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Equilibrium intermediate-state patterns in a type-I superconducting slab in an arbitrarily oriented
applied magnetic field
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The equilibrium topology of superconducting and normal domains in flat type-I superconductors is investigated.
Important improvements with respect to previous work are that (1) the energy of the external magnetic field, as
deformed by the presence of superconducting domains, is calculated in the same way for three different topologies
and (2) calculations are made for arbitrary orientation of the applied field. A phase diagram is presented for the
minimum-energy topology as a function of applied field magnitude and angle. For small (large) applied fields,
normal (superconducting) tubes are found, while for intermediate fields, parallel domains have a lower energy.
The range of field magnitudes for which the superconducting-tubes structure is favored shrinks when the field is
more in-plane oriented.
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I. INTRODUCTION

Studies of the intermediate-state structure in type-I super-
conductors have a long history beginning with the pioneering
work of Landau1,2 and continuing to the present; see, for
example, Refs. 3–21. For further background, we refer the
reader to several books and reviews.22–26 Our main interest
here is a superconducting slab or oblate ellipsoid with
thickness much greater than the coherence length or the
London penetration depth in the intermediate state, which we
assume consists of normal domains of constant magnetic flux
density and superconducting domains of zero flux density. The
macroscopic Helmholtz free energy density relative to that
in the Meissner state (accounting for both the condensation-
energy and field-energy costs) is F(B) = BcB/μ0, where
Hc = Bc/μ0 is the bulk thermodynamic critical field and
B is the average magnetic flux density in the sample. The
corresponding H field is27 H = ∇BF(B), such that H =
Hc B̂ and B̂ = B/B. Because these energy contributions
alone are insufficient to determine the spatial distribution of
the normal and superconducting domains, in this paper, we
examine three idealized models of the intermediate-state mag-
netic structure in thick superconducting slabs, accounting for
the differences in wall-energy and field-energy contributions
(the other contributions to the free energy do not depend on
the topology), and we determine which model has the lowest
free energy as a function of the magnitude H0 and tilt angle θ0

of the applied field. For the definition of θ0, see Fig. 2.
We find that in a perpendicular (θ0 = 0) magnetic field H0

the energetically favored structures are (1) a triangular array of
normal flux tubes for relatively small H0, (2) parallel normal
and superconducting domains for intermediate H0, and (3) a
triangular array of superconducting tubes for large H0. As the
tilt angle increases, however, (1) the triangular array of normal
flux tubes is energetically favored for a somewhat wider range
of H0, (2) parallel normal and superconducting domains28,29

are favored for a much wider range of H0, and (3) the triangular
array of superconducting tubes is favored for a much smaller
range of H0 near Hc.

Experimentally, in addition to various macroscopic and
indirect techniques, magnetic flux structures in type-I super-

conductors were visualized on the sample surface by using
a Bi wire as a magnetoresistive probe30,31, by decoration
with small diamagnetic32 or ferromagnetic33–35 particles, by
the electron mirror technique,36 by using the magnetooptical
Faraday effect,10,14,16,26,37–39 by using miniature scanning Hall
probes40,41 and, in the bulk, by using polarized neutron
reflectometry42,43 and muon spin rotation.44

Unlike type-II superconductors where the magnetic field
can appear only in the form of single-flux-quantum Abrikosov
vortices,45 the mix of normal and superconducting domains
in the intermediate state of type-I superconductors exhibits
diverse geometric patterns, and their shape and distribution de-
pend sensitively on many factors, including chemical, mechan-
ical and geometrical parameters of the studied samples,9,23,26,46

history of how magnetic fields and temperature were varied, di-
rection of the magnetic field with respect to the sample, and dy-
namical perturbations such as electric currents or ac fields. The
observed patterns are often quite similar to those seen (or the-
oretically suggested) in a variety of other strongly correlated
systems, from various foams and froths,47,48 to the results of
mathematical studies of nonlinear dynamics and chaos,49,50 to
chemical reactions,50 magnetic films,51,52 and the astrophysics
of neutron stars,53,54 all of which can be regarded as mani-
festations of modulated phases with competing interactions.55

To reflect these similarities, tubular patterns in type-I super-
conductors have been called the “suprafroth.”18,48 The type-I
superconductor represents an ideal system where uncontrolled
coarsening in time is replaced by a controlled coarsening in a
magnetic field and there is no “drainage” in the S/N walls.

Figure 1 outlines the schematics of four distinct ways to
arrive at the same point (H0,T ) with H0 a perpendicular applied
field and T the temperature. The intermediate state develops
above the line (1 − Nz)Hc, where Nz is the demagnetization
factor, and persists up to the critical field, Hc. Magneto-optical
photographs show intermediate-state patterns obtained along
the (SI )T path (lower left in Fig. 1) and along the (NI )T path
(upper right) representing flux-tubular and laminar structures,
respectively.

