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Odd-frequency superconducting pairing in multiband superconductors
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We point out that essentially all multiband superconductors have an odd-frequency pairing component, as
follows from a general symmetry analysis of even- and odd-frequency pairing states. We show that odd-frequency
superconducting pairing requires only a finite band hybridization, or scattering, and nonidentical intraband
order parameters, of which only one band needs to be superconducting. Under these conditions odd-frequency
odd-interband pairing is always present. From a symmetry analysis we establish a complete reciprocity between
parity in band index and frequency.
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I. INTRODUCTION

One of the key aspects of superconductivity is the fermionic
nature of the superconducting wave function, or equivalently
the pair amplitude. This leads to the traditional classification
into spin-singlet even-parity (s-, d-wave) or spin-triplet odd-
parity (p-wave) pairing.

As Berezinskii1 originally showed, superconducting pair-
ing can also be odd in time, or equivalently frequency.
While theoretical proposals exist for odd-frequency bulk
superconductors,1–4 odd-frequency pair amplitudes have so
far only been argued to have been found in nonuniform
systems, such as at surfaces and interfaces.5 For example, at
superconductor-ferromagnetic interfaces a conventional spin-
singlet s-wave superconducting pair amplitude is transformed
into an odd-frequency spin-triplet s-wave amplitude, due to
spin-rotational symmetry breaking.6,7 The spin-triplet nature
gives rise to long-range proximity effect into the ferro-
magnet. Also nonmagnetic interfaces induce odd-frequency
components, where instead translational symmetry breaking
transforms a spin-singlet s-wave state into an odd-frequency
spin-singlet p-wave state.8,9 The p-wave nature, however,
makes this odd-frequency component sensitive to disorder.10

Numerous recently discovered superconductors have mul-
tiple bands at the Fermi level. These include both the
unconventional iron-pnictides/chalcogens,11,12 heavy fermion
superconductors,13–15 and MgB2, a two-band phonon-driven
superconductor.16,17 In these multiband superconductors the
band index provides yet another symmetry index for the pair
amplitude. While intraband pairing is, per definition, always
an even function in band index, both even- and odd-interband
pairing are, in general, also possible.

In this work we show that odd-frequency pairing is
ubiquitous in multiband superconductors. By transforming
between even- and odd-interband pairing, odd-frequency
correlations are induced in the bulk of the superconductor,
because the necessary symmetry breaking is, in general,
present intrinsically in these systems. More specifically, we
show that finite odd-frequency odd-interband pairing appears
whenever there is a finite even-interband pairing between two
nonidentical bands. This is, for example, always the case when
scattering, or hybridization, is present between two bands with
nonidentical intraband order parameters (of which one can be

zero). Formally, we find that the orbital, or band, parity (O)
of the pair amplitude in multiband superconductors, together
with spatial parity (P ) and time reversal (T ), needs to obey
the rule PTO = +1(−1) for spin-singlet (spin-triplet) pairing.
There is thus a complete reciprocity between pairing that is odd
in frequency and odd under band/orbital index permutation.

II. SYMMETRY ANALYSIS

We start by establishing the formal possibility of odd-
frequency pairing in multiband superconductors. The previ-
ous classification for even/odd-frequency pairing has to be
broaden when multiple bands are present, as it is now also
dependent on the orbital (band) parity. We generalize the
Berezinskii approach1 by considering an orbital (or band or
species) dependent two fermion condensate �αβ,ab(r,τ ) =
Tτ 〈cαa(r,τ )cβb(0,0)〉. Here α,a refer to spin and orbital index,
respectively. For concreteness we consider the case of two
orbitals a = 1,2. We define spatial parity (P ) as acting on
the relative coordinate r: P�αβ,ab(r,τ ) = �αβ,ab(−r,τ ), time
reversal (T ) as acting on the relative time τ : T �αβ,ab(r,τ ) =
�αβ,ab(r,−τ ), and orbital parity (O) as acting on the a

index: O�αβ,ab(r,τ ) = �αβ,ba(r,τ ).18 The general symmetry
requirement for a two fermion condensate can then be written
as

PT �αβ,ab(r,τ ) = −�βα,ba(r,τ ). (1)

