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The dynamical cluster approximation (DCA) is a systematic extension beyond the single-site approximation
in dynamical mean field theory, to include spatially nonlocal correlations in quantum many-body simulations of
strongly correlated systems. We extend the DCA with a continuous lattice self-energy in order to achieve better
convergence with cluster size. This method, which we call DCA+, cures the cluster-shape dependence problems
of the DCA, without suffering from causality violations of previous attempts to interpolate the cluster self-energy.
A practical approach based on standard inference techniques is given to deduce the continuous lattice self-energy
from an interpolated cluster self-energy. We study the pseudogap region of a hole-doped two-dimensional
Hubbard model and find that, in the DCA+ algorithm, the self-energy and pseudogap temperature T ∗ converge
monotonously with cluster size. Introduction of a continuous lattice self-energy eliminates artificial long-range
correlations and thus significantly reduces the sign problem of the quantum Monte Carlo cluster solver in the
DCA+ algorithm compared to the normal DCA. Simulations with much larger cluster sizes thus become feasible,
which, along with the improved convergence in cluster size, raises hope that precise extrapolations to the exact
infinite cluster size limit can be reached for other physical quantities as well.
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I. INTRODUCTION

The study of interacting electrons in a crystalline solid
remains one of the most challenging problems of condensed
matter physics. On a purely theoretical level, these models
give us insight on spontaneous symmetry breaking, which
leads to new ground states with exciting properties such
as superconductivity. On a more practical level, the lattice
models allow us to better understand materials in which
the correlations between electrons determine their physical
properties. The most famous examples of such materials are
the high-Tc cuprates1 and the recently discovered pnictides.2

A better understanding of how the Cooper pairs are formed in
these materials might lead us in the future to the creation of new
materials with higher superconducting transition temperature.

One of the methods of choice to investigate interact-
ing electrons on a lattice model is the dynamical mean
field theory (DMFT),3 which in conjunction with model
parameters derived from first-principles electronic-structure
calculations4–8 is now capable of predicting spectral properties
of transition-metal oxides9 and heavy-fermion materials.10–15

The study of the paring mechanism in superconductors,
however, requires inclusions of dynamic correlations between
lattice sites, and hence the extension of DMFT beyond
the single-site approximation. To this end, several quantum
cluster extensions to DMFT have been developed during the
past 15 years.16–19 Among these is the dynamical cluster
approximation (DCA),19–21 a systematic extension to DMFT
that includes nonlocal correlations through coarse graining
in momentum space. The DCA relies on the assumption
that the self-energy function is a localized function in real
space. In infinite dimensions, it has been proven that the
self-energy � is a delta function in real space,22 in which
case this assumption trivially holds. In practice, we see that
the locality increases with increasing dimension. This explains

why a single-site DMFT approach generally works better
for three-dimensional (3D) materials, but fails to describe
materials of quasi-one-dimensional (1D) or -two-dimensional
(2D) nature.

The dynamical cluster approximation was developed to
study materials of 2D nature by allowing the self-energy to be
nonlocal. In the DCA, the infinite lattice problem is reduced to
a finite-size quantum cluster impurity with periodic boundary
conditions, embedded into a self-consistent mean field. This
reduction is achieved via a coarse-graining procedure of the
Green’s function, in which the Brillouin zone is divided into
Nc patches and the self-energy � is assumed to be constant on
these patches. In this way, all correlations within the cluster are
dealt with exactly, while long-range correlations outside the
cluster are described via a mean field. If the cluster impurity
problem is solved exactly, such as with quantum Monte Carlo
(QMC) integration, the DCA will reproduce the exact solution
of the lattice model in the limit of infinite cluster size.

In practice, the fermionic sign problem23,24 imposes an
upper bound to the cluster size and a lower bound to the
temperature which can be accessed. While small clusters
have proven to give us an excellent qualitative insight on the
physical phenomena,19 most physical quantities, such as the
superconducting transition temperature Tc, converge poorly on
the available small clusters.25 The DCA can therefore not be
used as a reliable method for quantitative predictions of those
observables.

There are two important factors that influence the results
of the DCA, both related to the choice of the cluster. The
most obvious factor is the mean field approximation, which
reduces the momentum anisotropy of the self-energy as the
clusters become smaller. One can only avoid this error by
considering clusters with a sufficiently large size. In practice,
the critical cluster size is obtained by comparing physical
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FIG. 1. (Color online) The positions of the cluster momenta { �K}
and shape of the patches for two 16-site DCA clusters. Notice that
the 16B-site cluster does not have the same point-group symmetry
as the Brillouin zone, leading to a lattice self-energy with a lower
symmetry.

quantities on different cluster sizes. More complicated is the
influence of the geometry of the cluster. There are a set of
different clusters, all of which have the same cluster size
but different shape and therefore different positions of the
cluster momentum points. In Fig. 1, we show two 16-site
clusters for which this is the case. The different positioning
of the cluster momentum points in these two clusters leads
to a different geometric shape of the coarse-graining patches
and thus a different parametrization of the self-energy. This is
illustrated in Fig. 2, where the momentum dependence of the
DCA self-energy at the lowest Matsubara frequency is shown
for the 16A- and 16B-site clusters introduced in Fig. 1. The
relative error between the self-energies on the different clusters
is close to 100% around the Fermi surface, making it unsuitable
to derive any quantitative results from this calculation.

One can argue that the influence of the mean field approx-
imation for clusters with the same size is similar. Therefore,
the difference in results can be brought back to the shape of
the coarse-graining patches. One example is the difference
in superconducting transition temperature Tc between the
16A- and 16B-site clusters.25 The role of the geometry has

been studied intensively by investigating the evolution of the
magnetic and superconducting transition temperatures over
different cluster sizes25,26 or by comparing the site occupancies
of different clusters over a wide range of doping.27,28

The geometric shape dependence of the self-energy is built
into the DCA by construction since the DCA self-energy is
expanded on the coarse-grain patches as29

�(�k,�m) =
∑

i

φ �Ki
(�k) � �Ki

(�m). (1)

Here, the set of patches {φ �Ki
(�k)} is formally defined through

the cluster momenta { �Ki},

φ �Ki
(�k) =

{
1 ∀ j : |�k − �Ki | � |�k − �Kj |,
0 ∃ j : |�k − �Ki | > |�k − �Kj |

(2)

and � �Ki
(�m) is the cluster self-energy for momentum �Ki .

In this paper, we present an extension to the DCA that
allows the self-energy to be expanded in an arbitrary large set of
smooth basis functions, and thereby itself becoming a smooth
function of momentum. The inclusion of a smooth self-energy
into the framework of the DCA requires a different fundamen-
tal look at the algorithm. The resulting extended algorithm will
be called DCA+, indicating an incremental generalization to
the well-known DCA algorithm. The distinguishing feature of
the DCA+ algorithm that sets it apart from the DCA algorithm
is that cluster and lattice self-energies are in general different.
In the DCA, the lattice self-energy �(�k) is a simple extension
of the cluster self-energy � �Ki

via the step function form in
Eq. (1). It therefore has jump discontinuities between the
patches. In the DCA+, the lattice self-energy is a function
with continuous momentum dependence, which when coarse
grained is equal to the cluster self-energy.