Theoretically, the problem of the intermediate state is
difficult because of multiple contributions to the free energy,
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FIG. 1. (Color online) Schematic diagram of path-dependent
patterns of the intermediate state in pure lead for perpendicularly
applied magnetic fields.11,16 Magnetooptical images of tubular and
laminar structure are obtained at the same point on the H -T phase
diagram. The lower image was obtained after zero-field cooling (ZFC)
and applying the magnetic field, (SI )T , and the upper image after field
cooling, (NI )T .

the interactions inside and outside the specimen, and various
additional effects that altogether determine the geometric
structure of the final pattern. Already early images of the inter-
mediate state revealed a variety of phenomena not predicted by
the simple Landau theory.22,30,31,56,57 Subsequent work found
even more diverse patterns.17,18,23,26 In response, the initial
models were refined to include domain branching,1,23,58–60

corrugation,23,60 and crystalline anisotropy.61 It seems that the
once popular branching model cannot adequately account for
the tubular structure.23,26,62,63 Several alternative approaches
have been suggested, such as flux-tube models,4,64,65 correc-
tions to the surface tension66, higher-order expansions of the
Ginzburg-Landau functional,67 the current-loop model,3 and
even more general thermodynamic treatments of the energy
minimization problem.8,13,68

It is important to realize that the formation of a particular
pattern strongly depends on the magnetic and thermal history
of the sample. Quantized flux tubes are usually produced upon
changing the magnetic field either in magnitude or direction
(or by applying an ac field)26,69–71 or in the presence of an
electric current.10,20,72 On the other hand, when a magnetic
field is held constant and there is no electric current, the
pattern, at least at intermediate fields, is lamellar-labyrinth-
like. Usually, the accompanying magnetic hysteresis has been
attributed to impurities, grain boundaries, dislocations, and
edge barriers.23,26 However, recent studies have shown that this
residual hysteresis remains even in the most carefully prepared
samples without any bulk pinning. This so-called “topological
hysteresis” arises from the way the intermediate state is formed
after ZFC.11,16,73 When a perpendicular magnetic field is
applied to a superconducting sample, it starts to protrude
into the interior in fields above (1 − Nz)Hc in the form of
a fingerlike pattern.26,70,74,75 Meissner currents pinch off the
protrusions in the form of flux tubes and the Lorentz force
drives the tubes into the sample. This effect is related to the
so-called geometric barrier in type-II superconductors,76 but

it has also been studied in type-I materials.39 The tubes repel
each other and do not merge all way up to the normal state. This
repulsion has been experimentally studied in Pb samples.77

In contrast to this behavior, upon field-cooling from the
normal state in a perpendicular magnetic field, a laminar
pattern is formed initially except at low fields. Field-shaking
experiments, however, show that the laminae that are formed
upon field cooling in high fields transform into arrays of
superconducting tubes,17 showing that the latter structure is
the equilibrium state.

For fields with arbitrary orientation with respect to the
sample normal, so-called inclined fields, the phenomenology
is even richer. For example, with nearly in-plane applied field,
straight laminae with orientation parallel to the field are usually
observed. However, when the field is subsequently tilted in the
direction of the normal, corrugations start to appear. Clearly,
these corrugations are not due to sample inhomogeneities, but
are an intrinsic effect related to minimization of the external
field energy.78 Quite remarkable is the behavior for a nearly
in-plane field of fixed magnitude and fixed angle with respect
to the sample normal when its in-plane component is slowly
rotating. Energetically, it is favorable for the long laminae to
orient parallel to the (rotating) field. On the other hand, this
implies very large motions of the whole laminae system. In
fact, as predicted by Dorsey and Goldstein,5 it is observed10

that for lead samples without pinning, a chevron phase is
formed, with the laminae roughly at equal positive and negative
angles with respect to the in-plane component of the applied
field. On the other hand, if the lead sample does have some
pinning, it is observed10 that the laminae break into short strips
that co-rotate with the applied in-plane component with a small
back-lag angle.

To bring out the essential physics of the intermediate state,
in this paper, we consider theoretically the magnetic structure
that appears in a flat isotropic type-I superconducting sample
whose thickness is much smaller than its lateral dimensions.
Because experiments are always done on samples of finite size,
we begin Sec. II with a brief discussion of demagnetization
effects.

For simplicity, we assume that magnetic flux enters the
superconductor in the form of straight normal domains
containing magnetic flux of density Bc = μ0Hc, where Hc

is the bulk thermodynamic critical field. We assume that
the penetration depth λ, coherence length ξ , and wall-energy
parameter δ are much smaller than all the linear dimensions
of any domain. We do not account for the possibility that the
magnitude of the flux density in the domains can differ from
Bc nor that the normal-superconducting interfaces can bend
near the sample surface. Also, we assume that the slab is thin
enough79 so that domain branching1 does not occur.

All these conditions are met for any flat sample studied in
laboratory conditions, i.e., with all dimensions in the range
10 μm–1000 mm. For thin films, our calculations might still
be relevant, but should be taken with caution while a detailed
analysis for the particular geometry is then required.

We do not account for corrugations of the normal-
superconducting interface.78 Corrugations lower the energy
of the laminae-phase (otherwise they would not occur) and
thus might extend the region of the laminar phase somewhat
compared to our calculations.
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For simplicity, we only deal with isotropic materials for
which the wall-energy parameter δ is the same for all orien-
tations of the normal-superconducting interfaces and does not
depend upon crystal-lattice effects. (For example, we do not
consider the problem of anisotropic type-I superconductors
in which the normal domains tend to align themselves along
certain crystal-lattice symmetry directions.)