For spin-singlet S = 0 we further project to spin-singlet and
find

�ab(−r,−τ ) = �ba(r,τ ), (2)

which we denote in shorthand as PTO = 1, namely, the
simultaneous inversion of space, time, and permutation of
orbital index will leave a spin-singlet pairing order-parameter
invariant. For the spin-triplet case (� now is a vector in spin
space) a similar analysis leads to

��ab(−r,−τ ) = − ��ba(r,τ ), (3)

which we denote in shorthand as PTO = −1. The full
symmetries of the two particle pair correlator are summarized
in Table I.
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TABLE I. Behavior of the two fermion condensate under spatial
parity (P ), time-reversal (T ), and orbital parity (O) symmetry for
spin-singlet (S = 0, left), spin-triplet (S = 1, right) pairing, and
different frequency (ω) dependence.

S = 0 P T O S = 1 P T O

even ω + + + even ω − + +
even ω − + − even ω + + −
odd ω + − − odd ω + − +
odd ω − − + odd ω − − −

III. GENERIC TWO-BAND SUPERCONDUCTOR

The results in Table I provide the formal evidence of odd-
frequency pairing in multiband superconductors by changing
the orbital (band) parity. In order to show that odd-frequency
pairing is also extremely common in multiband superconduc-
tors we start with a generic two-band superconductor:

Hab =
∑

kσ

εa(k)a†
kσ akσ + εb(k)b†kσ bkσ

+
∑

kσ

	(k)a†
kσ bkσ + H.c. +

∑

k

�a(k)a†
k↑a

†
−k↓

+ �b(k)b†k↑b
†
−k↓ + H.c. (4)

Here a
†
kσ creates an electron in band a with momentum k and

spin σ , and similarly for band b. The kinetic energy is given by
the band dispersions εa,b and a single-particle band scattering,
or hybridization, 	. A finite 	 appears automatically if the su-
perconducting pairing occurs in (atomic or molecular) orbitals
in which the kinetic energy is not fully diagonal,19 as, e.g.,
proposed for the iron-pnictide superconductors.20 It can also,
e.g., result from disorder-induced interband scattering. The
superconducting intraband (diagonal) order parameters are
�a,b. We will here assume conventional spin-singlet, uniform
s-wave superconducting states, but the results apply equally
well to any intraband pairing. For finite 	 we diagonalize the
kinetic energy, resulting in a Hamiltonian with fully diagonal
bands c and d, but now with both intraband superconducting
order parameters �c and �d and an even-interband order
parameter �cd :

Hcd =
∑

kσ

εc(k)c†kσ ckσ + εd (k)d†
kσ dkσ

+
∑

k

�c(k)c†k↑c
†
−k↓ + �d (k)d†

k↑d
†
−k↓ + H.c.

+
∑

k

�cd (k)(c†k↑d
†
−k↓ + d

†
k↑c

†
−k↓) + H.c. (5)

If we write �b = α�a , we can express �cd = (α − 1)�a|	|/√
(εa − εb)2 + 4|	|2. Thus, even-interband pairing is always

present whenever 	 �= 0 and �a �= �b in the original Hamil-
tonian Hab. With the discovery of several multiband supercon-
ductors, intrinsic even-interband pairing has also been studied
in many systems.20–26 In this case the need to start with a finite
band hybridization 	 in Eq. (4) is automatically circumvent.

We are here primarily interested in the s-wave time-ordered
pairing amplitude:

F±(τ ) = 1

2Nk

∑

k

Tτ 〈c−k↓(τ )dk↑(0) ± d−k↓(τ )ck↑(0)〉, (6)

which is an even (+) or odd (−) function in band index. Nk
is the number of points in the first Brillouin zone. F±(τ ) can
also be either even or odd in the time coordinate. The even-
frequency pair amplitude we define, as usual, by the equal-
time amplitude, such that the even-frequency even-interband
spin-singlet s-wave amplitude is Fe = F+(τ → 0+).
The superconducting even-interband order parameter is thus
�cd = −UcdF

e, for some effective interband pairing potential
Ucd . Since �cd is an even function in the band index, the
odd interband combination Fo = F−(τ → 0+) = 0. For the
component odd in time, we can still define an equal-time order
parameter if we use the time derivative at equal times:4,27–29

Fo
ω = ∂F−

∂τ
|τ→0+ . Odd-frequency pairing is necessarily accom-

panied by an oddness in band index for spin-singlet s-wave
pairing.