The focus of this paper is threefold. First, we will present
the theoretical background of the DCA+ algorithm, without
going into any practical details. Next, we introduce a practical
implementation for the DCA+ algorithm and discuss in detail
the numerical aspects of the lattice-mapping implementation.
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FIG. 2. (Color online) Momentum dependence of the DCA and DCA+ self-energies (red and black represent the imaginary and real parts,
respectively) calculated on the 16A and 16B clusters in a half-filled Hubbard model with nearest-neighbor hopping t = 1, Coulomb interaction
U/t = 7, and next-nearest-neighbor hopping t ′/t = −0.15 at a temperature T = 0.2. For the DCA, one clearly sees a large difference between
the self-energies of the two clusters at the section (π,0) → (0,π ), which is close to the Fermi surface and thus physically the most relevant part
of the self-energy. In the DCA+, the self-energies of the two clusters agree very well.
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Finally, we apply the DCA+ algorithm to the single-band
Hubbard model in order to investigate the pseudogap behavior,
which has recently been investigated in a systematic way
with the DCA.27,28 In the theory section, we first derive the
coarse-graining equations for the DCA+, which define how
the lattice system is mapped onto an effective cluster problem.
This will introduce the key concepts of the DCA+ approach
on a general level. Next, we discuss the structure of the
DCA+ algorithm in more detail. Here, we will pay special
attention to the lattice mapping, i.e., the inversion of the coarse
graining, where a lattice self-energy is estimated from a given
cluster self-energy. We will show that the lattice mapping is
only possible if the DCA assumption of a localized self-energy
in real space is upheld. In the implementation part, we will
discuss the lattice mapping in detail on a practical level. In
this paper, we propose to perform the lattice mapping in two
steps. First, we interpolate the self-energy obtained from the
cluster solver. Next, we deconvolute the interpolated cluster
self-energy, where the patch φ�0(�k) is used as the convolution
kernel. In the physics section, we will use the DCA+ to
investigate the pseudogap behavior in the low-doping region
of the two-dimensional Hubbard model. The self-energy in
this phase is known to be strongly momentum dependent
and we will show that the pseudogap transition temperature
T ∗ converges faster with regard to the cluster size in the
DCA+ than in the DCA.

All calculations in this paper were performed for a single-
band Hubbard model

H =
∑
ij

tij c
†
iσ cjσ + U

∑
i

ni↑ni↓. (3)

Here, c
†
iσ (ciσ ) creates (destroys) an electron with spin σ on

lattice site i and niσ = c
†
iσ ciσ is the corresponding number

operator. The hopping matrix tij includes nearest- (t = 1)
and next-nearest- (t ′) neighbor hopping and U is the onsite
Coulomb repulsion. The effective cluster problem of the DCA
and DCA+ is solved with a continuous-time auxiliary-field
quantum Monte Carlo algorithm.30,31

II. THEORY

In this section, we present the generic structure of
the DCA+ algorithm, without going into any implementa-
tion details. First, we introduce the key features of the
DCA+ algorithm that distinguish it from the DCA, and show
that the latter is just a specialization of the former. Next,
we present a geometric interpretation of the DCA+ algorithm
in terms of the functional representation space of the self-
energy. This interpretation provides guidance for how cluster-
dependent features are incorporated into the lattice self-energy,
and offers insights for the derivation of a practical implemen-
tation of the DCA+ algorithm that will be discussed in the
following section. In order to keep the notation simple, we will
omit the frequency parameter � in all equations. Furthermore,
all single-particle functions defined on the impurity cluster
are represented by a subscript on the cluster momenta (e.g.,
the cluster self-energy � �K ), while the continuous lattice
single-particle functions will have the usual dependence on
the momentum vector �k [e.g., the lattice self-energy �(�k)].

An overline over the quantity signifies that the latter has been
coarse grained.

A. DCA and DCA+ formalisms

A system of interacting electrons on a lattice is generally
described by a Hamiltonian H = H0 + Hint, where the kinetic
energy H0 is quadratic in the fermion operators and the
interaction Hint is quartic. Its free energy � may be written
in terms of the exact single-particle Green’s function G as

�[G] = Tr ln(−G) + �[G] − Tr
[(

G−1
0 − G−1

)
G

]
. (4)

Here, we have used a matrix notation for the Green’s function
G of the interacting system described by H and the Green’s
function G0 of the noninteracting system described by H0.
�[G] is the Luttinger-Ward functional32 given by the sum
of all vacuum-to-vacuum “skeleton” diagrams drawn with G.
The self-energy � is obtained from the functional derivative
of �[G] with respect to G (Refs. 33 and 34):

� = δ�[G]

δG
, (5)

and is related to the Green’s function via the Dyson equation

G−1
0 − G−1 = �. (6)

These two relations imply that the free energy is stationary
with respect to G, i.e., δ�[G]/δG = 0. In principle, the exact
Green’s function G and self-energy � can be determined from
the self-consistent solution of Eqs. (5) and (6). However, since
the functional �[G] is usually unknown, an approximation
is required that replaces the exact �[G] by a known or a
computable functional. Conserving approximations replace
the exact �[G] by an approximate functional, which sums up
certain subclasses of diagrams that are thought to capture the
dominant physics. In general, this results in a weak coupling
approximation. A different approach is taken in the DCA:
rather than approximating the Luttinger Ward �, the functional
representation space of the Green’s function is reduced by
replacing the exact Green’s function G(�k) by a coarse-grained
Green’s function Ḡ �K in momentum space defined as

Ḡ �K =
∫

d�k φ �K (�k) G(�k), (7)

where the coarse-graining functions φ �K (�k) have been defined
in Eq. (2). We note that approximating G in this way corre-
sponds to an approximation of the Laue function 
�k1+�k3,�k2+�k4

,
which expresses momentum conservation at each vertex in
the diagrams defining �.20,21 For the single-site DMFT
approximation (Nc = 1), φ(�k) is constant over the entire
Brillouin zone, and consequently the Laue function is replaced
by 
DMFT = 1, i.e., momentum conservation is disregarded.
For a finite-size DCA cluster (Nc > 1), the Laue function
restores momentum conservation for the cluster momenta �K
and reads as, in terms of the φ �K (�k),


DCA(�k1,�k2,�k3,�k4) = δ �K1+ �K3, �K2+ �K4
φ �K1

(�k1)

×φ �K2
(�k2) φ �K3

(�k3) φ �K4
(�k4). (8)

By replacing the exact Laue function with its DCA ap-
proximation in the Luttinger-Ward functional, the momentum
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integrals over the Green’s functions in the diagrams defining
the � functional are reduced to sums over the finite set of
coarse-grained Green’s functions defined in Eq. (7). This way,
�[Ḡ] becomes identical to the Luttinger-Ward functional of
a finite-size cluster and the computation of the corresponding
self-energy

�DCA
�K = δ�[Ḡ �K ]/δḠ �K (9)

becomes feasible. As such, within the DCA approximation,
the free-energy functional �[G] becomes

�DCA[G] = Tr ln(−G) + �[Ḡ] − Tr
[(

G−1
0 − G−1

)
G

]
.

From stationarity of the free energy δ�[G]/δG = 0, one
obtains the Dyson equation within the DCA

G−1
0 (�k) − G−1(�k) =

∑
�K

φ �K (�k) �DCA
�K . (10)

Here, the right-hand side follows from δḠ �K/δG = φ �K (�k) and
δ�[Ḡ �K ]/δḠ �K = �DCA

�K . Equations (7), (9), and (10) form a
closed set of equations which is solved iteratively until self-
consistency is reached. This is the DCA algorithm. Following
Eq. (10), the self-energy �(�k) of the lattice Green’s function
G(�k), which is used to compute the coarse-grained Green’s
function in Eq. (7), is approximated by a piecewise constant
continuation of the cluster self-energy �DCA

�K , which changes
between different momentum patches but is constant within a
given patch

�(�k) =
∑

�K
�DCA

�K φ �K (�k). (11)

With the DCA+ algorithm we introduce in this paper, the
DCA framework is extended to allow for a more general
relationship between the lattice self-energy �(�k) and cluster
self-energy � �K than that in Eq. (11). In the DCA+, in analogy
with Eq. (7), we only demand the cluster self-energy to be
equal to the coarse-grained lattice self-energy

�̄ �K =
∫

d�k φ �K (�k) �(�k). (12)

In the DCA algorithm, this requirement is trivially satisfied
since according to Eq. (11), �(�k) is set to the cluster
self-energy �( �K) for momenta �k in patch Pi . However,
it is important to realize that Eq. (12) allows for a more
general approximation of the lattice �(�k), which, for example,
can retain its smooth momentum dependence instead of the
DCA step-function character. To proceed, it is convenient for
our purposes to express the free energy as a functional of
the self-energy. By following the work of Potthoff,35,36 we
eliminate the Green’s function G in favor of the self-energy �

to write the free energy as a functional of the self-energy �:

�[�] = −Tr ln
[ − (

G−1
0 − �

)] + (L�)[�]. (13)

Here, the functional (L�)[�] is obtained from �[G] through
a Legendre transformation

(L�)[�] = � − Tr[� G]. (14)

Replacing �(�k) in (L�)[�] with the coarse-grained self-
energy in Eq. (12), i.e., �(�k) ≈ ∑