With these assumptions, the boundary conditions on
Maxwell’s equations give us all the equations we need
to calculate the magnitudes and directions of the average
magnetic flux density B and the magnetic field H in flat
isotropic type-I superconducting sample as a function of the
magnitude and direction of an applied magnetic field H0.

In Sec. III, we consider three separate models of the
intermediate state, first in a perpendicular applied field H0

and then in a magnetic field H0 of arbitrary angle θ0 relative
to the sample normal. Using the same approach to calculate
the free energies, we identify which of the three models is
energetically favored in low, medium, and high fields, and
we discuss how the ranges of energy favorability are affected
by the field angle θ0. Finally, we discuss our conclusions in
Sec. IV.

II. B, H , M, AND DEMAGNETIZATION IN OBLATE
ELLIPSOIDS AND FLAT SLABS

Although experiments are always done with type-I super-
conductors of finite dimensions, theoretically it is often a good
approximation to consider flat samples of finite thickness d

but infinite lateral dimensions. To relate the two geometries,
we briefly discuss demagnetization effects.80,81 As a model
sample of finite dimensions, we consider an oblate ellipsoid of
revolution about the z axis for which the demagnetizing factor
is81

Nz = (1 − γ 2)−1[1 − γ (1 − γ 2)−1/2 cos−1 γ ], (1)

where γ < 1 is the ratio of the polar axis to the equatorial axis
and Nz → 1 − πγ/2 in the limit as γ → 0.

If the superconductor is initially in the Meissner state and
a magnetic field H0 is applied along the z axis, the field at
the equator is H0/(1 − Nz). Magnetic flux first penetrates
there when this field is Hc or H0 = Hc(1 − Nz). This first-
penetration field is very small (much less than Hc) for very
thin samples, and for H0 exceeding the first-penetration field
up to Hc, the sample is in the intermediate state.

When a magnetic field H0 (magnetic induction B0 =
μ0 H0) with components H0z = H0 cos θ0 and H0x = H0 sin θ0

(see Fig. 2 for a definition of θ and θ0) produces the interme-
diate state in an ellipsoid of revolution, the internal fields B =
μ0(H + M) are all parallel to B̂ = ẑB cos θ + x̂B sin θ , and
their magnitudes are related via B = fnBc = μ0Hc(1 + χ ).
With f0 = H0/Hc, the demagnetization boundary-condition
equations connecting f0, θ0, fn, and θ are80,81

cos θ = f0 cos θ0

1 − Nz + Nzfn

, (2)

sin θ = f0 sin θ0

1 − Nx + Nxfn

, (3)

B0

B

θ0

θ

FIG. 2. Superconducting slab subjected to an applied magnetic
induction B0 of magnitude B0 = μ0H0 = f0Bc and angle θ0. The
average magnetic induction in the superconductor B has magnitude
B = fnBc and angle θ .

where 2Nx + Nz = 1 by the demagnetization coefficient sum
rule. These equations can be solved numerically to determine
fn and θ as functions of f0 and θ0

We turn now to the case of flat samples of finite thickness d

but infinite lateral dimensions, as shown in Fig. 2. According to
Maxwell’s equations, the continuity of the perpendicular com-
ponent of B and the tangential component of H requires that

B cos θ = B0 cos θ0, (4)

Hc sin θ = H0 sin θ0. (5)

Note that these equations are equivalent to Eqs. (2) and (3)
in the limit as γ → 0, Nz → 1, and Nx → 0.

It is generally not possible to look inside the superconductor
to determine fn and θ , but expressions for these quantities in
terms of f0 = B0/Bc = H0/Hc and θ0 can be obtained from
Eqs. (4) and (5):

fn = f0 cos θ0√
1 − f 2

0 sin2 θ0

, (6)

θ = sin−1(f0 sin θ0). (7)

Figures 3 and 4 show the behavior of fn and θ as calculated
from Eqs. (6) and (7). Note that fn → 1 and θ → θ0 as f0 →
1, but that f → f0 cos θ0 and θ → 0 as f0 → 0. The case
θ0 = π/2 is singular, because in this case the applied field is
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FIG. 3. (Color online) Normal fraction fn = B/Bc in the su-
perconducting slab vs applied field angle θ0 for various values of
f0 = B0/Bc.
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FIG. 4. (Color online) Angle θ of the average magnetic induction
B in the superconducting slab vs applied field angle θ0 for various
values of f0 = B0/Bc.

exactly parallel to the surface of the infinite slab and there is
no intermediate state. B remains zero inside the sample until
H0 reaches Hc, at which point superconductivity in the bulk is
quenched, and B jumps to Bc.

When the intermediate state consists of an array of flux
tubes of radius R, each carrying magnetic flux 	 = πR2Bc,
Eq. (5) can be interpreted as a force-balance equation. The line
tension (energy per unit length of flux tube), accounting for
condensation and magnetic-field energy costs, is T
 = Hc	.

The horizontal component of the applied field H0 sin θ0 (see
Fig. 2) generates a sheet-current density of magnitude K‖ =
H0 sin θ0 on the top and bottom surfaces. The corresponding
Lorentz forces of magnitude F‖ = K‖	 pull the top of the flux
tube to the right and the bottom of the flux tube to the left. The
forces are balanced when F‖ is equal to the horizontal com-
ponent of the line tension, i.e., when H0	 sin θ0 = Hc	 sin θ ,
which is equivalent to Eq. (5). However, in the static case, the
local sheet current and magnetic field must redistribute around
the ends of the flux tube, so that the induced current remains
a supercurrent and avoids being driven through the normal
domain.