To continue, we first focus on the interband pairing in Hcd

in Eq. (5), setting �c,d = 0, �cd = �. Formally this can be
achieved by choosing εa = εb and �a = −�b. By using the
time dependence γi(τ ) = γi(0)e−iEiτ of the ith Bogoliubov
quasiparticle, with Ei being its eigenenergy, we find

Fo
ω = i

2Nk

∑

k

�
[
η sinh

(
εc−εd

2kBT

) + (εc − εd ) sinh
(

η

2kBT

)]

η
[

cosh
(

εc−εd

2kBT

) + cosh
(

η

2kBT

)] ,

(7)

where η =
√

(εc + εd )2 + 4|�|2. For odd-frequency pairing to
appear εc �= εd is necessary, which is true for finite 	. Further,
when T → 0 and |εc − εd | > η we get Fo

ω = i
2Nk

∑ �(εc−εd )
η

,

whereas if |εc − εd | < η, Fo
ω = i

2Nk

∑
� sgn(εc − εd ). Odd-

frequency odd-interband pairing is thus always present in a
superconductor with even-interband pairing and nonidentical
bands.30 If there is no intrinsic even-interband pairing present,
odd-frequency pairing will still always exist in a two-band
superconductor with finite band hybridization 	 and different
intraband order parameters. The overall factor of i� in Eq. (7)
is important as it gives ±[F±(τ )]∗ = F (τ ) and thus invariance
under time-reversal symmetry.

Equation (7) ignored intraband pairing. While these can
change the value of the odd-frequency odd-interband pair
amplitude they will, in general, never destroy it, as exemplified
in Fig. 1. There we plot iF o

ω for a two-band superconductor on
a three-dimensional (3D) cubic lattice with nearest neighbor
hopping and εb = βεa for β = 1,4 and �b = α�a for �a > 0,
|α| � 1. Let us first study the special case α = −1,β = 1,
which explicitly illustrates the deep connection between Fe

and Fo
ω . Then the diagonal band dispersions εc,d = εa ∓ 	,

intraband pairing �c,d = 0, and interband pairing �cd = �a .
If we further assume 	 < �a , the even-interband pairing
amplitude is the BCS gap equation: Fe = − 1

2Nk

∑
k

�a√
ε2
a+|�a |2

,

whereas the odd-frequency odd-interband amplitude is Fo
ω =

i	F e. The red solid curve in Fig. 1(a) shows the linear
dependence on 	 for 	 < �a = 0.5, while deviations from
α = −1, β = 1 give a sublinear dependence on the band
hybridization 	. We also find a linear dependence on α, as seen
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FIG. 1. (Color online) Odd-frequency odd-interband pair am-
plitude F o

ω for a 3D two-band superconductor with εa =
−2

∑
i cos(kia), εb = βεa for β = 1 (solid), β = 4 (dashed), and

�a = 0.5, �b = α�a in Eq. (4). (a) F o
ω as function of 	 for α = 0.5,

0, −1 (increasing values). (b) F o
ω as function of α for 	 = 0.1, 0.5, 2

(increasing values).

in Fig. 1(b), clearly demonstrating the robust dependence of
Fo

ω on the interband pairing �cd ∝ (1 − α). The decrease in Fo
ω

with increasing bandwidth (β) is also a sign of its connection
to the even-frequency pair amplitude.