�K φ �K (�k)�̄ �K , then yields

(L�)[�] = � −
∑

�K
�̄ �K Ḡ �K, (15)

where Ḡ �K is the coarse-grained Green’s function defined in
Eq. (7). If this functional is used in the free energy in Eq. (13),
one obtains at stationarity, δ�[�]/δ� = 0,[

G−1
0 (�k) − �(�k)

]−1 =
∑

�K
φ �K (�k) Ḡ �K. (16)

Here, the right-hand side follows from δ�̄ �K/δ� =
φ �K (�k) and (L�)[�̄ �K ]/δ�̄ �K = −Ḡ �K . Using the identity∫

d�k φ �K (�k)φ �K ′(�k) = δ �K, �K ′ and multiplying both sides with∫
d�k φ �K (�k) results in the DCA+ coarse-graining equation

Ḡ �K =
∫

d�k φ �K (�k)
[
G−1

0 (�k) − �(�k)
]−1

. (17)

We note that in contrast to the DCA algorithm, the lattice
self-energy �(�k) enters in the coarse-graining step. It is
related to the cluster self-energy � �K through Eq. (12), i.e.,
its coarse-grained result must be equal to �( �K). The special
choice �(�k) = ∑

�K φ �K (�k)� �K satisfies this requirement and
recovers the DCA algorithm. But in general, �(�k) needs to
only satisfy Eq. (12), i.e., one has more freedom in determining
a lattice self-energy �(�k) from the cluster �( �K). In the
DCA+ algorithm, we take advantage of this freedom to derive
a �(�k) that retains a smooth �k dependence and thus is more
physical than the piecewise constant �(�k) of the DCA. As
in the DCA, the cluster self-energy � �K may be determined
from the solution of an effective cluster problem described
by (L�)[�] as a functional of the coarse-grained propagator
�[ �K] = �[Ḡ( �K)]. This, together with Eqs. (12) and (17),
forms the basis of the DCA+ algorithm.

A detailed description of the algorithm will be given in
the implementation section. Evidently, determining the lattice
self-energy �(�k) from the cluster self-energy � �K through
inversion or deconvolution of Eq. (12) presents a difficult task.

B. Structure of a DCA+ cluster calculation

Since the lattice self-energy �(�k) no longer is restricted to
Eq. (1), it can be expanded into an arbitrary set of smooth basis
functions {Bi(�k)}, such as cubic splines or crystal harmonics,
i.e.,

�(�k) =
∑

i

Bi(�k)σi. (18)

Here, σi are the expansion coefficients of the lattice self-energy
corresponding to the basis function Bi(�k). Contrary to the
DCA, the coarse-graining patches φ �K (�k) in the DCA+ are not
linked in any shape or form to the basis functions in which
we expand the lattice self-energy. As was mentioned in the
previous section, the DCA+ maps the full lattice problem into
a cluster impurity problem embedded into a mean field by
coarse graining both the lattice self-energy and lattice Green’s
function. The cluster mapping in the DCA+ is thus very similar
to the cluster mapping in the DCA, with the exception that we
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use a continuous lattice self-energy in the coarse graining of
the Green’s function

�̄ �K = Nc

VBZ

∫
BZ

d�k φ �K (�k) �(�k),

(19)

Ḡ �K = Nc

VBZ

∫
BZ

d�k φ �K (�k) [[G0(�k)]−1 − �(�k)]−1.

Equation (19) can now be simplified by using the explicit
expansion of the lattice self-energy in Eq. (18):

�̄ �Ki
= ∑

j

(∫
d�k φ �Ki

(�k) Bj (�k)

)
︸ ︷︷ ︸

= Pi,j

σj . (20)

Here, Pi,j is a projection operator, defined by coarse graining
the basis function Bj over patch i. Note that in the DCA, this
projection operator becomes the identity operation δi,j . Hence,
the coarse graining of the lattice self-energy in the DCA is an
implicit operation (σi ≡ �̄ �Ki

), while in the DCA+ it becomes
explicit.

With the introduction of the cluster mapping in the DCA+ in
Eq. (20), the lattice mapping is conceptually well defined
as long as the inverse of the projection operator P exists.
Assuming that P −1 exists, we can retrieve the expansion
coefficients of the lattice self-energy from the self-energy of
the cluster solver � �K in a straightforward manner:

σj = ∑
j (P −1)i,j � �Kj

. (21)

This closes the DCA+ iteration and allows us to carry out a
self-consistent calculation.

In Fig. 3, we have summarized the generic structure of the
DCA+ algorithm, without specifying yet any implementation
details of the lattice mapping. In the “cluster-mapping” step,
the lattice Green’s function and self-energy are coarse grained
onto the patches defined by � �K (�k) to give Ḡ �K and �̄ �K ,
respectively. A cluster-solver algorithm such as QMC is
then used to calculate, from the corresponding bare Green’s
function G0, �K , the interacting Green’s function and self-energy
� �K on the cluster. In the “lattice-mapping step,” which is
missing in the standard DCA algorithm, an estimate for the
lattice self-energy �(�k) is then computed through inversion of
the projection operator Pi,j . The lattice self-energy then enters
the next cluster-mapping step via the lattice Green’s function
G(�k). In the implementation section of this paper, we will
describe in detail how the lattice mapping can be done in a
numerically stable way.

Due to the distinction between the lattice and cluster self-
energy in the DCA+ algorithm, we can not use the convergence
criteria of the DCA. In the latter, convergence is reached if the
self-energy (lattice or cluster) of the previous iteration is equal
to the current one. If one monitors only convergence on the
lattice self-energy in the DCA+ algorithm, one might stop the
iterations although the cluster solver still produces a cluster
self-energy � �K that differs from the coarse-grained lattice
self-energy �̄( �K). This would indicate that the DCA+ does
not converge to a stationary point of the free-energy functional
�. To avoid such a problem, we demand that convergence is
reached only when the coarse-grained lattice self-energy �̄( �K)

Cluster-
Solver

Σ(k) =
i

σi Bi(k)

Lattice-mapping

Cluster-mapping

Lattice

Cluster

G0
K

= Σ̄K + Ḡ−1

K

InterpolationDeconvolution

Σ̃(k) =
Nc

V
dk φ0(k − k ) Σ(k ) Σ̃(k) ← {K, ΣK}

{K, ΣK}

ḠK =
Nc

V
dk φ0(k − K) G(k)

Σ̄K =
Nc

V
dk φ0(k − K) Σ(k)

Convergence
|Σ̄K − ΣK | ≤ qmc

FIG. 3. (Color online) The generic structure of a self-consistent
DCA+ algorithm, in which the cluster and lattice mapping play a
central role in order to connect the continuous lattice self-energy
�(�k) with the cluster self-energy � �K . Convergence is reached when
the cluster solver produces a cluster self-energy � �K equal to the
coarse-grained self-energy �̄ �K ≡ �̄( �K).

and the cluster self-energy � �K agree to within the Monte Carlo
sampling error.

It is important to note that the proposed algorithm is
fundamentally different from a simple interpolation of the
cluster self-energy � �K between the cluster momenta �K .
A smooth interpolation will almost certainly fail to satisfy
Eq. (12), i.e., the main requirement of the DCA+ that the
coarse-grained lattice �(�k) is equal to the cluster � �K . Such a
procedure was proven in Ref. 20 to lead to causality violations
when the cluster self-energy is added back to the inverse
coarse-grained propagator in the “cluster-exclusion” step to
avoid overcounting of self-energy diagrams. In the DCA+,
the lattice self-energy is different from an interpolated cluster
self-energy and the self-energy that enters the cluster-exclusion
step is given by the coarse-grained lattice self-energy. Because
of this, the proof given in Ref. 20 does not apply and the
DCA+ algorithm is not automatically plagued by causality
problems. Although we do not have a rigorous proof that the
DCA+ algorithm remains causal, we have never encountered
any causality violations in the application of this method to
the single-band Hubbard model.

The projection operator Pi,j plays a central role in the
implementation of the DCA+ algorithm. In order to obtain
a self-consistent algorithm, it is conceptually clear that the
projection operator has to be invertible. In practice, however,
this might not be straightforward to achieve. An intuitive
understanding of this operator is developed in Appendix A,
where we discuss how the projection operator influences the
choice of the cluster, and we show that its inverse only exists
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if the DCA locality assumption for the lattice self-energy is
satisfied.