III. MODELS FOR THE MAGNETIC STRUCTURE IN THE
INTERMEDIATE STATE

A. Competing contributions to the free energy

When a perpendicular magnetic induction B0 is applied
to a flat type-I superconductor (θ0 = 0 in Fig. 2), we have
θ = 0 [see Eq. (7)], the average magnetic induction B inside
the superconductor becomes equal to B0 [see Eq. (4)],
and the normal fraction averaged over the sample volume
is fn = B/Bc = f0 = B0/Bc. On the other hand, the local
magnetic induction b has an extremely complicated spatial
dependence.1,2,22–26

As revealed by magnetooptical observations, the magnetic
structure for fn � 1 can be described crudely as an array
of isolated normal domains or flux tubes carrying magnetic
flux 	 = Nφ0, i.e., containing an integer number N of
superconducting flux quanta φ0 = h/2e, surrounded by super-
conducting regions. The radius r of such a domain is given by
	 = Bcπr2. As B0 increases, fluxoid quantization keeps the
flux tubes the same size, and to allow B to increase, additional
flux tubes must move into the sample from the edges.

As fn increases, the normal domains or flux tubes tend to
connect and form stripelike segments, and for fn = 1/2, the
complex magnetic structure can be described roughly as arrays
of alternating normal and superconducting stripelike domains
of roughly equal area. As fn → 1, the magnetic structure can
be described as an array of isolated superconducting domains
surrounded by normal material. These domains may occur as
stripelike segments or as nearly round spots. The magnetoopti-
cal images resemble mirror images of those for fn � 1. What
is very different, however, is that fluxoid quantization places no
constraints on the sizes of the superconducting domains, and
an increase of B0 tends to make the superconducting domains
shrink as the surrounding normal material grows in total area.

The basic structure of the intermediate state in disks, plates,
slabs, foils, and single crystals of type-I superconductors is
known to be determined chiefly by two competing energy
contributions:1,2,22–26 (a) a positive wall energy between a
normal domain containing a local flux density b = μ0Hc and
a Meissner domain of zero flux density and (b) the excess
energy of the nonuniform magnetic field outside the surface
relative to that of a uniform magnetic-field distribution. The
wall-energy cost favors well-separated large normal domains,
while the magnetic-energy cost favors finely divided normal
domains. The wall energy γ per unit of surface area is given
in SI units by24

γ = (
B2

c

/
2μ0

)
δ, (8)

where the wall-energy parameter26 δ has units of length.
Minimization of the total energy cost in a sample of thickness
d leads to a domain structure characterized by a length scale
proportional to (δd)1/2.

For small d, the length scale of the domain structure and
the normal-domain size, which also scales as (δd)1/2, become
very small. Accordingly, the number of flux quanta N in a flux
tube also becomes very small, and for sufficiently small d, it
is found that N = 1, so that the magnetic structure becomes
equivalent to that in type-II superconductors. In this paper, we
consider the opposite limit, for which N � 1.

As noted by Tinkham,24 calculations assuming different
magnetic structures including the competing wall-energy and
field-energy contributions lead to expressions for the free
energy that differ numerically only slightly. This helps to
explain why magneto-optical observations upon field cycling
show somewhat different magnetic structures each time a
sample is exposed to the same B0 at the same temperature T .
It is also important to note that there are free-energy barriers
that prevent the sample from assuming the magnetic structure
corresponding to the global free-energy minimum for a given
B0 and T . As B0 and T change, it is likely that the sample
gets stuck in a spatial configuration with a local free-energy
minimum not far from the global minimum. These effects
inevitably lead to significant history effects; the appearance of
the magnetic structure for a given B0 and T depends strongly
upon the sample’s field and temperature history.

B. Modeling the magnetic structure in a perpendicular field

We present here three models of the magnetic structure
in a homogeneous, isotropic type-I superconductor of thick-
ness d. For small values of fn = B/Bc (normal tubes), we
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approximate the magnetic structure as an equilateral triangular
array (with lattice parameter D) of normal cylindrical flux
spots of radius R and magnetic flux density Bc surrounded by
the superconducting phase. Similarly, for large values of fn

(superconducting tubes), we approximate the magnetic struc-
ture as an equilateral triangular array (with lattice parameter
D) of superconducting cylinders of radius R surrounded by
normal material of flux density Bc. For intermediate values
of fn (laminae), we approximate the magnetic structure as
a periodic array (with period D) of parallel normal domains
of width W and magnetic flux density Bc separated by the
superconducting phase. We evaluate the free energy per unit
sample volume using the same method for all three cases and
identify the best model for a given fn as that with the smallest
free energy. For each case, we calculate the free energy per unit
sample volume as the sum of wall-energy and field-energy
contributions. To find the equilibrium topology, we need to
consider only those contributions to the free energy that differ
for the different models, e.g., we omit the superconducting
condensation energy from the calculations. Here, we follow the
commonly used convention of expressing the normal fraction
in a perpendicular field as h = fn = B/Bc = f0 = B0/Bc.