The above analytical and numerical results show that
odd-frequency odd-interband pairing is extremely common
in multiband superconductors, requiring only a finite band hy-
bridization and different intraband order parameters, where the
latter is generally always present. For example, in the presence
of interband defect scattering, odd-frequency pairing should
be present in the two-band superconductor MgB2,16,17 high-
temperature superconducting iron-pnictides/chalcogens,12 as
well as in superconducting heavy fermion compounds.13–15

The key to odd-frequency odd-interband pairing is the exis-
tence of even-interband pairing. Interband pairing that is not
an even function in band index will not have the same effect.
For example, interband pairing of the form c

†
k↑c

†
−k↓d−k′↓dk′↑,

which constitutes an interband pair scattering mechanism,31

does not induce odd-frequency pairing.
The deep connection between parity in band index and

frequency is further solidified if we consider the case of even-
frequency odd-interband pairing, which for s-wave symmetry
is necessarily a spin-triplet state. While such odd-interband
pairing cannot be induced by simple band hybridization, it
has been suggested for the iron-pnictides32 and found in the
proximity-induced superconducting response in topological
insulators.33 Again, ignoring any intraband pairing �c,d in
Hcd in Eq. (5) and replacing the even-interband pairing �cd

with an odd-interband spin-triplet term we arrive at an odd-
frequency even-interband spin-triplet s-wave pairing ampli-
tude exactly equal to the result in Eq. (7). Such mixing of even-
frequency odd-interband and odd-frequency even-interband
pairing has in fact been pointed out before for multipocket
systems.34

IV. MULTIORBITAL SUPERCONDUCTORS

We have, so far, exclusively worked in reciprocal space,
but there are many situations where multiple superconducting
orbitals, or sites, within one unit cell have to be described
in real space. In this case we will let the operators aiσ

and biσ represent the (two) different orbitals in the unit
cell i. By using ai↓ai↑ and bi↓bi↑ for intraorbital spin-

singlet s-wave pairs, the derivation given above is equally
applicable in this real-space system. Thus odd-frequency
odd-interorbital pairing will always be present as soon as
there is a finite single-electron orbital hybridization of the
form a

†
iσ biσ and nonidentical intraorbital superconducting

order parameters. The latter requirement can be fulfilled if the
orbitals have different physical origins, but also if the orbitals
are separated in space and there are atomic-scale variations
in the material. A Josephson junction with single-electron
hybridization across the junction is a prototype example of
the latter. This odd-frequency odd-interorbital pairing is very
different from the odd-frequency pairing discussed earlier for
Josephson junctions,8–10 where a conventional spin-singlet
s-wave junction generates odd-frequency spin-singlet p-wave
pairing, which is not robust to disorder. Another example is a
superconductor/Bi2Se3 topological insulator heterostructure.
The two active (Bi) orbitals in Bi2Se3 are separated along the
z axis35,36 and will therefore experience different supercon-
ducting pairing. We recently found numerically a complete
reciprocity between parity in orbital and frequency spaces in
a Bi2Se3/superconductor heterostructure for spin-singlet s-,
d-wave as well as spin-triplet p-wave superconductors.33 The
PTO = ±1 symmetry requirement established above provides
the analytical framework for this finding.

Yet another simple example of a multiorbital system
is graphene. Intrinsic superconductivity has been proposed
theoretically in graphene37–40 and a superconducting state
has been achieved experimentally in graphene by proximity-
coupling to a superconductor deposited on top of the graphene
sheet.41 In graphene, the hybridization between the pz orbitals
on the two carbon atoms equals the nearest-neighbor hopping
t , and therefore overwhelmingly dominates kinetic energy.
Odd-frequency odd-interorbital pairing will thus be present
whenever there are different superconducting intraorbital
pairing order parameters �a,b on the two sites. Since �a(i) =
−Ua〈ai↓ai↑〉 for some pair potential Ua , and equivalently
for �b(i), different intraorbital order parameters can be
achieved by either having Ua �= Ub or by having different
density of states at each site. Such sublattice symmetry-
breaking effects can be present in both intrinsically super-
conducting graphene, due to, e.g., substrate effects, or at the
graphene-superconductor interface when superconductivity is
proximity-induced in the graphene. In Fig. 2 we plot iF o

ω for

Ub/t µb/t

(a) (b)

FIG. 2. (Color online) Odd-frequency odd-interband pair am-
plitude F o

ω in graphene for nearest-neighbor hopping t = 2.5 eV,
chemical potentials μa,b, and on-site pairing potentials Ua,b. (a) F o

ω as
function of Ub for Ua = 2t and μa = μb = 0,0.25t,0.5t (increasing
values). (b) F o

ω as function of μb for μa = 0 (solid), 0.25t (dashed) for
Ua = Ub = 2t,3t (increasing values). Zero F o

