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We theoretically investigate the behavior of Andreev interferometers with three superconducting electrodes in
the current-biased regime. Our analysis allows us to predict a number of interesting features of such devices, such
as both hysteretic and nonhysteretic behavior, negative magnetoresistance, and two different sets of singularities
of the differential resistance at subgap voltages. In the nonhysteretic regime we find a pronounced voltage
modulation with the magnetic flux which can be used for improving the sensitivity of Andreev interferometers.
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I. INTRODUCTION

It was demonstrated experimentally by Petrashov and
co-workers,1 as well as by several other experimental
groups,2 that the resistance of mesoscopic diffusive normal-
superconducting (NS) hybrid structures can be quite strongly
modulated by an externally applied magnetic field. These
observations open a possibility to construct the so-called
Andreev interferometers which, for a number of applications,
may have several important advantages over the well-known
superconducting quantum interference devices (SQUIDs).
Such types of applications may include, e.g., the possibility
to implement the readout of superconducting qubits3 or the
experimental analysis of the switching dynamics of individual
magnetic nanoparticles4 that require features of a detector such
as reduced intrinsic dissipation (down to the fW level), the
possibility to achieve higher sensitivity and readout speed, as
well as a broad choice of normal conductors employed as a
weak link.

Recently, there were both experimental5 and theoretical6,7

investigations of hybrid NS structures with pronounced de-
pendencies of their resistance on the applied magnetic flux
(see also earlier theoretical works8,9 where other realizations
were analyzed). Contrary to the initial design of Andreev
interferometers pioneered by Petrashov and coauthors,1 this
latest analysis focuses on the systems with all external
electrodes in the superconducting state. In this way one would
be able to reduce dissipation. Current (voltage) harmonics
would be generated in this case, which are multiples of the
Josephson frequency. However, they can be filtered out and
the average current (voltage) can be measured, which should
reveal a dependence on the magnetic flux.

It is worth pointing out that the study of structures with
several superconducting electrodes attached to a piece of a
normal metal has a history of its own. For example, the
“Josephson triode” was dealt with in Ref. 10 by means
of Aslamazov-Larkin theory combined with the resistively
shunted junction (RSJ) model. A similar approach was
employed11 in order to analyze the behavior of multiterminal
Josephson junctions. Interesting features of such structures,
such as, e.g., bistable states and magnetic flux transfer, were
demonstrated theoretically in the ballistic limit.12 One can
also mention a modification of Shapiro steps in multiterminal
structures.13

In Ref. 7 we already carried out a detailed theoretical
analysis of Andreev interferometers in the voltage-biased
regime. While this regime can be realized in some experiments,
of clear experimental interest is also another physical situation
when the system is biased by a fixed external current. The
main purpose of the present work is to analyze the behavior of
Andreev interferometers in the current-biased regime.

Note that the system behavior in the latter regime can be
very different from that in the voltage-biased one. In a vast
majority of normal structures these differences mainly concern
higher cumulants of voltage and current. For instance, a
decade ago there arose a conundrum caused by experiments,14

where the third voltage cumulant of the current-biased normal
junction was measured. The behavior of this quantity was
essentially different from theoretical expectations based on
the linear relation between the third voltage correlator in the
current-biased regime and the third current correlator15–17 in
the voltage-biased regime. This conundrum was resolved in
Ref. 18, where the major conclusion was that current and
voltage correlators of order three and higher are no longer
linearly related.

In superconducting circuits essential differences between
the voltage- and current-biased regimes occur already at the
level of I -V curves. Such differences were encountered,
e.g., in the case of single Josephson junctions19 (see also
Ref. 20). A profound qualitative distinction between these
regimes is caused by the fact that, as it was demonstrated
in Ref. 19, in the current-biased limit the Cooper pair
current may provide a major contribution to the dissipative
current flowing in the device. Technically, this contribution is
related to the kernel S2(t) in the current-phase relationship
[see Eqs. (5) and (6) below] originating from anomalous
Green’s functions. In contrast, in the voltage-biased regime
the dissipative contribution to the current is mainly due
to quasiparticles [accounted for by the kernel S1(t)—see
below] in combination with multiple Andreev reflections
(provided the system transparency is not too small). This
qualitative difference between the regimes results in en-
tirely different current-voltage characteristics in the subgap
region. Earlier experiments21 conformed to the predictions.19