C. Role of the cluster in the DCA+

In the DCA algorithm, the real-space cluster takes a central
role. It completely defines the basis functions in which the
self-energy is expanded. Furthermore, the real-space cluster
dictates how the lattice is mapped on the cluster through the
coarse-graining procedure. Consequently, solutions obtained
with the DCA algorithm usually dependent on the particular
choice (shape) of the cluster. In practice, this leads to a
very good qualitative description of the physics, but prohibits
quantitative analysis, as calculated physical quantities strongly
depend on cluster shape. In the DCA+, we start from an
expansion of the self-energy into an arbitrary set of basis
functions. In this way, the influence of the real-space cluster
is reduced since it does not dictate the basis functions on
which the self-energy is expanded. The real-space cluster only
specifies how the cluster is mapped on the lattice through the
shape of the coarse-graining patches. Consequently, the focus
in the DCA+ shifts from the real-space cluster to the projection
operator Pi,j . This operator embodies the quantum cluster
approximation of the DCA+ since it connects the cluster
self-energy with the lattice self-energy in a purely geometric
way. The projection operator is only defined by the set of basis
functions of the lattice self-energy and the real-space cluster
and not subjected in any way to physical parameters (such
as temperature, band structure, interaction terms, . . .). This
purely geometric property of the projection operator allows
us to find a priori the necessary conditions to which the
cluster self-energy has to be subjected, in order to allow for a
self-consistent, cluster-independent DCA+ calculation. These
necessary conditions that follow from the discussion in the
previous subsections and Appendix A are as follows:

(i) In order to perform a self-consistent DCA+ calculation,
the cluster self-energy has to converge inIε , which is the part of
the images space of the projection operator that is spanned by
its eigenvectors with eigenvalues larger than a small, positive
parameter ε.

(ii) In order to perform a cluster-independent
DCA+ calculation on the clusters A and B, the cluster
self-energy needs to converge on the intersection of the image
spaces of both projectors (IA

ε

⋂
IB

ε ).

III. IMPLEMENTATION

In the last section and in Appendix A, we have introduced
a projection operator Pi,j and shown its involvement in the
cluster and lattice mapping. Via a geometric consideration, we
have shown conceptually that its inverse exists as long as the
expansion coefficients 〈�̄�k,eλ(�k)〉 of the cluster self-energy
vanish rapidly in the image space Iε of the projection operator
Pi,j . At closer inspection, the lattice mapping is thus a
two-stage process. First, we need to determine the expansion
coefficients of the cluster self-energy. To this end, we will
propose an interpolation technique, which is motivated from
the analytical properties of the self-energy. The interpolated
cluster self-energy �̄�kj

is then used to compute the inner

product 〈�̄�kj
,eλ(�kj )〉 with the eigenfunctions of the projection

operator Pi,j , which gives the expansion coefficients of the

cluster self-energy. Second, we need to deconvolute the
interpolated cluster self-energy on the image space Iε , where
we need to determine the optimal value for the parameter ε. If
the latter is too large, the self-consistency can not be reached.
If ε is too small, the lattice mapping will become numerically
unstable due to the division of small eigenvalues. To solve
this problem, we adapt the Richardson-Lucy deconvolution
algorithm, which inverts Eq. (20) in a numerically stable way.

A. Interpolation

In the context of tight-binding models, one of the most
successful algorithms to interpolate its band structure is the
Wannier interpolation method.37 It finds its justification in
the localized nature of Wannier orbitals, from which the
tight-binding models are derived. Since the self-energy is a
correction to the band structure due the interaction between the
electrons, the Wannier interpolation method seems a suitable
interpolation algorithm. Okamoto et al.38 have examined this
possibility implicitly, by expanding the lattice self-energy �(�k)
into the cubic-harmonic basis functions {C �K (�k)}:

�(�k) =
∑

�K
C �K (�k) �K,

(22)

C �K (�k) = 1

Nc

∑
�R

eı �R( �K−�k).

This approach only works when the self-energy � �K is
sufficiently smooth, such that the real-space self-energy � �R
converges on the cluster in real space. Notice that the latter is
implicitly computed in Eq. (22) since

�(�k) =
∑

�K
C �K (�k) � �K =

∑
�R

e−ı �R �k 1

Nc

∑
�K

eı �R �K� �K︸ ︷︷ ︸
=� �R

.

The sum over all lattice points can now be split into two terms.
In the first term, we run over all lattice points within the cluster
radius. In the second term, we sum over all the remaining points
in the lattice:

�(k) =
∑

�R
e−ı �R �K� �R

=
∑

| �R|<Rc

e−ı �R �k� �R +
∑

| �R|�Rc

e−ı �R �k� �R. (23)

If correlations have longer range, � �Ri
will no longer

converge on the cluster in real space. This is clearly illustrated
in Fig. 4, where we show the self-energy � �R for a Nc = 100-
site cluster with U/t = 7 for various temperatures. At high
temperatures (T � 0.25), the system is only weakly correlated.
The self-energy � �R in this temperature range is contained
within the cluster radius Rc = 5. For lower temperatures, it
is clear that �R extends beyond Rc. Applying the Wannier
interpolation scheme according to Eq. (22) to such correlated
systems is simply not allowed since the expansion coefficients
� �R outside the cluster can not be assumed to be zero. A
straightforward application of Eq. (22) will lead to ringing
and eventually to causality violations. The latter was observed
by Okamoto et al.,38 and could only partially be resolved
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FIG. 4. (Color online) The decay of �R for a Nc = 100-site
cluster with U/t = 7 and t ′/t = 0 for various temperatures at
half-filling. For high temperatures (T � 0.3), the system is only
weakly correlated and �R will rapidly decay. For low temperatures,
the correlations exceed the cluster radius Rc = 5.

by introducing low-pass filtering schemes. The applicability
of this approach is very limited, due to a lack of a general
framework to determine these filters.

1. Formalism of the interpolation

From the previous section, it has become clear that the
interpolation techniques such as Eq. (22) can only work if the
function converges on the finite (and often small) basis set.
The rate of convergence depends critically on the choice of
the basis functions. Consider, for example, the free Green’s
function G0 of the single-band Hubbard model in Eq. (3):

G0(�k,� ) = [ı � + ε(�k)]−1. (24)

While this Green’s function G0 will converge poorly on
the cubic harmonics of the lattice for small frequency � ,
it is straightforward to see that [G0]−1 will be completely
converged on a four-site cluster. This simple example shows
how one can extend the interpolation idea introduced by
Okamoto et al.38 Given an injective transformation T , we
can write

F(�k) = T −1[T [F](�k)]

= T −1

[ ∑
�K
C �K (�k) T [F �K ]

]
. (25)

The method of operation to interpolate a function becomes
now clear. Find an injective (and preferably analytical)
transformation T , such that the transformed function values
converge on the chosen basis functions. Use this expansion
to compute the transformed function values on arbitrary k

points. Finally, apply the inverse transformation T −1 on the
transformed function values in order to obtain the desired
interpolated function values on arbitrary k points.

This approach has many advantages. First, it provides a
measure that indicates when the interpolation procedure works
or fails. If T [� �K ] does not converge on the basis set, one is not
allowed to perform an interpolation. Second, this interpolation

procedure does not introduce extra information; filtering
schemes and other numerical tricks to ensure causality, on
the other hand, introduce extra, undesirable structure into
the interpolated functions. By using filtering schemes or
other numerical tricks to assure causality, we introduce extra
structure in the function that is to be interpolated, which is
undesirable. Third, if the transformation T is analytical, we
will not break the analyticity of the interpolated function.
For Green’s functions and their derived functions such as
the self-energy, analyticity is an important property. In ar-
bitrary interpolation schemes such as splines39 or radial-basis
expansions,40 this analyticity is often broken. The obtained
interpolating function is therefore questionable from a physics
point of view. The challenge of this approach is naturally the
search for a correct transformation T . Notice that T can be
different for different functions since the only requirements
are injectivity and convergence on the chosen basis set. In the
next sections, we will propose such a transformation for the
self-energy �. The proposed transformation will be motivated
by physical and analytical properties of the self-energy.