1. Case 1: Normal tubes, small reduced field h

Here, we deal with normal cylindrical flux spots of radius
R surrounded by superconducting phase. Within the unit cell
of volume

√
3D2d/2, the area of the normal-superconducting

interface is 2πRd. From Eq. (8), we see that the wall-energy
cost of the intermediate state per unit sample volume is

F1 = 2πB2
c δR√

3μ0D2
= B2

c δR

μ0R
2
0

. (9)

Here, the Wigner-Seitz radius R0 = (
√

3/2π )1/2D is chosen
such that the circular cross-sectional area is the same as the
unit-cell cross-sectional area.

The field-energy cost of the intermediate state per unit
sample volume is

F2 = 1

πμ0R
2
0d

∫
dV (b2 − B2), (10)

where the integral is to be carried out within the Wigner-
Seitz cylinder above the sample surface at z = 0. Here b =
ρ̂bρ(ρ,z) + ẑbz(ρ,z) = −∇φ is the magnetic induction within
the cylinder, subject to the boundary conditions bz(ρ,0) =
Bc for ρ < R, bz(ρ,0) = 0 for R < ρ < R0, bz(ρ,∞) = B,

and bρ(R0,z) = 0. This is a readily solvable boundary-value
problem in cylindrical coordinates,82 and after application of
the divergence theorem, we find that the integral in Eq. (10) is
proportional to S1(R/R0), where

S1(u) =
∞∑

n=1

1

x3
1n

[
J1(x1nu)

J0(x1n)

]2

, (11)

where Jm(x) is the Bessel function of order m, and x1n is the
nth root of J1(x) (e.g., x11 = 3.83, x12 = 7.02, x13 = 10.17,
etc.). Our method for calculating the field energy in all three
configurations (normal tubes, laminae and superconducting
tubes) is similar to that used in the current-loop model by
Goldstein et al.3

1

2

3

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.06

0.08

0.10

h fn

1
,

2
,

3

FIG. 5. Plots of the normalized free energies normal tubes: 	1

(dashed), triangular array of cylindrical normal flux tubes, Eq. (16);
laminae: 	2 (solid), parallel array of normal and superconducting
domains, Eq. (25); and superconducting tubes: 	3 (dot-dashed),
triangular array of superconducting cylinders, Eq. (32). The free
energy cost F is smallest for normal tubes when 0 � h � 0.346,
laminae for 0.346 � h � 0.654, and superconducting tubes for
0.654 � h � 1.

Taking the sum of F1 and F2 and making use of R/R0 =√
h, we find that the net cost in free energy per unit sample

volume for normal tubes is

F1 = B2
c

μ0

[
δ
√

h

R0
+ 4R0hS1(

√
h)

d

]
. (12)

For a given h, the wall-energy term favors large length scales
R0, while the field-energy term favors small length scales. At
the value of R0 that minimizes F1, we obtain

R0 =
√

δdh

2	1
, (13)

R = h
√

δd

2	1
, (14)

F1 = 4B2
c

μ0

(
δ

d

)1/2

	1, (15)

	1 = [h3/2S1(
√

h)]1/2. (16)

See the dashed curve in Fig. 5.

2. Case 2: Laminae, moderate reduced field h

Next, we consider flux-filled normal domains of width
W = 2R parallel to the y axis with periodicity D = 2R0

along the x direction. The normal domains alternate with
flux-free superconducting domains. The area of normal-
superconducting interface per unit sample volume is 2/D,
and from Eq. (8), we see that the wall-energy cost of the
intermediate state per unit sample volume is

F1 = B2
c δ

μ0D
= B2

c δ

2μ0R0
. (17)

The field-energy cost of the intermediate state per unit
sample volume is

F2 = 1

2μ0R0d

∫
dA(b2 − B2), (18)

where the integral is to be carried out over the area of width
D = 2R0 and infinite height above the sample surface at
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z = 0. Here, b = x̂bx(x,z) + ẑbz(x,z) = −∇φ is the magnetic
induction within this area, subject to the boundary conditions
bz(x,0) = Bc for |x| < R, bz(x,0) = 0 for R < |x| < R0,
bz(x,∞) = B, and bx(±R0,z) = 0. This is another readily
solvable boundary-value problem, and after applying the
divergence theorem and making use of R/R0 = W/D = h,
we find that the integral in Eq. (18) is proportional to S2(h),
where

S2(h) =
∞∑

n=1

sin2(nπh)

(nπ )3
, (19)

which can be expressed in terms of the Riemann ζ function
ζ (n) and the polylogarithm function Lin(z) as

S2(h) = [2ζ (3) − Li3(ei2πh) − Li3(e−i2πh)]/4π3. (20)

It is easily shown from Eq. (19) that S2(h) is symmetric about
h = 1/2; S2(1 − h) = S2(h).

Taking the sum of F1 and F2, we find that the net cost in free
energy per unit sample volume in the case of laminar structure
is

F2 = B2
c

μ0

[
δ

2R0
+ 2R0S2(h)

d

]
. (21)

For a given h, the wall-energy term again favors large length
scales R0, while the field-energy term favors small length
scales. At the value of R0 that minimizes F2, we obtain

R0 =
√

δd

4	2
, (22)

R = h
√

δd

4	2
, (23)

F2 = 4B2
c

μ0

(
δ

d

)1/2

	2, (24)

	2 = [S2(h)]1/2/2. (25)

See the solid curve in Fig. 5 and note the mirror symmetry
	2(h) = 	2(1 − h).