Later, further experimental support to this theoretical picture
was obtained22–24 (see also the corresponding discussion in
Chap. 4 of Ref. 20). Another example is the low temperature
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behavior of Josephson junction arrays and chains which may
vary from superconducting to insulating depending on whether
the voltage- or current-biased scheme is considered.25

The structure of our paper is as follows. In Sec. II
we describe the model for Andreev interferometers under
consideration. In Sec. III we proceed with a theoretical
analysis of our model and derive the basic formula that fixes
the current-phase relation for our device. This formula is
then employed in Sec. IV, where we numerically evaluate
the I -V curve for our system in the current-biased regime and
study the effect of voltage modulation by an external magnetic
flux. The paper is concluded by a brief discussion of our key
observations in Sec. V. Some technical details are relegated to
the Appendix.

II. THE MODEL

The system under consideration is schematically depicted
in Fig. 1. It consists of three superconducting electrodes
characterized by the absolute value of the order parameter
� and a disordered normal metal insertion embedded between
these electrodes. A typical size L of this normal metallic dot is
assumed not to exceed the superconducting coherence length
ξ and at the same time to be larger than the elastic mean free
path �. Two superconducting electrodes 2 and 3 form a loop
which is pierced by an external magnetic flux �. Accordingly,
the superconducting phase difference χ = 2π�/�0 is induced
between electrodes 2 and 3, where �0 is the superconducting
flux quantum.

In what follows we will generally assume that all interfaces
between the normal metal and superconducting electrodes are
weakly transmitting. In this case one can expect to observe
a pronounced magnetoresistance modulation effect.26 For
comparison, in the limit of highly transparent NS interfaces,
this modulation is expected to remain below 10%.26,27 The

χ =2 χ/2 χ =−χ/23

χ1

V

I

Φ

FIG. 1. Scheme of the setup: Disordered normal metal insertion
(dot) embedded between three superconducting electrodes. The phase
difference χ2 − χ3 = χ is caused by the magnetic flux � piercing
the loop.

normal state conductances G1, G2, and G3 between three
electrodes and the normal insertion obey the condition

G1 ≡ 1

RN

� G2,3 � σDA/L, (1)

where the normal state resistance RN is determined by the
standard Landauer formula

1

RN

= e2

π

∑
n

Tn, (2)

Tn are the transmissions of conducting channels in
the first barrier, σD = 2e2DN0 is the Drude conductivity of
the normal metal, A denotes a typical contact area between the
normal metal and the electrode, D = vF �/3 is the diffusion
coefficient, and N0 is the density of states at the Fermi surface
per spin direction. The electron charge will be denoted by −e.

Equation (1) assures that the voltage drop occurs only across
the tunnel barrier between the first electrode and the rest of
our system. The second inequality (1) also guarantees that our
results will not depend on the particular shape of the normal
metal insertion. In addition, we will disregard charging effects,
which amounts to assuming that all relevant effective charging
energies remain much smaller than other important energy
scales in our problem.28

As we already discussed, below we will be interested in
the current-biased regime, i.e., we will assume that our system
is biased by an external current source I , as is indicated in
Fig. 1. Restricting ourselves to this regime we will evaluate
the time-averaged voltage V across our device, which should
depend both on the bias current I and on the external flux
� (or, equivalently, on the phase difference χ ). In the case
of Josephson junctions with normal state resistance RN and
capacitance C it was demonstrated19 that the I -V curves in
the current- and voltage-biased regimes differ substantially
provided the parameter β = �RNC remains smaller than one.
Below we will also stick to the same limit, β � 1.

III. CURRENT-PHASE RELATIONS

The first step to derive the current-voltage characteristics
is to establish the dependence of the instantaneous current
value I (t) on the phase difference ϕ(t) across the NS interface
with the smallest conductance 1/RN . This phase difference is
defined by the standard relation

ϕ(t) = e

∫ t

0
dt ′V (t ′), (3)

where V (t) is the time-dependent voltage drop across this NS
interface. In order to accomplish this goal one can employ the
effective action analysis.28–30 The general Keldysh effective
action describing electron transport across the barrier between
the first superconducting electrode and the rest of our structure
has the form

S = − i

2

∑
n

Tr ln

[
1 + Tn

4
({ǧN ,ǧS} − 2)

]
. (4)

Here ǧS is the Green-Keldysh matrix of the superconducting
reservoir 1 and ǧN is the 4 × 4 Green-Keldysh matrix of a
disordered normal metal which also acquires superconducting
properties due to the contact with reservoirs 2 and 3.
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The effective action (4) holds for arbitrary transmission
values Tn and allows for a complete description of electron
transport through our device. It is convenient to combine the
phase variables on the two branches of the Keldysh contour
and define the “classical” [ϕ(t)] and “quantum” [ϕ−(t)]
components of the phase. Taking the derivatives of the effective
action with respect to the quantum phase ϕ−, one can derive the
expressions for all current correlators in our problem. Provided
the charging effects are weak, the action (4) can be expanded
in powers of ϕ− and reduced to a much simpler form that is
convenient for practical calculations. In the case of NS hybrid
structures this procedure was described in detail in Ref. 31.

