr′ e2

|r − r′|
× |φ(r − R0s)|2|φ(r′ − Ru′s ′ )|2, (A12)

is the Fourier transform of the Coulomb potential. We define
the integration of Eq. (A12) as vss ′ (q),

vss ′ (q) = 1

N

∑
u′

eiq.(Ru′s′−R0s )v(R0s ,Ru′s ′ ), (A13)

where v(R,R′) is the effective Coulomb potential for the π

electron system modeled by the Ohno potential:

v(R,R′) = U0√( 4πε0
e2 U0|R − R′|)2 + 1

, (A14)

in which U0 is the on-site Coulomb potential for two π

electrons at the same site R = R′, defined by6,30

U0 =
∫

drdr′ e2

|r − r′|φ
2
π (r)φ2

π (r′) = 11.3 eV. (A15)

The lower energy level of the exciton in SWNTs is well-
described by this Ohno potential.31 We can show that vAA(q) =
vBB(q) and vAB(q) = v∗

BA(q) because of the symmetry between
the A and B sublattices. The corresponding direct and exchange
terms from Eqs. (A4) and (A5) are now expressed by

Kd = 1

2

{
K(k+q)c,(k′−q)c,kc,k′

v
+ K(k′−q)c,(k+q)c,k′

v,kc

}

=
∑

ss ′=A,B

Cc∗
s,k+qC

c∗
s ′,k′−qC

c
s,kC

v
s ′,k′Re[vss ′ (q)], (A16)

Kx = 1

2

{
K(k+q)c,(k′−q)c,k′

v,kc
+ K(k′−q)c,(k+q)c,kc,k′

v

}

=
∑

ss ′=A,B

Cc∗
s,k+qC

c∗
s ′,k′−qC

c
s ′,kC

v
s,k′Re[vss ′ (k′ − k − q)].

(A17)

Inserting Eqs. (A9) and (A13) into Eqs. (A16) and (A17), at
q = 0, the direct interaction becomes

Kd
k+K,k′+K = 1

4 {Re[vAA(0)] − Re[vAB(0)]

+ Re[vBA(0)] − Re[vBB(0)]}
= 0, (A18)

which works the same for Kd
k+K,k′+K = Kd

k+K′,k′+K =
Kd

k+K,k′+K′ = Kd
k+K′,k′+K′ = 0, and the exchange interaction

becomes

Kx
k+K,k′+K = i

2
sin[�′(k′) − �(k)]Re[vAB(k′ − k)],

(A19)

Kx
k+K′,k′+K = i

2
sin[�′(k′) + �(k)]Re[vAB(k′ − k)].

The exchange interactions also give Kx
k+K′,k′+K′ = Kx∗

k+K,k′+K
and Kx

k+K,k′+K′ = Kx∗
k+K′,k′+K. Equation (A18) proves that the

direct terms Kd in the first-order process at q = 0 vanish,
and only the exchange terms Kx survive. This vanishing
comes from the symmetry of the sublattice wavefunction as
illustrated in Fig. 5(c). The combination of three symmetric
wavefunctions and one antisymmetric wavefunction (and
vice versa) in the Coulomb integral Eq. (A11) leads to the
antisymmetric matrix element under the A → B sublattice
exchange. Thus, in Kd at q = 0, the contribution from AA is
always canceled by BB, and AB is canceled by BA [Eq. (A18)].
Although the shape of the wavefunction in Fig. 5(c) is taken
only for �(k) = 0, the illustration is valid since the phase
factor of the two-body wavefunction will disappear at q = 0
due to complex conjugation. Therefore, the first-order exciton-
exciton scattering process makes a very small contribution to
the ERS spectra so that we must then consider the second-order
process as has been described in the main paper.

If we include the screening effect, we just change v(q) to be
the screened potential w(q) = v(q)/κ[1 + v(q)�(q)]. Here, κ
is the static dielectric constant due to the electronic core states,
the σ band, and the surrounding materials. In this calculation,
we use κ = 2.2, and �(q) is the RPA polarization function,6

which is given by

�(q) = −2
∑

k,a,a′

fk+qa′ − fka′

εk+qa′ − εka

∣∣∣∣
∫

ψ∗
ka(r)e−iq·rψk+qa′ (r)dr

∣∣∣∣
2

,

(A20)

with fka = 1(0) for the valence (conduction) bands. Here, εk
is the single-particle energy, and the summation over k is taken
over all cutting lines in the graphene Brillouin zone.

