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Quasiclassical physics and T -linear resistivity in both strongly correlated and ordinary metals
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We show that near a quantum-critical point generating quantum criticality of strongly correlated metals where
the density of electron states diverges, the quasiclassical physics remains applicable to the description of the
resistivity ρ of strongly correlated metals due to the presence of a transverse zero-sound collective mode,
reminiscent of the phonon mode in solids. We demonstrate that at T , being in excess of an extremely low Debye
temperature TD , the resistivity ρ(T ) changes linearly with T , since the mechanism, forming the T dependence of
ρ(T ), is the same as the electron-phonon mechanism that prevails at high temperatures in ordinary metals. Thus,
in the region of the T -linear resistivity, electron-phonon scattering leads to near material independence of the
lifetime τ of quasiparticles that is expressed as the ratio of the Planck constant h̄ to the Boltzmann constant kB ,
T τ ∼ h̄/kB . We find that at T < TD there exists a different mechanism, maintaining the T -linear dependence of
ρ(T ), and making the constancy of τ fail in spite of the presence of T -linear dependence. Our results are in good
agreement with exciting experimental observations.
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Discoveries of surprising universality in the properties of
both strongly correlated metals and ordinary ones provide
unique opportunities for checking and expanding our under-
standing of quantum criticality in strongly correlated com-
pounds. When exploring at different temperatures T a linear
in temperature resistivity of these utterly different metals, a
universality of their fundamental physical properties has been
revealed.1 On one hand, at low T the linear T -resistivity

ρ(T ) = ρ0 + AT, (1)

observed in many strongly correlated compounds such as
high-temperature superconductors and heavy-fermion metals
located near their quantum-critical points and therefore
exhibiting quantum criticality. Here ρ0 is the residual
resistivity and A is a T -independent coefficient. Explanations
based on quantum criticality for the T -linear resistivity have
been given in the literature; see, e.g., Refs. 2–5, and references
therein. On the other hand, at room temperatures the T -linear
resistivity is exhibited by conventional metals such as Al,
Ag, or Cu. In the case of a simple metal with a single Fermi
surface pocket the resistivity reads e2nρ = pF /(τvF ),6 where
e is the electronic charge, τ is the lifetime, n is the carrier
concentration, and pF and vF are the Fermi momentum and
the Fermi velocity, correspondingly. Writing the lifetime τ

(or inverse scattering rate) of quasiparticles in the form7,8

h̄

τ
� a1 + kBT

a2
, (2)

we obtain

a2
e2nh̄

pF kB

∂ρ

∂T
= 1

vF

, (3)

where h̄ is the Planck constant, kB is the Boltzmann constant,
and a1 and a2 are T -independent parameters. A challenging
point for a theory is that experimental facts corroborate Eq. (3)
in the case of both strongly correlated metals and ordinary

ones provided that these demonstrate the linear T dependence
of their resistivity.1 Moreover, the analysis of data available in
the literature for the most various compounds with the linear
dependence of ρ(T ) shows that the coefficient a2 is always
close to unit, 0.7 � a2 � 2.7, notwithstanding huge distinction
in the absolute value of ρ, T , and Fermi velocities vF , varying
by two orders of magnitude.1 As a result, it follows from
Eq. (2) that the T -linear scattering rate is of universal form,
1/(τT ) ∼ kB/h̄, regardless of different systems displaying the
T -linear dependence. Indeed, this dependence is demonstrated
by ordinary metals at temperatures higher than the Debye
temperature, T � TD , with an electron-phonon mechanism
and by strongly correlated metals which are assumed to be
fundamentally different from the ordinary ones, in which the
linear dependence at their quantum criticality and temperatures
of a few kelvins is assumed to come from excitations of
electronic origin rather than from phonons.1 We note that in
some of the cuprates the scattering rate has a momentum and
doping dependence omitted in Eq. (3).9–11 Nonetheless, the
fundamental picture outlined by Eq. (3) is strongly supported
by measurements of the resistivity on Sr3Ru2O7 for a wide
range of temperatures: At T � 100 K, the resistivity becomes
again T linear at all applied magnetic fields, as it does at low
temperatures and at the critical field Bc � 7.9 T, but with
the coefficient A lower than that seen at low temperatures.1

Thus, the same strongly correlated compound exhibits the
same behavior of the resistivity at both the quantum-critical
regime and the high-temperature one, allowing us to expect
that the same physics governs the T -linear resistivity in spite
of possible peculiarities of some compounds.