Since here we are merely interested in the tunneling limit
Tn � 1, it suffices to expand the action (4) up to the first order
in Tn. Then taking the first variation of the action with respect
to ϕ−, one arrives at the current-phase relation in the form

I (t) =
∫ t

0
dt ′ sin[ϕ(t) − ϕ(t ′)]S1(t − t ′)

+
∫ t

0
dt ′ sin[ϕ(t) + ϕ(t ′)]S2(t − t ′). (5)

To avoid possible confusion, let us mention that the voltage-
related phase (3) is two times smaller than the superconducting
phase difference across the tunnel junction.

As is usual in the tunneling limit, the kernels S1(t) and
S2(t) are expressed respectively via normal and anomalous
components of the Green-Keldysh matrices, calculated for an
infinitely high tunnel barrier between the normal insertion and
the first electrode, i.e.,

S1(t) = − ie

4

∑
n

Tn

[
gR

S (t)gK
N (−t) + gK

S (t)gA
N (−t)

+ gR
N (t)gK

S (−t) + gK
N (t)gA

S (−t)
]
,

S2(t) = ie

4

∑
n

Tn

[
f R

S (t)f K
N (−t) + f K

S (t)f A
N (−t)

+ f R
N (t)f K

S (−t) + f K
N (t)f A

S (−t)
]
. (6)

Note that Eqs. (5) and (6) can also be derived by means of the
standard tunneling Hamiltonian approach.

What remains is to define the Green’s functions of both the
superconducting electrode and the normal metal dot. Without
any loss of generality one can set the electric potential of the
first superconducting electrode equal to zero. Then the Fourier
transforms of g

R,A
S and f

R,A
S take the form

g
R,A
S (ε) = ε

ξR,A
, f

R,A
S (ε) = �

ξR,A
. (7)

In order to properly account for the analytic properties of the
functions ξR,A it is important to keep an infinitesimally small
imaginary part i0, i.e.,

ξR,A = ±
√

(ε ± i0)2 − �2. (8)

As the cut in the complex plane goes from −� to �, we obtain
ξR,A = ±sgn ε

√
ε2 − �2 for |ε| > � and ξR,A = i

√
�2 − ε2

for |ε| < �.
The Keldysh components gK and f K are related to

the above retarded and advanced Green’s functions in

the standard manner as

gK (ε) = [gR(ε) − gA(ε)] tanh
ε

2T
,

(9)
f K (ε) = [f R(ε) − f A(ε)] tanh

ε

2T
.

Now let us turn to the Green-Keldysh functions of the
metallic dot g

R,A,K
N and f

R,A,K
N . These functions have already

been evaluated elsewhere,7,9 therefore here we only briefly
recapitulate the corresponding results. It is important to bear
in mind that, due to the contact with superconducting terminals
2 and 3, the normal metal also acquires superconducting
properties. For instance, the proximity-induced minigap �g in
its spectrum develops. This minigap is defined by the equation7

�g = εg

1 + γ
√

1 − �2
g/�

2
, (10)

where the quantity

εg = �

√
1 − 4G2G3

(G2 + G3)2
sin2

χ

2
(11)

depends on the external magnetic flux � via the phase
difference χ . The parameter γ (Ref. 9) effectively controls
the strength of electron-hole dephasing in our system. This
parameter is defined as

γ = 2σDV�

D(G2 + G3)
, (12)

where V stands for the volume of the normal metal.
In order to correctly determine the analytic properties of

the Green’s functions, we observe that the structure of the cuts
in the complex plane is somewhat more complicated. Namely,
these cuts are now located at (−∞, − �], [−�g,�g], and
[�,∞). As above, the retarded Green’s functions are defined
on the upper banks of these cuts. Provided �g < ε < � we
find

gR
N (ε) = ε√

ε2 − ε2
g(

1+γ
√

1−ε2/�2
)2

,

(13)
f R

N (ε) = εg√
ε2

(
1 + γ

√
1 − ε2/�2

)2 − ε2
g

.