3. Case 3: Superconducting tubes, large reduced field h

Here, we consider cylindrical flux-free superconducting
regions of radius R surrounded by flux-filled normal phase.
Within the unit cell of volume

√
3D2d/2, the area of the

normal-superconducting interface is 2πRd, and the wall-
energy cost of the intermediate state per unit sample volume
is the same as for normal tubes,

F1 = 2πB2
c δR√

3μ0D2
= B2

c δR

μ0R
2
0

. (26)

As in Sec. III B1, the Wigner-Seitz radius R0 = (
√

3/2π )1/2D

is again chosen such that the circular cross-sectional area is
the same as the unit-cell cross-sectional area.

The field-energy cost of the intermediate state per unit
sample volume is

F2 = 1

πμ0R
2
0d

∫
dV (b2 − B2), (27)

where the integral is to be carried out within the Wigner-
Seitz cylinder above the surface of the sample. Here, b =

ρ̂bρ(ρ,z) + ẑbz(ρ,z) = −∇φ is the magnetic induction within
the cylinder, subject to the boundary conditions bz(ρ,0) = 0
for ρ < R, bz(ρ,0) = Bc for R < ρ < R0, bz(ρ,∞) = B, and
bρ(R0,z) = 0. This again is a readily solvable boundary-value
problem in cylindrical coordinates, and after application of
the divergence theorem, we find that the integral in Eq. (10) is
proportional to S1(R/R0).

Taking the sum of F1 and F2 and making use of R/R0 =√
fs , where fs = 1 − h, we find that net cost in free energy

per unit sample volume for the superconducting tubes is

F3 = B2
c

μ0

[
δ
√

fs

R0
+ 4R0fsS1(

√
fs)

d

]
. (28)

For a given fs , the wall-energy term again favors large length
scales R0, while the field-energy term favors small length
scales. At the value of R0 that minimizes F3, we obtain

R0 =
√

δd(1 − h)

2	3
, (29)

R = h
√

δd

2	3
, (30)

F1 = 4B2
c

μ0

(
δ

d

)1/2

	3, (31)

	3(h) = 	1(1 − h) = [(1 − h)3/2S1(
√

1 − h)]1/2. (32)

See the dot-dashed curve in Fig. 5 and note that 	3(h), which
describes a triangular array of superconducting cylinders, is
the mirror image of 	1(h), which describes a triangular array
of normal cylinders.

4. Lowest-free-energy models, arbitrary reduced field h

The dependencies of 	1, 	2, and 	3 upon h are shown
in Fig. 5. As expected, 	1 is favored for small h, 	2 for
intermediate h, and 	3 for large h. Within the restrictive
assumptions of this paper (constant flux density Bc in straight
normal domains), our best model for the intermediate state
is 	0(h), defined to be equal to 	1(h) when 0 � h � 0.346,
	2(h) when 0.346 � h � 0.654, and 	3(h) when 0.654 �
h � 1. This is shown as the solid curve in Fig. 6.

GTL

GTS

0

L

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

h fn

FIG. 6. Plots of the normalized free energies for our model 	0

(solid, defined in Sec. III B4), the Landau laminar-domain model 	L

[dashed, Eq. (36)], the Goren-Tinkham laminar-domain model 	GTL

[dot-dashed, Eq. (40)], and the Goren-Tinkham flux-spot model 	GTS

[dotted, Eq. (44)].
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5. Comparison with other models

Landau’s classic calculation of a laminar domain
structure,62,83,84 which accounted for bending of the normal-
superconducting interfaces, yielded a function f (h). For a
parallel domain structure of periodicity length D, normal
domain width W (deep inside the sample), and free-energy
cost per unit sample volume FL, these quantities are
given by

D =
√

δd

2	L

, (33)

W = h
√

δd

2	L

, (34)

FL = 4B2
c

μ0

(
δ

d

)1/2

	L, (35)

	L = [f (h)]1/2/2. (36)

See the dashed curve in Fig. 6. It is notable that 	L(h) does
not have mirror symmetry about h = 1/2. The reason for this
is that the Landau calculation does not deal with straight tubes
and lamellae but, instead, includes additional contributions
to the free energy associated with normal domains that bend
outwards and superconducting domains that bend inwards as
they approach the surface.

Note from Fig. 6 that the laminar-domain Landau curve
	L(h) (dashed) lies below the curve for 	0 (solid) for moderate
and larger values of h. Evidently, this indicates that, by
neglecting the effects of bending the normal-superconducting
interfaces, our model for 	0 overestimates the free-energy
cost of the intermediate state and underestimates the length
scales (D, R0, W , and R) of the actual magnetic structure. On
the other hand, the Landau curve 	L(h) (dashed) lies above
the curve for 	0 (solid) for small values of h. This evidently
indicates that a laminar-domain model cannot be applied to
model accurately the magnetic structure for small h, which is
better described as an array of isolated normal domains.