2. Interpolation on large clusters

Since the imaginary part of the self-energy is strictly
negative in the upper half of the complex plane41

Im[�(�k,ı � > 0)] < 0, (26)

we can introduce an injective transformation T that preserves
the analyticity of the self-energy {since Im[�(�k,� )] < 0, we
will not introduce any new poles in the upper-half plane by
inverting the function}:

T (�) = [� − α ı]−1, with α > 0. (27)

Note that this form is similar to the cumulant used in
Ref. 42 for interpolation, where it was shown to be a better
quantity to interpolate than the self-energy directly. Due to the
property shown in (26), the transformation T will map the
self-energy � into a bounded function, irrespective of how
spiky the self-energy � is. Notice also that we first shift the
imaginary part of the self-energy down by α ı, in order to avoid
introducing poles due to the Monte Carlo statistical noise.
Consequently, the function T (�) will now be localized in real
space, and we can safely perform an expansion of the function
T (�) over cubic harmonics. We have illustrated this process
in Fig. 5 by applying our interpolation procedure to a 100-site
cluster at a temperature T = 0.2 at half-filling. In Fig. 5(a),
we show, respectively, the computed values of the cluster
self-energy � �K and its interpolation ��k along a high-symmetry
line in the Brillouin zone. Notice that the imaginary part of
the interpolation function remains at all times negative! In
Fig. 5(b), the transformed function T [� �K ] is shown, together
with its interpolating function. Clearly, the transformation T
has reduced the sharp features in the self-energy, and the
function has become smoother. In Figs. 5(c) and 5(d), we
show the Fourier transform from, respectively, the interpolated
self-energy �(�k) and the transformed values T [� �K ]. The large
difference in the convergence radii is clear and shows the
effectiveness of our indirect approach compared to a direct
one. This result is not a coincidence. In Appendix B, we have
proven in a rigorous way the pointwise convergence.
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FIG. 5. (Color online) Interpolation procedure for the self-energy �K at the lowest Matsubara frequency for a 100-site cluster at a temperature
T = 0.2, U/t = 7, and t ′ = 0 at half-filling. (a) The interpolated function �(�k) is a smooth function through the results �K obtained from
the QMC cluster solution, where the circles and diamonds represent, respectively, the real and imaginary parts. (b) The transformed function
T [�] smoothes the self-energy function, making it suitable for a cubic-harmonics expansion. (c) The Fourier transform of the interpolated
function �(k). Notice that the tails expand much further than the cluster radius Rc = 5. (d) The Fourier transform of the function T [�K ]. The
convergence is reached at Rc = 3.

3. Interpolation on small clusters

For certain parameter sets, the fermionic sign problem
prevents the investigation of large enough clusters, for which
T [�] will converge. In this case, we recommend to interpolate
the T [�] using cubic splines instead of interpolating the
latter with the earlier proposed Wannier interpolation. Since
T [�] is a much smoother function, cubic splines can still
perform reasonably well, even in the case of small clusters.
The self-energy on the other hand will not be smooth, and a
straightforward spline interpolation will lead to overshoots or
ringing, which in turn might lead to an acausal self-energy.
This particular phenomenon has been studied extensively by
Okamoto et al.38 The ringing might be cured by the use
of tension splines,43 in which case a tension parameter is
introduced. It is, however, important to keep in mind that the
splines might add extra information into the system, and thus
bias the physics. This problem does not occur with Wannier
interpolation, as long as the Fourier coefficients of T [� �K ]
converge on the real-space cluster.

4. Lattice symmetry

Most of the clusters used in the DCA do generally not
obey the same symmetry operations as the infinite lattice. As
a consequence, the lattice self-energy in the DCA breaks the
symmetry of the lattice due to its strict parametrization with
the coarse-grained patches. The only way to resolve this issue
in the DCA is to restrict to the few clusters that obey the cluster

symmetry. In order to remove this undesirable feature in the
DCA+, we symmetrize the self-energy after the interpolation.
The interpolated cluster self-energy obeys thus by construction
the symmetry operations of the lattice.

B. Cluster deconvolution

The goal of this section is to present a practical implemen-
tation of the lattice mapping. As mentioned in the theoretical
section of this paper, the lattice mapping is in essence the
inversion of the cluster mapping defined in Eq. (20). In a
common DCA+ calculation, we will have many more basis
functions than Monte Carlo cluster points. As a consequence,
we need to determine more lattice expansion coefficients
than cluster points that are given by the cluster solver.
The inversion problem is thus seemingly underdetermined.
Therefore, we do not attempt to invert Eq. (20) directly, but
first generalize the coarse-graining equation of the self-energy.
This is accomplished by rewriting each coarse-graining patch
as a translation of the patch around the origin, i.e., φ �K (�k) =
φ�0(�k − �K). Next, we generalize the cluster-momentum vector
�K to an arbitrary momentum vector. Using the interpolated

cluster self-energy �̄ �K as a substitute for the cluster self-energy
� �K in Eq. (19), we obtain

�̄(�k) = Nc

V

∫
d �k′ φ�0(�k − �k′) �( �k′). (28)
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�̄( �K,πT ) for a 32-site cluster at 5% doping and T = 0.2.

Any solution of Eq. (28) is thus also a solution of Eq. (20).
We should stress that with the exception of the continuity of the
self-energy, this generalization does not introduce any new in-
formation as long as the Wannier interpolation converges! With
Eq. (28), we have now rephrased the lattice mapping into a
deconvolution problem. These types of problems are regularly
encountered in the field of signal theory and image processing
and various algorithms have been successfully developed to
address the ill-conditioned deconvolution problem.44

In this work, we are using a deconvolution algorithm that
is based on Bayesian inference, which we discuss in detail in
Appendix C. In Fig. 6, we show the lattice self-energy for a
32-site cluster by means of this method. We can clearly observe
that the cluster and coarse-grained lattice self-energy coincide
very well.

IV. APPLICATION

A. Convergence of the self-energy and the pseudogap

One of the most distinctive features of the hole-doped
cuprates is the emergence of a pseudogap,45 i.e., a partial
suppression of the density of states at the Fermi energy at the
antinodal points (π,0) and (0,π ) in the Brillouin zone. This
state appears below a temperature T ∗, which rises with de-
creasing hole doping as the Mott-insulating half-filled state is
approached. The detailed relation between the pseudogap and
superconductivity remains controversial. Since superconduc-
tivity arises from the pseudogap state, it is generally believed
that understanding this unusual phenomenon is an important
prerequisite to understanding the pairing mechanism. Recent
debate has been centered around the question of whether the
pseudogap is a signature of superconducting fluctuations above
Tc (Refs. 46 and 47) or whether it is a competing phase.48,49

Cluster dynamical mean field studies of the single-band
Hubbard model have found a similar pseudogap opening
up at the antinodal points at low temperatures in the low-
doping regime.19,28,50–53 In these calculations, the pseudogap

originates from a strong momentum-space variation of the
single-particle self-energy, which, as shown in recent DCA
calculations by Gull et al.,28 gives rise to a momentum-sector-
selective metal-insulator transition. The DCA+ improves upon
the DCA algorithm in that it gives a self-energy with smooth
and therefore more physical momentum dependence, and can
therefore provide new insight into this problem. In addition,
since previous studies were limited to relatively small clusters
up to 16 sites, it is important to explore whether the self-energy
and pseudogap physics is converged on such clusters.

In Fig. 7, we plot the imaginary part of the lattice
self-energy at the smallest Matsubara frequency ω0 = πT

for various clusters, computed with the DCA (left panel)
and the DCA+ (right panel). One immediately observes the
much more physical smooth momentum dependence of the
DCA+ results versus the step-function-like nature of the DCA
results for the self-energy. At closer inspection, one notices a
much more systematic convergence of the DCA+ results with
different cluster size and geometry. While the DCA results
for Im�( �K) show smaller spread at a given �K point [e.g.,
at �K = (π,0)], their cluster dependence is nonmonotonic. In
DCA+, in contrast, |Im�( �K)| monotonically increases with
cluster size, a sensible result as longer-ranged correlations are
systematically taken into account.