For the remaining values of ε the retarded Green’s functions
are obtained by analytic continuation with the mentioned cuts,
while advanced Green’s functions are defined as gA

N (ε) =
−[gR

N (ε)]∗ and f A
N (ε) = −[f R

N (ε)]∗. Finally, the Keldysh
components are again given by Eqs. (9).

Combining the above expressions for the Green’s functions
with Eqs. (6) it is easy to verify that S1,2(t < 0) ≡ 0, i.e., both
kernels (6) obey the requirement of causality. In the case of
a Josephson junction between two BCS superconductors with
different values of the gap, the kernels S1,2(ω) were derived
by Werthamer32 and also by Larkin and Ovchinnikov.33 For
reference purposes the corresponding expressions [denoted
below as S̃1,2(ω)] are presented in the Appendix. In our case
the kernels S1,2(ω) deviate from S̃1,2(ω) since the energy
spectrum of the central metallic dot is different from that of a
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FIG. 2. (Color online) The functions δS1,2(ω) (14) evaluated at
T → 0 for εg/� = 0.95 and γ = 0.8.

superconductor. The difference

δS1,2(ω) = S1,2(ω) − S̃1,2(�,�g,ω) (14)

can be evaluated both numerically34 and analytically in some
limits. For illustration, in Fig. 2 we display the functions
δS1,2(ω) calculated at εg = 0.95�, γ = 0.8, and T → 0.

Within the logarithmic accuracy an asymptotic behavior of
Re δ S1,2(ω) at ω ≈ � + �g is described as

Re δ S1,2(ω) ≈ �

2eRN

√
�g

�

(
1√
c1

− 1

)
ln

�g

|δω| , (15)

where δω = ω − � − �g and

c1 = 1 − γ 2�4
g

�2εg(εg − �g)
. (16)

These expressions imply modifications in the so-called Riedel
singularity35 as compared to the case of usual Josephson
junctions between two superconductors. This difference is by
no means surprising since the density of states in our metallic
dot differs from that of a BCS superconductor. We also observe
that the functions Im δ S1,2(ω) experience a jump at δω = 0.
The magnitude of this jump reads

Im δ S1,2 = �

2eRN

[
π

√
�g

�

(
1√
c1

− 1

) ]
. (17)

Finally, we note the presence of peculiarities in the behavior
of the functions Re δ S1,2(ω) and Im δ S1,2(ω) at ω = 2�

(cf. Fig. 2).

IV. NUMERICAL ANALYSIS

Our numerical procedure follows closely that of Ref. 19.
We will make use of the representation

eiϕ(t) = eieV t

N∑
n=−N

Wne
−inωJ t , (18)

where V is the average voltage across the tunnel barrier,
ωJ = 2eV is the Josephson frequency, and Wn are 2N + 1
complex numbers to be determined. As usually, Eq. (18)
demonstrates that the higher harmonics of the Josephson
frequency are excited in our device.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
1.0

1.5

2.0

2.5

3.0

3.5

eV g

I
eR

N
g

2
g

FIG. 3. (Color online) The current through our device as a
function of the average voltage at T → 0 for εg/� = 0.95 and
γ = 0.1 (solid curve). The dashed curve corresponds to the same
quantity evaluated with the kernels S̃1,2(�,�g,ω).

Our numerics shows that sufficient accuracy is achieved
if one restricts the summation in Eq. (18) by N = 25. The
numbers Wn are determined bearing in mind that (a) in
the current-biased regime considered here only the n = 0
component of the current differs from zero, (b) the condi-
tion eiϕ(t)e−iϕ(t) = 1 imposes extra restrictions on Wn, and
(c) here we choose ϕ(t = 0) = 0, which is equivalent to∑N

n=−N Im Wn = 0.
This set of conditions provides 4N + 2 real equations

sufficient to fully determine Wn. Resolving these equations by
the Newton’s method we finally recover the current through
our system as a function of the average voltage V . The results
of numerical analysis are displayed in Figs. 3–5.