In this paper we show that the same physics describes the T -
linear dependence of the resistivity of both conventional metals
and strongly correlated metals at their quantum criticality.
As an example, we analyze the resistivity of Sr3Ru2O7, and
demonstrate that our results are in good agreement with
experimental facts.
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FIG. 1. (Color online) Schematic plot of two-component electron
liquid at T = 0 with FC. Due to the presence of FC, the system is
separated into two components: The first component is a normal
liquid with the quasiparticle distribution function n0(p < pi) = 1
and n0(p > pf ) = 0; the second one is FC with 0 < n0(pi < p <

pf ) < 1 and the single-particle spectrum ε(pi < p < pf ) = μ. The
Fermi momentum pF satisfies the condition pi < pF < pf .

To develop explanations of constancy of T -linear scattering
rate 1/(τT ), it is necessary to recall the nature and conse-
quences of flattening of single-particle excitation spectra ε(p)
(“flat bands”) in strongly correlated Fermi systems12–15 (for
recent reviews, see Refs. 16–18). At T = 0, the ground state
of a system with a flat band is degenerate, and the occupation
numbers n0(p) of single-particle states belonging to the flat
band are continuous functions of momentum p, in contrast
to discrete standard Landau Fermi liquid (LFL) values 0 and
1, as seen from Fig. 1. Such behavior of n0(p) leads to a
temperature-independent entropy term

S0 = −
∑

p

{n0(p) ln n0(p) + [1 − n0(p)] ln[1 − n0(p)]}.

(4)

Unlike the corresponding LFL entropy, which vanishes
linearly as T → 0, the term S0 produces the non-Fermi-
liquid (NFL) behavior that includes a T -independent ther-
mal expansion coefficient.8,16,19,20 That T -independent be-
havior is observed in measurements on CeCoIn5

21–23 and
YbRh2(Si0.95Ge0.05)2,24 while very recent measurements on
Sr3Ru2O7 indicate the same behavior.25,26 In the theory of
fermion condensation (FC), the degeneracy of the NFL ground
state is removed at any finite temperature, with the flat band
acquiring a small dispersion14,16

ε(p) = μ + T ln
1 − n0(p)

n0(p)
(5)

proportional to T with μ being the chemical potential. The
occupation numbers n0 of FC remain unchanged at relatively
low temperatures and, accordingly, so does the entropy S0. Due
to the fundamental difference between the FC single-particle
spectrum and that of the remainder of the Fermi liquid, a
system having FC is, in fact, a two-component system. The
range L of momentum space adjacent to the Fermi surface
where FC resides is given by L � (pf − pi), as seen from
Fig. 1.

In strongly correlated metals at high temperatures, a light
electronic band coexists with f - or d-electron narrow bands
placed below the Fermi surface. At lower temperatures when
the quantum criticality is formed, a hybridization between this
light band and f - or d-electron bands results in its splitting
into new flat bands, while some of the bands remain light
representing LFL states.27 A flat band can also be formed by a
van Hove singularity (vHs).28–35 We assume that at least one of
these flat bands crosses the Fermi level and represents the FC
subsystem shown in Fig. 1. Remarkably, the FC subsystem
possesses its own set of zero-sound modes. The mode of
interest for our analysis is that of transverse zero sound with
its T -dependent sound velocity ct � √

T/M and the Debye
temperature36

TD � ctkmax � β
√

T TF . (6)