Goren and Tinkham64 proposed two models for the interme-
diate state based on the assumption of straight normal domains
containing constant flux density Bc but estimating the field-
energy contributions to the free energy using a healing-length
approximation.24 For a parallel domain structure of periodicity
length D, normal domain width W , and free-energy cost per
unit sample volume FGTL, these quantities are given by64

D =
√

δd

2	GTL
, (37)

W = h
√

δd

2	GTL
, (38)

FGTL = 4B2
c

μ0

(
δ

d

)1/2

	GTL, (39)

	GTL = h(1 − h)/2. (40)

See the dot-dashed curve in Fig. 6.
The second model considered by Goren and Tinkham64

consisted of an equilateral triangular array of flux spots. For an
equilateral triangular array (lattice parameter D) of hexagonal

normal domains of width W , and free-energy cost per unit
sample volume FGTS, these quantities are given by64

D =
√

δdh

	GTS
, (41)

W = h
√

δd

	GTS
, (42)

FL = 4B2
c

μ0

(
δ

d

)1/2

	GTS, (43)

	GTS = [h2(1 − h)(1 − h1/2)/2. (44)

See the dotted curve in Fig. 6.
The main difference between the Goren-Tinkham64 ap-

proach and that used for 	1, 	2, 	3, and 	0 is the method used
to calculate the excess energy of the nonuniform magnetic field
outside the surface relative to that of a uniform magnetic-field
distribution. Our calculations show that the healing-length
approximation24,64 overestimates the field-energy contribution
F2 and underestimates the length scales (D and W ) of the
actual magnetic structure. The Goren-Tinkham models64 have
the property that 	GTL < 	GTS, predicting that the lamellar
structure is favored for all h. This finding is a result of the fact
that the authors used different healing-length approximations
for the lamellar and spot structures. However, to be consistent
with experimental observations, models of the intermediate
state should have the smallest free energy costs for arrays
of separated normal domains for small h, stripelike or parallel
domains for h ∼ 1/2, and arrays of separated superconducting
domains for large h.

C. Modeling the magnetic structure when both parallel and
perpendicular fields are applied

It is well known that application of a parallel magnetic
field to a sample containing magnetic structure produced by a
perpendicular field tends to orient the magnetic structure.28,29

Here, we use the approach of Sec. III B to consider the
conditions for which the Sharvin laminar structure, with
laminar domains oriented along the parallel component of the
applied field, is energetically favorable. We consider an applied
magnetic field of magnitude H0 and angle θ0 in three cases
discussed above, normal tubes, laminae, and superconducting
tubes. We evaluate the free energy per unit sample volume
using the same method for all three cases and identify the
best model for a given fn as that with the smallest free
energy. For each case, we calculate the free energy per unit
sample volume as the sum of wall-energy and field-energy
contributions. These calculations differ from those of Sec. III B
in part because the normal fraction fn must be determined from
Eq. (6).

1. Case 1′: Normal tubes, small reduced field fn

We begin by considering the magnetic structure inside the
superconductor for small values of fn = B/Bc (normal tubes).
We approximate the magnetic structure as an array of quantized
identical cylindrical flux tubes, oriented parallel to B̂ at angle
θ , as shown in Fig. 2. In the plane normal to B̂ the flux tubes
are assumed to arrange themselves as an equilateral triangular
array (with lattice parameter D) of circular normal flux tubes
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of radius R and core magnetic-flux density Bc surrounded
by the superconducting phase. For doing calculations of the
magnetic energy of the structure above and below the sample,
however, it is convenient to replace the equilateral triangular
array inside the sample with a Wigner-Seitz cylinder of radius
R0 = (

√
3/2π )1/2D with the same area as the unit cell. This

Wigner-Seitz cylinder is parallel to B̂. Within the Wigner-
Seitz cylinder of volume πR2

0d/ cos θ , the area of the normal-
superconducting interface is 2πRd/ cos θ . From Eq. (8), we
see that the wall-energy cost of the intermediate state per unit
sample volume is

F1 = B2
c δR

μ0R
2
0

. (45)

The Wigner-Seitz cylinder intersects the top surface at the
angle θ , so that the intersection is an ellipse of semimajor axis
R0s = R0/ cos θ along the x direction and semiminor axis R0

along the y direction. Similarly, the intersection of the flux
tube with the surface is an ellipse of semimajor axis Rs =
R/ cos θ along the x direction and semiminor axis R along
the y direction. The z component of the magnetic flux density
emerging from the latter area is bz = Bc cos θ , but the area is
πR2/ cos θ , so that the magnetic flux emerging is 	 = πR2Bc,
the same as the magnetic flux carried by a flux tube inside the
sample.