Similarly to ordinary Josephson junctions between two
BCS superconductors19,20 the I -V curves demonstrate pecu-
liarities at voltage values

eV = � + �g

2m + 1
, (19)

where m is an integer number. These peculiarities stem from
the Riedel-like singularity contained in the kernels S1,2. In

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
1.0

1.5

2.0

2.5

3.0

3.5

eV g

I
eR

N
g

2
g

FIG. 4. (Color online) The same as in Fig. 3 for εg/� = 0.95 and
γ = 0.8.
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FIG. 5. (Color online) The same as in Fig. 3 for εg/� = 0.95 and
γ = 4.

addition, we also observe extra peculiarities which occur at
voltages

eV = 2�

2m + 1
. (20)

These latter features are not present in ordinary Josephson
junctions at all. In our case these peculiarities are caused by
the behavior of kernels S1,2(ω) at ω = 2� (see Fig. 2). These
additional features on the I -V curve are more pronounced for
intermediate values of the electron-hole dephasing parameter
γ ∼ 1 and become considerably less pronounced both at small
and large values of γ (cf. Fig. 4 with Figs. 3 and 5).

The dependencies presented in Figs. 3–5 demonstrate that
at certain values of the bias current the average voltage V

becomes multivalued, i.e., there exists more than one different
voltage state corresponding to the same bias I . Accordingly,
in this regime one can expect to observe jumps between
different voltage branches as well as a hysteretic behavior
of our device. On the other hand, there also exists a subgap
voltage regime where V remains single valued for a fixed bias
current. For example, for the parameters employed in Figs. 3–5
such a nonhysteretic regime is realized within the voltage
interval

0.8 � eV

� + �g

� 0.95, (21)

which can be conveniently used, e.g., to perform magne-
toresistance experiments. An example of the voltage-phase
dependence obtained in this region is presented in Fig. 6.
These plots demonstrate negative magnetoresistance, i.e., the
system resistance decreases with increasing magnetic flux �.
The amplitude of this voltage modulation effect decreases with
increasing dephasing parameter γ . Also, for the values of χ

sufficiently close to π the hysteretic behavior can be reinstated.
For example, for the plots displayed in Fig. 6 this is the case at
χ � 2.5 (only the subgap branch is shown in this figure; for χ

close to π , when �g becomes close to zero for the symmetric
case presented in Fig. 6, there can be three solutions for V at
given I ∼ �/eRN ).

Note that the effect of voltage modulation by the external
flux persists also at higher voltages eV > � + �g , in which
case deviations from the normal state behavior become smaller.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1.0

1.1

1.2

1.3

1.4

1.5

χ

eV
/

FIG. 6. (Color online) Voltage modulation in a current-biased
Andreev interferometer in the low temperature limit. Here we set
G2 = G3 and the parameter γ equal to 0.1, 0.8, and 4 (top to bottom).
The corresponding current bias values are 1.4, 1, and 0.5 �/(eRN ).

In this regime the system magnetoresistance turns out to be
positive, though the amplitude of the voltage modulations
is diminished and becomes vanishingly small for sufficiently
large values of γ . This behavior is exemplified in Fig. 7.

V. DISCUSSION

In this work we analyzed the behavior of an Andreev
interferometer in the current-biased regime. As compared to
the voltage-biased regime studied before,7 we discover a rather
different form of the I -V curves and observe some peculiar-
ities, e.g., at voltage values defined in Eqs. (19) and (20).
Singularities at voltages (19) are due to the Riedel-like feature
and are qualitatively similar to those observed in experiments
with ordinary Josephson junctions.21 Additional features at
voltages (20) are specific to systems under consideration and
are not present, e.g., in tunnel junctions between two BCS
superconductors.

An experimental observation of the above two series of
singularities in Andreev interferometers under consideration
would be highly interesting as, for instance, it would allow to

0.0 0.5 1.0 1.5 2.0 2.5 3.0

2.70

2.75

2.80

2.85

eV

χ

/

FIG. 7. (Color online) The same as in Fig. 6 at higher bias current
value I = 2.7�/(eRN ). The values of γ are 0.1, 0.8, and 4 (bottom
to top).
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accurately determine the parameters of such devices. Indeed,
the dephasing parameter γ can be determined with the aid
of Eq. (10), e.g., by setting an external magnetic flux equal
to zero � = 0 (and, hence, εg = �). Having established this
parameter, one can also verify the flux dependence εg(�) (11)
at all values of � and also obtain extra information about the
conductances G2 and G3.

Depending on the value of the applied external current,
Andreev interferometers can show either hysteretic or non-
hysteretic behavior. The latter behavior is well suited to study
the effect of voltage modulation by an external magnetic
flux. For example, within the voltage interval (21), one
observes negative magnetoresistance and a significant voltage
modulation effect (cf. Fig. 6) which is sufficient for the reliable
performance of Andreev interferometers.