ω for μ = 0 is caused
by a superconducting quantum critical point at finite U .
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both of these cases. In Fig. 2(a) the pair potential Ub is changed
while Ua and the local chemical potentials μa = μb are kept
fixed. The odd-frequency response is always zero for Ua =
Ub = 2t and is larger for higher chemical potentials, since
larger density of states at the Fermi level cause larger even-
interorbital pairing. In Fig. 2(b) we instead set Ua = Ub but
vary the chemical potential difference between the two sites.
Fo

ω is zero when there is no asymmetry between the two sites,
i.e., μa = μb, but is in general otherwise finite. The results in
Fig. 2 show that odd-frequency pairing is present as soon as
there is sublattice symmetry breaking, which in graphene can,
e.g., be achieved by substrate or interface effects.42 While we
have here used graphene as a simple example, odd-frequency
odd-interorbital pairing will be present in any non-Bravais
lattice with a site-dependent superconducting state. For these
systems it is the sublattice symmetry breaking that facilitates
the creation of odd-frequency pairing.

V. ENERGY GAP

Odd-frequency superconducting pairing has in the past
often been associated with the appearance of subgap
states,5,8,9,43,44 or even a low-energy continuum.3,28 However,
for odd-frequency odd-interband pairing, we do not in general
find any low-energy states. For the special case studied analyt-
ically above, i.e., Eq. (5) with �c,d = 0,�cd = �a , and εc,d =
εa ∓ 	, we find the eigenenergies E = ±(

√
ε2
a + �2

a ± 	),
and thus zero-energy states for 	 � �a . However, there is no
stable superconducting state for 	 � �a . The absence of pure
interband superconductivity with zero energy states has also
been established in other systems.25,26 The absence of subgap
states is further confirmed by numerically solving the original
Hamiltonian Hab in Eq. (4). For isolated bands, i.e., 	 = 0,
we have the BCS energy gap relationship Eg = �sc

a,b in each
band, where the superscript sc stands for the self-consistent
result found for fixed pair potentials Ua,b. For finite 	 we
always find Eg > min(�sc

a ,�sc
b ), with �sc

a,b modified in the
presence of a finite band hybridization. Thus, the energy gap
is never smaller than the intraband BCS gaps. The lack of
low-energy signatures of the odd-frequency odd-interband
pairing is similar to the odd-frequency pairing behavior
in topological insulator/superconductor heterostructures29,33

and in heavy-fermion compounds.45 Together these results
demonstrate that odd-frequency pairing often has a frequency
dependence which does not generate subgap states.

VI. CONCLUSIONS

In summary, we have found the general symmetry rule
for spatial parity P , time reversal T , and orbital parity O

for multiband superconductors to be PTO = 1(−1) for spin-
singlet (triplet) pairing. Within a generic microscopic model of
multiband superconductors we have shown that odd-frequency
pairing always exists in the form of odd-interband (orbital)
pairing if there is any even-frequency even-interband pairing
present, consistent with the general symmetry requirements.
Even-interband pairing can exist intrinsically in multiband
superconductors, but also a finite band hybridization together
with nonidentical intraband order-parameter strengths give
even-interband pairing. In fact, we find a complete reciprocity
between parity in band (orbital) index and frequency for
the superconducting pair amplitude, which naturally follows
from T O = 1 for spin-singlet s-wave (or spin-triplet p-wave)
pairing. The s-wave nature makes the odd-frequency pairing
resistant to disorder scattering. These results show that
odd-frequency pairing is present in the bulk state of many
superconductors, requiring no external symmetry breaking
such as interfaces or magnetic fields.

In this work we assumed an even-frequency order parameter
and showed that it induces an odd-frequency pair amplitude.
An intriguing possibility is that the order parameter in some
multiband superconductors has an odd-frequency dependence,
but that it induces a finite even-frequency pair amplitude,
which is mistaken to also be the (even-frequency) order pa-
rameter. One example might be the heavy fermion compounds,
which have been proposed to have an odd-frequency order
parameter.45 Since establishing the symmetry of the supercon-
ducting pair condensate is a crucial first step in elucidating the
pairing mechanism, our work provides a different approach to
superconducting pairing in multiband superconductors.
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