Another striking feature of the DCA results is the asym-
metry for clusters that do not have the full lattice symmetry
such as the 16B-, 20-, and 24-site clusters. For example, in
the 16B cluster, the asymmetry around (π/2,π/2) as one
moves along the line from (π,0) to (0,π ) is apparent and the
results in these regions are significantly different from those
for the symmetric 16A cluster. This asymmetry results from
the asymmetric arrangement of the two cluster K points closest
to (π/2,π/2) with respect to (π/2,π/2) (see right-hand side of
Fig. 1). This asymmetry is completely removed in the DCA+.

In addition, with the exception of a small region around
(π,π ), the DCA+ results for the asymmetric 16B cluster are
almost identical to the results of the fully symmetric 16A

cluster. The DCA+ algorithm restores the full lattice symmetry
in the results obtained from clusters that do not have the full
symmetry and thus makes studies on these clusters much more
useful. This, combined with the improved convergence as a
function of cluster size allows for much more systematic and
precise extrapolations to the exact infinite cluster size.

To further illustrate this point, we now turn to a study
of the temperature T ∗ below which the pseudogap starts to
form. Here, we define T ∗ as the maximum in the temperature
dependence of the bulk (q = 0) magnetic (particle-hole, spin
S = 1) susceptibility χph(q = 0,T ). The downturn in this
quantity below T ∗ with decreasing temperature signals the
suppression of low-energy spin excitations, which is also
observed in experiments to accompany the opening of the
pseudogap in the single-particle spectral weight. In the DCA
and DCA+ algorithms, χph is computed from the single- and
two-particle Green’s function GII

ph obtained from the cluster

solver. Using the notation K = ( �K,� ), the bare two-particle
Green’s function GII

0,ph is constructed from a pair of interacting
cluster Green’s functions (for �q = 0)

GII
0,ph(K) = G(K) G(K),
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FIG. 7. (Color online) The imaginary part of the lattice self-energy for different clusters at a temperature of T = 0.33 with a hole doping of
5% (U/t = 7 and t ′/t = −0.15). Two key observations can be made. The DCA+ produces for all clusters a lattice self-energy which follows
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while the fully renormalized two-particle Green’s function
GII

ph is computed as

GII
ph(K,K ′)

=
(

4∏
l=1

∫ β

0
dτl

)
ei �1 (τ1−τ2)ei �2 (τ3−τ4)

×
∑

σ,σ ′=±
〈c†σ ( �K,τ1)cσ ( �K,τ2)c†σ ′( �K ′,τ3) cσ ′( �K ′,τ4)〉.

The irreducible cluster vertex function �ph( �Q = 0, �K, �K ′) is
then obtained by inverting the Bethe-Salpeter equation on the
cluster

�ph = [
GII

0,ph

]−1 − [
GII

ph

]−1
, (29)

where we used a matrix notation in in the cluster momenta �K
and �K ′. The uniform lattice spin susceptibility χph(q = 0) is
then calculated from

χph =
∑

K1,K2

χ0 [1 − � χ0]−1.

Here, χ0 is the coarse-grained bare susceptibility of the lattice

χ0(K) =
∫

d�k φK (�k) G(�k)G(�k).

This procedure to compute the uniform lattice spin sus-
ceptibility χph(�q = 0) is the same in the DCA+ as in the
DCA.21 The quantities that enter these equations, however, are
different between both approaches. In the DCA+, for thermo-
dynamic consistency, one should apply the same interpolation
procedure to the vertex function �ph(K,K ′) as is done for the
self-energy. Here, however, for the sake of simplicity and in
order to focus on the effects of the self-energy, we keep the
piecewise constant dependence of �ph(K,K ′) that is naturally
obtained from its extraction from the cluster quantities in
Eq. (29) as in the DCA. In the S = 1 particle-hole channel,
where the leading correlations are antiferromagnetic and have

only weak internal �K dependence,54 we expect this to be a
good approximation.

In Fig. 8, we show results for χph(�q = 0) obtained with
the DCA for different clusters. One observes a strong cluster
size dependence and the results are not converged even for the
largest cluster that can still be simulated before the fermionic
sign problem begins to make the QMC sampling exponentially
difficult. The corresponding DCA+ results are displayed in
Fig. 9. Here, convergence is reached much sooner. The location
of the maximum in temperature dependence T ∗ is essentially
independent of the cluster for Nc � 20, as can be seen from
Fig. 10. As discussed previously, this directly results from the
improved convergence of the self-energy in the DCA+. From
these results, once the effects of cluster geometry are removed
in the DCA+, it becomes clear that the underlying correlations
that lead to the pseudogap formation are short ranged and well
contained in clusters of size 20.
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FIG. 8. (Color online) Uniform spin χph susceptibilities vs
temperature for different cluster computed in the DCA at 5% doping
(U/t = 7 and t ′/t = −0.15).
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(U/t = 7 and t ′/t = −0.15).

B. Improved fermionic sign problem

The rapidly increasing capability of computers in conjunc-
tion with the growing sophistication and efficiency of quantum
Monte Carlo solvers has pushed the limits of simulations
to larger cluster sizes and interaction strengths, as well as
lower temperatures. As a result, the only serious barrier for
quantum Monte Carlo calculations at low temperatures and
away from certain parameter regimes (such as half-filling in the
single-band Hubbard model) that remains is the fermionic sign
problem,24 which leads to an exponentially growing statistical
error with increasing system size and interaction strength, and
decreasing temperature.

The sign problem has posed an insurmountable challenge
to quantum Monte Carlo calculations of fermionic systems,
especially for simulations of finite-size systems, and remains
a problem in the DCA approach. The DCA, however, was
shown to have a less severe sign problem than finite-size
calculations,21 which, in the absence of a rigorous mathe-
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FIG. 10. (Color online) T ∗ versus cluster size computed in the
DCA and DCA+ at 5% doping (U/t = 7 and t ′/t = −0.15).
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FIG. 11. (Color online) Temperature dependence of the average
fermionic sign for Nc = 32 at 5% doping (U/t = 7 and t ′/t =
−0.15).

matical justification, was attributed to the action of the mean
field host on the cluster. This has enabled simulations of larger
clusters at lower temperatures than those accessible with finite-
size simulations and thus has opened new possibilities for
gaining insight into low-temperature phenomena in correlated
systems.

The DCA+ approach is different from the DCA in that it
generates a more physical self-energy with smooth momentum
dependence, and the correlations described by this self-energy
are therefore shorter ranged than those in the DCA. Hence,
it is therefore not unreasonable to expect a difference in the
severity of the sign problem between DCA+ and DCA.

In Fig. 11, we compare the fermionic sign σQMC between
the DCA and the DCA+ for a 32-site cluster and U = 7t for
a doping of 5%. At low temperatures, the average sign in the
DCA+ simulation is significantly larger than that of the DCA
simulation. As indicated above, we attribute this improvement
to the smooth momentum dependence of the DCA+ self-
energy as compared to the step-function dependence of the
DCA self-energy. From Fourier analysis, one knows that the
smoothness of a function is related to the rate of decay of
its Fourier coefficients.55 More precisely, if a function f is p

times differentiable, then its Fourier components fn will decay
at least at a rate of 1/np+1:

f ∈ Cp → |fn| � |f (p)|1
np+1

. (30)

Since the DCA+ self-energy has smooth momentum depen-
dence and not the step discontinuities of the DCA, its Fourier
transform to real space is shorter ranged than that of the DCA
and the correlations it describes are shorter ranged. We believe
that it is this removal of unphysical long-range correlations
which reduces the sign problem in the DCA+. In any case, with
this significant reduction in the severity of the sign problem, it
is possible to study the physics of fermionic systems in even
larger clusters and at lower temperatures than accessible with
the DCA.
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V. SUMMARY AND CONCLUSIONS

In this paper, we have presented the theoretical framework
as well as a practical implementation of the DCA+ algorithm.
It is an extension to the DCA without the jump discontinuities
inherent in the standard DCA algorithm that computes a
continuous lattice self-energy in a self-consistent way. This
improvement is based on two fundamental differences to
the DCA. First, an explicit distinction is made between the
lattice and the cluster self-energy. Second, a continuous lattice
self-energy is determined in a way so that its coarse-grained
value �̄ �K is equal to the cluster self-energy � �K obtained from
the cluster solver. This constraint makes the DCA+ algorithm
fundamentally different from previous attempts20,38 to include
a continuous self-energy into the DCA self-consistency loop
that lead to an acausal and thus a nonphysical self-energy
during the coarse graining of the Green’s function but itself
has not been coarse grained.