Let us also note that the above features of Andreev
interferometers predicted here, such as hysteretic behavior,
peaks in the differential resistance, and negative magnetoresis-
tance, have been observed in recent experiments.36 It appears,
however, that more work will be needed in order to perform a
quantitative comparison between theory and experiment.

To complete our discussion we briefly address the effect
of voltage noise. Denoting the voltage fluctuation by δV (t),
introducing the voltage-voltage correlation function

SV (ω) =
∫

d(t1 − t2)eiω(t1−t2) 〈δV (t1)δV (t2)〉 , (22)

and following the analysis developed in Ref. 37 for the case of
ordinary Josephson junctions (see also Ref. 20), in the limit of

low frequencies for eV � 2� we arrive at an estimate

SV (0) ∼ �R2
d/RN, Rd = dV/dI. (23)

We note that within voltage interval (21) the differential
resistance of our device obeys the inequality Rd � RN (see
Figs. 3–5). Since the voltage modulation for small γ is ∼�/e

(see Fig. 6), a typical noise-to-signal ratio (ζ ) of our device
can be estimated as

ζ �
√

(RN/Rq)(δω/�). (24)

Here Rq is the quantum resistance unit and δω defines the
bandwidth for our system. As here we are interested in the
averaged voltage and as higher Josephson harmonics should
be effectively filtered out, we may set δω � �. In addition, we
will assume that RN � Rq . In this case the estimate (24) yields
ζ � 1. Perhaps we may also add that, as it was concluded
in recent experiments,5,36 the intrinsic noise of Andreev
interferometers was lower than that in employed readout
electronics. This observation, combined with the estimate (24),
appears to indicate that voltage noise may remain sufficiently
weak and will not compromise the performance of Andreev
interferometers.
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APPENDIX

In the case of a tunnel barrier between two BCS superconductors the expressions for S1,2 (6) reduce to the well-known
results32,33 which can be briefly summarized as follows. Following Werthamer,32 let us introduce the notations

x = |ω|
�1 + �2

, δ = |�1 − �2|
�1 + �2

. (A1)

Then at T → 0 we find

S̃1(ω) = 2�1�2

eRN (�1 + �2)

[
1√

1 − x2
K

(
δ2 − x2

1 − x2

)
− 2

√
1 − x2

1 − δ2
E

(
δ2 − x2

1 − x2

)]
, 0 � x � δ,

S̃1(ω) = 2�1�2

eRN (�1 + �2)

1√
1 − δ2

[
K

(
x2 − δ2

1 − δ2

)
− 2E

(
x2 − δ2

1 − δ2

)]
, δ � x � 1, (A2)

S̃1(ω) = 2�1�2

eRN (�1 + �2)

{
2
√

x2 − δ2

1 − δ2

[
K

(
1 − δ2

x2 − δ2

)
− E

(
1 − δ2

x2 − δ2

)]
− 1√

x2 − δ2
K

(
1 − δ2

x2 − δ2

)

+ i sgn ω

[
2
√

x2 − δ2

1 − δ2
E

(
x2 − 1

x2 − δ2

)
− 1√

x2 − δ2
K

(
x2 − 1

x2 − δ2

)]}
, x � 1,

and

S̃2(ω) = 2�1�2

eRN (�1 + �2)

1√
1 − x2

K

(
δ2 − x2

1 − x2

)
, 0 � x � δ,

S̃2(ω) = 2�1�2

eRN (�1 + �2)

1√
1 − δ2

K

(
x2 − δ2

1 − δ2

)
, δ � x � 1, (A3)

S̃2(ω) = 2�1�2

eRN (�1 + �2)

1√
x2 − δ2

[
K

(
1 − δ2

x2 − δ2

)
+ i sgn ωK

(
x2 − 1

x2 − δ2

)]
, x � 1,
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where

K(k) =
∫ π/2

0

dφ√
1 − k sin2 φ

, E(k) =
∫ π/2

0
dφ

√
1 − k sin2 φ (A4)

are complete elliptic integrals. At x → 1 these expressions diverge demonstrating the so-called Riedel singularity35

Re S̃1(ω) ≈
√

�1�2

2eRN

[
ln

(
8(1 − δ2)

|1 − x|
)

− 4

]
, Re S̃2(ω) ≈

√
�1�2

2eRN

ln

(
8(1 − δ2)

|1 − x|
)

. (A5)
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