APPENDIX B: VIRTUAL STATE APPROXIMATION

When an electron in a ground state absorbs a photon with
energy EL, an exciton is thus generated and occupies a virtual
state in which the exciton energy (=EL) may not be resonant
with any exciton energy states. We can then define the virtual
state as a linear combination of the exciton states:

|�vir〉 =
∑

n

An|n〉, (B1)

where |n〉 = ∑
k Zn

kc,kvc
†c
k cv

k|g〉 is the nth exciton state and
An is the coefficient of the transition from the ground state
|g〉 to state |n〉, which is determined from the time-dependent
perturbation theory (TDPT). From the TDPT calculation, we
obtain

An(EL,t) =
√

NAMn,g
ex-op

sin(EL − En)t/2h̄

EL − En

, (B2)

where NA is the normalization constant to guarantee∑
n |An|2 = 1. We eliminate the time-dependency by taking

the root mean square over time in the limit lim τ → ∞. We
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FIG. 6. (Color online) The LO exciton-phonon matrix element
from the nth state to the lowest exciton state M0,n

ex-ph and the exciton-
photon matrix element Mn,i

ex-op from the initial state to the nth exciton
state.35

then obtain the average transition probability:

〈
A2

n(EL)
〉
τ

= NA

( Mn,g
ex-op

EL − En − iγ

)2

, (B3)

where we have included a phenomenological quasiparticle
lifetime γ ≈ 60 meV as suggested by the experiment in Ref. 1.
From Eq. (B3), we can say that the transition probability to
state n is determined by the exciton-photon matrix elements
and by the resonance condition of that energy state to the laser
energy EL.

In Eq. (5), we approximate the virtual state as the lowest
exciton state. We can justify the approximation based on a
calculation of Raman intensity resulting from each exciton
state. In order to obtain the intensity contribution from each
state, we use Eqs. (B1) and (B3) in Eq. (C1) for the LO mode
and set h̄ωs = ML

22, assuming that in Mex-ph a photoexcited
exciton from the nth state emits a phonon and always relaxes
to the lowest exciton state n = 0. Figure 6 shows that M0,n=0

ex-ph

(Mn=0,i
ex-op ) is typically three orders (one order) of magnitude

larger than that in the continuum states. Therefore, the relative
Raman intensity from the lowest exciton state I 0 is almost ten
orders larger than that in the continuum states. Based on this
result, we dismiss the contributions of the continuum exciton
states to the virtual state.

APPENDIX C: CALCULATION OF THE RAMAN
SPECTRA AMPLITUDES

The amplitude of the RBM and the G band can be calculated
by32,33

Aν(ωs) = 1

π

∑
n,n′

{ Mn,i
ex-op

[�Eni − iγ ]

× Mn′,n
ex-ph

[�En′i − h̄ων − i(γ + 	ν)]

× Mf,n′
ex-op

[EL − h̄ων − h̄ωs − i	ν]

}
, (C1)

where ν = RBM or G mode, and �Emi = EL − Em − Ei .
We use a broadening factor γ = 60 meV for the lifetime
of the photoexcited carriers.34 We also utilize the phonon
spectral width for the RBM as a constant 	RBM = 10 cm−1,
and for the G band, which consists of an iTO 	iTO = 20 cm−1

and a LO 	LO = 31 cm−1.21 The exciton-photon (Mb,a
ex-op)

and exciton-phonon (Mb,a
ex-ph) matrix elements for a transition

between states a → b are taken from Jiang’s work.35 We
approximate the virtual states i = f and n = n′. On the other
hand, the amplitude of the second-order ERS process is given
by32,33

AERS(ωs) = 1

π

∑
n,n′,n′′,σ

{ Mn,i
ex-op

[�Eni − iγ ]

× Mn′,n
ex-ex(q)

[�En′i − h̄ω1 − i(γ + 	x)]

× Mn′′,n′
ex-ex(−q)

[�En′′i − h̄ω1 − h̄ω2 − i(γ + 2	x)]

× Mf,n′
ex-op

[EL − h̄ω1 − h̄ω2 − h̄ωs − 2i	x]

}
, (C2)

where we also consider the same virtual state approximation
as in Eq. (C1). Here, ω1 and ω2 are the energies of the linear
band excitons emitted from the exciton-exciton interaction
in the second-order ERS process. The summation over σ

denotes all different processes in the ERS mechanism, i.e., the
intravalley (AV) and intervalley (EV) interactions as shown in
Fig. 1. The electron-electron interaction lifetime is assumed
to have a constant value 	x = 25 meV so as to reproduce the
experimental ERS spectral width.
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