These coarse-graining rules in the cluster mapping of
DCA+ require us to reconsider the lattice mapping in the
algorithm. As a matter of fact, we have shown that a continuous
lattice self-energy �(�k) can only be inferred from the discrete
cluster self-energy � �K if the DCA assumption of smoothness
of the lattice self-energy is satisfied. This has been discussed
in the paper using the properties of the projection operator
Pi,j that is associated with the coarse-graining operation in
Eq. (20). The transformation of the cluster self-energy into
the lattice self-energy amounts to inversion of the projection
operators Pi,j . Since this is a singular operator, the lattice
mapping is only well defined as long as the cluster self-energy
converges on the image space of the operator, which is spanned
by the eigenvectors with nonzero eigenvalue. In practice, the
image space is the space spanned by eigenvectors with an
eigenvalue larger than a given parameter ε. The convergence
behavior of the DCA+ algorithm is determined by two
essential properties of the projectors Pi,j : (1) the dimension of
the image space increases with cluster size, which is consistent
with the intuitive notion that larger cluster can support finer
features of the self-energy; (2) the delocalization of each
eigenvector 〈r2〉 and the magnitude of its corresponding
eigenvalue are anticorrelated. Consequently, for large-cutoff
parameter ε, a more localized cluster self-energy is needed in
order to have a controlled lattice mapping. Self-consistency
in the DCA+ can only be reached if the cluster self-energy
is localized enough to converge on the image space of the
projection operator. If convergence is not reached, the image
space of the projector and thus the cluster size will have to
be increased. Convergence thus provides a useful measure for
the quality of a DCA+ calculation with a given cluster.

Straightforward inversion of the projection operator would
be numerically unstable since the projection operator is a near
singular matrix. Thus, in the implementation of the lattice
mapping in the DCA+ algorithm, we have followed a different
approach, splitting it into two numerically stable steps. First,
we interpolate the cluster self-energy in a controlled way,
using an injective transformation, and next, we deconvolute
this interpolated, continuous cluster self-energy using the
Richardson-Lucy algorithm. In both steps, convergence within
the self-consistent loop can be monitored by an objective
measure. For the interpolation, we know that the Fourier

transform of T [� �K ] = (� �K − ı)−1 has to converge on the
real-space impurity cluster in order to obtain an accurate
interpolation. For the deconvolution, the difference between
the coarse-grained lattice self-energy �̄ �K and the cluster
self-energy � �K has to be smaller than the statistical error of
the Monte Carlo integration.

To illustrate the benefits of the DCA+ algorithm, we have
investigated the pseudogap phase in a lightly hole-doped
two-dimensional Hubbard model. Like with the DCA, the
DCA+ based calculations give a self-energy that has strong
momentum dependence. However, we find that the DCA+ has
a much reduced fermionic sign problem and thus we can
investigate the pseudogap phase on larger clusters and in
more details than in the standard DCA. In the DCA+, the
self-energy is continuous in momentum space and thus more
physical, and it converges monotonically and much more
systematically with cluster size than in the DCA. A similarly
improved convergence behavior in the DCA+ is found for
the pseudogap temperature T ∗ below which the bulk lattice
susceptibility decreases with decreasing temperature. In the
DCA, we find that T ∗ has a strong cluster dependence and
converges only for the largest possible cluster sizes. In the case
of the DCA+, we observe a much faster convergence of T ∗,
which is a direct consequence of the improved convergence of
the self-energy in the DCA+. From the convergence property
of T ∗, we can conclude that the correlations responsible of the
pseudogap formation must be short ranged and well contained
in a cluster size of eight sites. This improved convergence in
the DCA+ raises the hope to do precise extrapolations to the
exact infinite cluster size limit in future calculations of other
properties.
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APPENDIX A: ANALYSIS OF THE PROJECTION
OPERATOR Pi, j AND ITS CONNECTION

TO THE LOCALITY OF �(�k).

In this Appendix, we give the reader an intuitive under-
standing of the projection operator Pi,j that plays a central
role in the cluster-mapping procedure of the DCA+ algorithm.
We show that its inverse exists if the DCA locality assumption
is satisfied for the lattice self-energy. Furthermore, we discuss
how the projection operator Pi,j is influenced by the choice of
the cluster.

To this end, we expand the lattice self-energy in terms of
cubic Hermite splines.56 These functions form a basis for cubic
splines and obey a convolution property. The lattice self-energy
can therefore be written as sum over a very fine mesh {�ki} in
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momentum space

�(�k) =
∑

�ki

σ�ki
H(�k − �ki) with �(�ki) = σ�ki

. (A1)

It has to be stressed that choosing Hermite splines as a basis
will not influence the conclusions we obtain here and thus does
not reduce the generality of our arguments. It just simplifies the
discussion since the expansion index i can now be identified
with a lattice momentum �ki in the fine lattice mesh and the
expansion coefficient σi with the lattice self-energy at that
lattice momentum �ki . Next, we generalize the cluster mapping
in Eq. (20) by replacing the cluster momentum points { �Ki}
by the fine lattice {�ki}. The coarse graining then becomes a
convolution of the lattice self-energy with the patches and we
obtain

�̄�ki
=

∑
j

σ�kj

∫
d�k φ0(�k − �ki) H(�k − �kj )︸ ︷︷ ︸

=P�ki ,�kj

. (A2)

The projection matrix P�ki ,�kj
has now become a symmetric,

square matrix. The latter allows us to do a spectral decomposi-
tion of P�ki ,�kj

into its eigenspace. If we represent its eigenvalues
by λ and its corresponding eigenvector by eλ, we obtain

�̄�ki
=

∑
j

σ�kj

∑
λ

λ eλ(�ki) × eT
λ (�kj ). (A3)

In terms of the eigenspace of the projection operator, the
cluster and lattice mappings can now be written as

cluster mapping: �̄�ki
=

∑
λ

λ
〈
σ�kj

,eλ(�kj )
〉
eλ(�ki),

(A4)
lattice mapping: σ�ki

=
∑

λ

λ−1
〈
�̄�kj

,eλ(�kj )
〉
eλ(�ki).

Here, the inner product 〈�a,�b〉 is represented by a simple dot
product between the two vectors �a and �b. From Eqs. (A4), it is
clear that the spectrum {λ} of the projection operator Pij plays
a central role in the cluster and lattice mappings. In Fig. 12, we
show the leading eigenvalues (i.e., having the largest absolute
value) of Pi,j for various clusters. One can clearly observe that
all eigenvalues are smaller or equal than one and decay rapidly
for small clusters (Nc � 8) and slowly for large clusters
(Nc � 32). This can be easily understood from the form factor
of the patches. The latter are very similar to box-car filters,
which are one of the most common low-pass filters used in
the field of signal processing. Since the coarse graining of the
lattice self-energy in Eq. (A2) can be rewritten as a convolution
with the patches, the projection operator Pi,j will in fact reduce
all the Fourier components during the convolution, ensuring
that the L2 norm of any function in the eigenspace never grows.
Consequently, this is also true for all eigenvectors, which leads
us to conclude that the eigenvalues have to be less or equal
to 1.

With the spectral decomposition of the projection matrix
we can split the representation space of the continuous lattice
self-energy into the image space I and the kernel space K of
the projection operator Pi,j . Since our projection operator does
not follow the strict mathematical definition of a projection
operator (a projection operator should satisfy the relationship
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FIG. 12. (Color online) The leading eigenvalues of various
clusters on a fine mesh of 512 points. We can clearly observe a strong
decay of the leading eigenvalues for small clusters, which becomes
weaker with increasing the cluster size. This observation explains the
intuitive notion that large clusters can describe finer features in the
self-energy since the image space of larger clusters contains more
eigenvectors.