Here, β is a factor, M is the effective mass of electrons
formed by vHs or by the hybridization, TF is the Fermi
temperature, while M∗ is the effective mass formed finally
by some interaction, e.g., the Coulomb interaction, generating
flat bands.27 The characteristic wave number kmax of the soft
transverse zero-sound mode is estimated as kmax ∼ pF since
we assume that the main contribution forming the flat band
comes from vHs or from the hybridization. We note that the
numerical factor β cannot be established and is considered as
a fitting parameter; the rendering of TD given by Eq. (6) is
correspondingly uncertain. Estimating TF ∼ 10 K and taking
β ∼ 0.3, and observing that the quasiclassical regime takes
place at T > TD � β

√
T TF , we obtain that TD ∼ 1 K and

expect that strongly correlated Fermi systems can exhibit a
quasiclassical behavior at their quantum criticality36,37 with the
low-temperature coefficient A entering Eq. (1) A = ALT. In the
case of HF metals with their few bands crossing the Fermi level
and populated by LFL quasiparticles and by HF quasiparticles,
the transverse zero sound makes the resistivity possess the
T -linear dependence at the quantum criticality as the normal
sound (or phonons) does in the case of ordinary metals.37

It is quite natural to assume that the sound scattering in these
materials is near material independent, so that electron-phonon
processes both in the low-temperature limit at the quantum
criticality and in the high-temperature limit of ordinary metals
have the same T -linear scattering rate that can be expressed as

1

τT
∼ kB

h̄
. (7)

Thus, in the case of the same material the coefficient A =
AHT, defining the classical linear T -dependence generated
by the common sound (or phonons) at high temperatures,
coincides with that of the low-temperature coefficient ALT,
AHT � ALT. As we shall see, this observation is in accordance
with measurements on Sr3Ru2O7.1 It is worth noting that
the transverse zero sound contribution to the heat capacity
C follows the Dulong-Petit law, making C possess a T -
independent term C0 at T � TD , as it does in case of ordinary
metals.36 It is obvious that the zero sound contributes to the
heat transport as the normal sound does in case of ordinary
metals, and its presence can violate the Wiedemann-Franz
law; a detailed consideration of the emergence of zero sound
and its properties will be published elsewhere.

115103-2



QUASICLASSICAL PHYSICS AND T -LINEAR . . . PHYSICAL REVIEW B 88, 115103 (2013)

There is another mechanism contributing to the T -linear
dependence at the quantum criticality that we name the second
mechanism in contrast to the first one described above and
related to the transverse zero sound. We turn to consideration
of the next contribution to the resistivity ρ in the range of
quantum criticality, at which the dispersion of the flat band
is governed by Eq. (5). It follows from Eq. (5) that the
temperature dependence of M∗(T ) of the FC quasiparticles
is given by

M∗(T ) ∼ ηp2
F

4T
, (8)

where η = L/pF .16–18 Thus, the effective mass of FC quasi-
particles diverges at low temperatures, while their group
velocity, and hence their current, vanishes and the main
contribution to the resistivity is provided by light quasiparticle
bands. Nonetheless, the FC quasiparticles still play a key
role in determining the behavior of both the T -dependent
resistivity and ρ0. The resistivity has the conventional
dependence6

ρ(T ) ∝ M∗
Lγ (9)

on the effective mass and damping of the normal quasiparticles.
Based on a fact that all the quasiparticles have the same
lifetime, one can show that in playing its key role, the FC
makes all quasiparticles of light and flat bands possess the
same unique width γ and lifetime τq given by Eq. (2).8,38 As
a result, the first term a0 on the right-hand side of Eq. (2)
forms an irregular residual resistivity ρc

0, while the second
one forms the T -dependent part of the resistivity. The term
“residual resistivity” ordinarily refers to impurity scattering.
In the present case, the irregular residual resistivity ρc

0 is
instead determined by the onset of a flat band, and has no
relation to scattering of quasiparticles by impurities.8 The two
mechanisms described above contribute to the coefficient A

on the right-hand side of Eq. (1) and it can be represented
as A � ALT + AFC, where ALT and AFC are formed by
the zero sound and by FC, respectively. Coefficients ALT

and AFC can be identified and differentiated experimentally,
for ALT is accompanied by the temperature-independent
heat capacity C0, while AFC is escorted by the emergence
of ρc

0.
A few comments are in order here. As we have seen above,

the presence of flat bands generates the characteristic behavior
of the resistivity. Besides, it has a strongly influence on the
system properties by creating the term S0, making the spin
susceptibility of these systems exhibit the Curie-Weiss law, as
is observed in the HF metal CeCoIn5.12 The term S0 serves as
a stimulator of phase transitions that could lift the degeneracy
and make S0 vanish in accordance with the Nernst theorem.
As we shall see, in the case of Sr3Ru2O7 the nematic transition
emerges. If a flat band is absent, the T dependence of the
resistivity is defined by the dependence of the term γ , entering
Eq. (9), on the effective mass M∗(T ) of heavy electrons, while
the spin susceptibility is determined by M∗(T ).16

We now consider the HF compound Sr3Ru2O7 to illustrate
the emergence of the both mechanisms contributing to the
linear T dependence of the resistivity. To achieve a connected
picture of the quantum-critical regime underlying the the
quasiclassical region in Sr3Ru2O7, we have to construct its

T -B phase diagram. We employ the model28–35 based on
vHs that induces a peak in the single-particle density of
states (DOS) and leads a field-induced flat band.39 At fields
in the range Bc1 < B < Bc2, the vHs is moved through
the Fermi energy and the DOS peak turns out to be at or
near the Fermi energy. A key point in this scenario is that
within the range Bc1 < B < Bc2, a repulsive interaction (e.g.,
Coulomb) is sufficient to induce FC and formation of a
flat band with the corresponding DOS singularity locked to
the Fermi energy.16–18,39 Now, it is seen from Eq. (5) that
finite temperatures, while removing the degeneracy of the FC
spectrum, do not change the excess entropy S0, threatening
the violation of the Nernst theorem. To avoid such an entropic
singularity, the FC state must be altered as T → 0, so that S0

is to be removed before zero temperature is reached. This can
take place by means of some phase transition or crossover,
whose explicit consideration is beyond the scope of this paper.
In the case of Sr3Ru2O7, this mechanism is naturally identified
with the electronic nematic transition.28–30

The schematic T -B phase diagram of Sr3Ru2O7 based on
the proposed scenario is presented in Fig. 2. Its main feature
is the magnetic-field-induced quantum critical domain created
by quantum critical points situated at Bc1 and Bc2, generating
FC and the associated flat band. In contrast to the typical phase
diagram of a HF metal,16 the domain occupied by the ordered
phase in Fig. 2 is seen to be approximately symmetric with
respect to the magnetic field Bc � (Bc2 + Bc1)/2 � 7.9 T.32

The emergent FC and quantum-critical points are considered
to be hidden or concealed in a phase transition. The area
occupied by this phase transition is indicated by horizontal
lines and restricted by the thick boundary lines. At the critical
temperature Tc where the new (ordered) phase sets in, the
entropy is a continuous function. Therefore the top of the
domain occupied by the new phase is a line of second-order
phase transitions. As T is lowered, some temperatures T 1

tr
and T 2

tr are reached at which the entropy of the ordered
phase becomes larger than that of the adjacent disordered