P 2 = P ; the eigenvalues of such an operation can only be 0
and 1), we define the image Iε as the space spanned by the
eigenvectors that have an eigenvalue larger than ε. Here, ε is
a small, positive cutoff parameter. The kernel Kε contains the
remainder of the space and is thus spanned by the eigenvectors
with an eigenvalue smaller than ε. Due to the inversion of the
eigenvalue in Eq. (A4), the lattice mapping is only well defined
on the image space Iε . This brings us to the first important
observation. In order to do a self-consistent DCA+ calculation,
the coarse-grained lattice self-energy should always be entirely
defined on the image space Iε of our projection operator.
Otherwise, there exists no well-defined transformation that
maps the cluster self-energy back into the lattice self-energy,
which in turn breaks the DCA+ self-consistency loop. Notice
that this requirement holds trivially in the case of the traditional
DCA since in that case the projection matrix is simply the
identity matrix of size Nc, and all eigenvalues are equal to
one.

Equation (A3) can also explain how the geometry of the
patches will influence the results obtained with the DCA+.
In Fig. 13, we plot the union space of the image spaces IA

λi

and IB
λi

versus eigenvalue index i for different clusters. The
plot shows very clearly that the first leading eigenvectors are
equal to each other, and gradually diverge as eigenvectors with
smaller eigenvalues are added. This brings us to the second
observation. If one wants to carry out a DCA calculation with
results that are independent of cluster shape, the cluster self-
energy has to be representable on the intersection of the image
spaces Iε of both clusters.

So far, we have only discussed and introduced strict
geometrical criteria on the lattice and cluster self-energy,
which indicate when a DCA+ cluster calculation is feasible. In
order to link geometrical criteria to physics, we show in Fig. 14
the delocalization of the leading eigenvectors 〈r2〉. Formally,
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operators of clusters A and B span different image spaces. One
can clearly observe that the differentiation of the 16A-site cluster
eigenspace with smaller clusters occurs faster.

we define the delocalization as

〈r2〉λ =
√∑

�r eT
λ (�r) r2 eλ(�r)∑

�r eT
λ (�r) eλ(�r)

. (A5)

At close inspection, we can see a clear correlation between
the absolute value of the leading eigenvalues λ and the
delocalization of its corresponding eigenvector for all cluster
sizes. This correlation shows that the space Iε is actually
spanned by the eigenvectors with a small delocalization. As a
result, satisfying the geometric criteria to do a self-consistent
DCA+ calculation is essentially equivalent to satisfying the
DCA assumption of locality for the lattice self-energy. Another
important conclusion that can be drawn from Fig. 14 is that
the number of vectors that span the space Iε=0.25 becomes
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FIG. 14. (Color online) The correlation between the magnitude of
the leading eigenvalue and the delocalization of the its corresponding
eigenvector for various clusters.

larger with increasing cluster size. This correlation reflects the
intuitive notion in the DCA that larger clusters can describe
finer features of the lattice self-energy.

APPENDIX B: A MATHEMATICAL BASIS FOR
THE INTERPOLATION PROCEDURE

In this Appendix, we want to demonstrate that the interpo-
lation procedure presented in this paper is independent of the
proposed transformation function T , as long as the latter is
analytical and injective. To accomplish this goal, we construct
a function g(k), defined by the transformed real-space Fourier
components of an arbitrary function F that fall within a
cutoff parameter Rc. The goal is now to show that g(k) can
approximate the function F with arbitrary precision, given a
big enough cutoff parameter Rc. In other words, pointwise
convergence of g(k) towards F is thus guaranteed. The rate of
convergence will depend crucially on the rate of convergence
of T [F]R versus the radius |R|.

Pointwise convergence. Consider a function F in the
Brillouin zone B and an injective, continuous transformation
T , such that the Fourier components T [F]R fulfill

∀ε > 0,∃ Rc ∈ R :
∑

|R|�Rc

|T [F ]R| � ε

with T [F ]R =
∫
B

d�k e−ikRT [F (�k)], (B1)

then

∀�k ∈ B,∀ ε > 0, ∃ Rc ∈ R : |g(k) − F(k)| < ε

with g(k) = T −1

[ ∑
R<Rc

exp(ıRk)T [F ]R

]
. (B2)

Choose a positive small number ε. Since T is a continuous
and invertible function, we know that the T −1 is also
continuous. Hence, by definition of the this continuity, there
exists a δ ∈ R+

0 for this ε, such that

|T [g(k)] − T [F(k)]| < δ → |g(k) − F(k)| < ε.

Using the property in Eq. (B1), we can find a radius Rc > 0,
such that ∑

|R|�Rc

|T [F]R| < δ. (B3)

By the definition of g(k), we have

|T [g(k)] − T [F(k)]| =
∣∣∣∣∣ ∑

R�|Rc

exp(ıRk)T [F]R

∣∣∣∣∣
�

∑
R�Rc

|T [F]R| � δ. (B4)

APPENDIX C: RICHARDSON-LUCY ALGORITHM

One of the most common deconvolution algorithms is the
Richardson-Lucy algorithm,57,58 which is based on a Bayesian
inference scheme. Since the patches are strictly positive and
integrate to unity, we can interpret them as a probability
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distribution function

∀ �k,�k′ : φ�0(�k − �k′) � 0, 1 = Nc

VBZ

∫
BZ

d�k φ�0(�k − �k′).

As such, we can apply Bayes theorem and construct a
conditional probability Q for any given lattice self-energy
�( �K):

Q(�k|�k′) = φ0(�k′ − �k) �t
l (�k)∫

BZ d�k′′ φ0(�k′ − �k′′) �(�k′′)
. (C1)

We should stress at this point that conditional probability Q
is computed separately for the real and imaginary parts of the
self-energy. The conditional probability Q(�k| �K) is then used
to construct a lattice self-energy �′(�k), given a continuous
cluster self-energy �̄(�k′):

�′(�k) =
∫

BZ
d�k′ Qt (�k|�k′)�̄(�k′). (C2)

The idea of the Richardson-Lucy algorithm is now to use
Eqs. (C1) and (C2) in an iterative way. After plugging both
equations together, we end up with a fixed-point problem

�(�k) ← �(�k)
∫

d�k′ φ0(�k − �k′) �̄(�k′)∫
d�k′′ φ0(�k′ − �k′′) �(�k′′)

. (C3)

If the interpolated function �̄(�k) is now used as our initial
guess for the lattice self-energy �(�k), Eq. (C3) provides us
with a simple implementation for the lattice mapping. In light
of the DCA+ algorithm, the Richardson-Lucy deconvolution
algorithm has many interesting properties that make it an ideal
algorithm to be used for the deconvolution. First of all, it
is a straightforward algorithm that does not need any extra,
nonphysical input. Other deconvolution algorithms, such as
total variation,59,60 introduce nonphysical penalty factors to
ensure smoothness of the result. Second, the Richardson-
Lucy algorithm conserves the sign of strictly positive and
negative functions. This property can be easily proven in
Eq. (C3) since φ0(�k) is strictly positive. Hence, if the initial
guess for �(�k) and �̄(�k′) are both positive (negative) for
all momenta �k, the resulting �(�k) will also be positive
(negative). Therefore, if the interpolated cluster self-energy
�̄(�k) is causal, the lattice self-energy will also be a causal
function. Third, it has been proven that the solution of this
iterative scheme converges to the maximum of the likelihood
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FIG. 15. (Color online) Relative error between the cluster self-
energy � �K and the integrated lattice self-energy �̄( �K) for the real
(open symbols) and imaginary (solid symbols) parts at 5% doping
and T = 0.2.

function.58 Hence, of all lattice self-energies that generate the
same cluster self-energy after the convolution (coarse grain-
ing), the Richardson-Lucy algorithm will produce the lattice
self-energy that is the most likely to reproduce the cluster
self-energy.

Like all other deconvolution algorithms, the Richardson-
Lucy algorithm is an approximate algorithm, meaning that
the convergence to the exact solution is not guaranteed up to
an arbitrary precision. This is not surprising since we know
that the convolution is invertible as long as the expansion
coefficients of the cluster self-energy in Eq. (A4) decay faster
than the eigenvalues of the projection operator. Consequently,
the smaller the cluster, the slower the Richardson-Lucy
algorithm will converge to a solution and the bigger the
discrepancy between the coarse-grained lattice self-energy
�̄( �K) and the cluster self-energy � �K obtained from the cluster
solver. This phenomenon is illustrated in Fig. 15, where we
show the relative error in the L2 norm between �̄( �K) and
� �K . The figure clearly shows that the larger cluster converges
faster and that the residual error between the cluster and
coarse-grained self-energy decreases with increasing cluster
size.
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