FIG. 2. (Color online) Schematic phase diagram of the metal
Sr3Ru2O7. The quantum critical points (QCPs) situated at the critical
magnetic fields Bc1 and Bc2 are indicated by arrows. The ordered
phase bounded by the thick curve and demarcated by horizontal lines
emerges to remove the entropy excess given by Eq. (4). Two arrows
label the tricritical points T 1

tr and T 2
tr at which the lines of second-order

phase transitions change to the first order. The quasiclassical region
is confined by two lines at the top of the figure and by the top line of
the ordered phase.
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phase, due to the remnant entropy S0 from the highly entropic
flat-band state. Therefore, under the influence of the magnetic
field, the system undergoes a first-order phase transition upon
crossing a sidewall boundary at T = T 1

tr or T = T 2
tr , since

entropy cannot be equalized there. It follows, then, that the
line of second-order phase transitions is changed to lines of
first-order transitions at tricritical points indicated by arrows
in Fig. 2. It is seen from Fig. 2 that the sidewall boundary
lines are not strictly vertical, due to the stated behavior of
the entropy at the boundary and as a consequence of the
magnetic Clausius-Clapeyron relation (as discussed in Refs. 30
and 31). The quasiclassical region is located above the top
of the second-order phase transition and restricted by two
lines shown in Fig. 2. Therefore, the T -linear dependence
is located in the same region and represented by AT with A �
ALT + AFC. We predict that in this region the heat capacity
C contains the temperature-independent term C0 as that of
the HF metal YbRh2Si2 does,40 while jumps of the residual
resistivity, represented by ρc

0 in Sr3Ru2O7,28 are generated by
the second mechanism.8,39

The coefficients AFC, ALT, and AHF can be extracted
from measurements of the resistivity ρ(T ) shown in the left
and right panels of Fig. 3.1,32 For the sake of clearness,
the left panel shows only a part of the data on ρ(T ) that
was measured from 0.1 K to 18 K at Bc, and exhibits
the T -linear dependence between 1.4 K and 18 K and
between 0.1 K and 1 K.32 The coefficient A � ALT + AFC �
1.1 μ	 cm/K between 18 K and 1.4 K. Since TD ∼ 1 K,
we expect that between 1 K and 0.1 K the coefficient A is
formed by the second mechanism and AFC � 0.25 μ	 cm/K.
The right panel reports the measurements of ρ(T ) for T > Tc

up to 400 K.1 The dashed line shows the extrapolation of the
low-temperature linear resistivity at T < 20 K and Bc with
A � 1.1 μ	 cm/K, and the solid line shows the extrapolation
of the high-temperature linear resistivity at T > 100 K with
AHT � 0.8 μ	 cm/K.1 The obtained values of A allow us to
estimate the coefficients ALT and AFC. Due to our assumption

FIG. 3. (Color online) Left panel: The resistivity ρ(T ) for
Sr3Ru2O7 at the critical field of Bc = 7.9 T (Ref. 32). Two straight
lines display the T -linear dependence of the resistivity exhibiting a
kink at T = Tc. At T > Tc the T -linear resistivity is formed by the
zero sound and FC contributions, while at T < Tc the linear part
of the resistivity comes from the FC contribution. Right panel: The
resistivity at Bc over an extended temperature range up to 400 K
(Ref. 1). The dashed line shows the extrapolation of the low-T -linear
resistivity at T > Tc, and the solid line shows the extrapolation of the
high-T -linear resistivity formed at T > 100 K by the common sound.

that ALT � AHT, we have A − ALH � AFC � 0.3 μ	 cm/K;
this value is in good agreement with AFC � 0.25μ	 cm/K.
As a result, we conclude that for Sr3Ru2O7 with its precise
measurements the scattering rate is given by Eq. (7), and does
not depend on T , provided that T � TD and the relatively
small term AFC is omitted. On the other hand, at T < TD

AHT/AFC � 3 and the constancy of the lifetime τ is violated,
while the resistivity exhibits the T -linear dependence. It is seen
from the left panel of Fig. 3 that the change from the resistivity
characterized by the coefficient ALT to the resistivity with AFC

is seen as a kink at Tc = 1.2 K representing both the entry
into the ordered phase and a transition region at which the
resistivity alters it slope. We expect that the constancy can
also fail in such HF metals as YbRh2Si2 and the quasicrystal
Au51Al34Yb15 that exhibits the heavy-fermion behavior.41,42
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