The field-energy cost of the intermediate state per unit
sample volume is

F2 = cos θ

πμ0R
2
0d

∫
dV (b2 − B2 cos2 θ ), (46)

where the integral is to be carried out within a new Wigner-
Seitz elliptical cylinder above the sample surface at z = 0.
However, we can make use of a scale transformation similar
to that used in Ref. 85 to reexpress the integral in terms of new
primed coordinates. The field-energy cost of the intermediate
state per unit sample volume becomes

F2 = cos θ

πμ0R
2
0d

∫
dV ′(b′2 − B2 cos2 θ ), (47)

where the integral is to be carried out within a new Wigner-
Seitz cylinder of radius R0/

√
cos θ above the sample surface

at z′ = 0, and

x = x ′/
√

cos θ, y = y ′√cos θ, z = z′, (48)

∂x = ∂x ′
√

cos θ, ∂y = ∂y ′/
√

cos θ, ∂z = ∂z′ , (49)

bx = bx ′/
√

cos θ, by = by ′
√

cos θ, bz = bz′ . (50)

Here, b′ = ρ̂bρ ′ (ρ ′,z′) + ẑbz′ (ρ ′,z′) = −∇′φ′ is the trans-
formed magnetic induction within the cylinder, subject to the
boundary conditions bz′ (ρ ′,0) = Bc cos θ for ρ ′ < R/

√
cos θ ,

bz′ (ρ ′,0) = 0 for R/
√

cos θ < ρ ′ < R0/
√

cos θ , bz′ (ρ ′,∞) =
B cos θ, and bρ ′ (R0/

√
cos θ,z′) = 0. This transformed prob-

lem can be solved as in Sec. III B1.
Taking the sum of F1 and F2 and making use of R/R0 =√

fn, we find that the net cost in free energy per unit sample
volume for normal tubes is

F1′ = B2
c

μ0

[
δ
√

fn

R0
+ 4R0fn cos3/2θS1(

√
fn)

d

]
. (51)

For fixed values of f0, θ0, fn, and θ , we obtain at the value
of R0 that minimizes F1′ ,

R0 =
√

δdfn

2	1′
, (52)

R = fn

√
δd

2	1′
, (53)

F1′ = 4B2
c

μ0

(
δ

d

)1/2

	1′ , (54)

	1′ = [
cos3/2θf 3/2

n S1(
√

fn)
]1/2

. (55)

2. Case 2′: Laminae, moderate reduced field fn

For intermediate values of fn (laminar structure, but assum-
ing that the domains align along the parallel field component),
we approximate the magnetic structure as a periodic array
(with period D) of normal domains of width W = 2R parallel
to the y axis with periodicity D = 2R0 along the x direction.
The normal domains, containing magnetic flux density Bc

(see Fig. 2), alternate with flux-free superconducting domains.
The area of normal-superconducting interface per unit sample
volume is is 2/D, and as in Eq. (17) the wall-energy cost of
the intermediate state per unit sample volume is

F1 = B2
c δ

μ0D
= B2

c δ

2μ0R0
. (56)

The field-energy cost of the intermediate state per unit
sample volume is

F2 = 1

2μ0R0d

∫
dA

(
b2 − B2

0 cos2 θ0
)
, (57)

where the integral is to be carried out over the area of width
D = 2R0 and infinite height above the sample surface at
z = 0. Here, b = x̂bx(x,z) + ẑbz(x,z) = −∇φ is the magnetic
induction within this area, subject to the boundary conditions
bz(x,0) = Bc cos θ for |x| < R, bz(x,0) = 0 for R < |x| <

R0, and bx(±R0,z) = 0. This can be solved as in Sec. III B2.
Taking the sum of F1 and F2, we find that the net cost in

free energy per unit sample volume for laminar structure is

F2′ = B2
c

μ0

[
δ

2R0
+ 2 cos2 θR0S2(fn)

d

]
. (58)

At the value of R0 that minimizes F2′ , we obtain

R0 =
√

δd

4	2′
, (59)

R = fn

√
δd

4	2′
, (60)

F2′ = 4B2
c

μ0

(
δ

d

)1/2

	2′ , (61)

	2′ = [S2(fn)]1/2 cos θ/2. (62)

3. Case 3′: Superconducting tubes, large reduced field fn

For large values of fn = B/Bc in an applied field with a
parallel component (superconducting tubes), we approximate
the magnetic structure as an array of identical cylindrical su-
perconducting tubes, oriented parallel to B̂ at angle θ , as shown
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in Fig. 2. In the plane normal to B̂, the superconducting tubes
are assumed to arrange themselves as an equilateral triangular
array (with lattice parameter D) of circular superconducting
tubes of radius R surrounded by the flux-filled normal phase.
For doing calculations of the magnetic energy of the structure
above and below the sample, however, it is convenient to
replace the equilateral triangular array inside the sample with
a Wigner-Seitz cylinder of radius R0 = (

√
3/2π )1/2D with the

same area as the unit cell. This Wigner-Seitz cylinder is parallel
to B̂. The magnetic flux carried by this Wigner-Seitz cylinder is
	 = BπR2

0 = Bc(πR2
0 − πR2), so that B/Bc = fn = 1 − fs ,

and R/R0 = √
fs = √

1 − fn.
Within the Wigner-Seitz cylinder of volume πR2

0d/ cos θ ,
the area of the normal-superconducting interface is
2πRd/ cos θ . From Eq. (8), we see that the wall-energy cost
of the intermediate state per unit sample volume is

F1 = B2
c δR

μ0R
2
0

. (63)

The Wigner-Seitz cylinder intersects the top surface at an
angle θ , so that the intersection is an ellipse of semimajor
axis R0s = R0/ cos θ along the x direction and semiminor
axis R0 along the y direction. Similarly, the intersection
of the superconducting tube with the surface is an ellipse
of semimajor axis Rs = R/ cos θ along the x direction and
semiminor axis R along the y direction. The z component of the
average magnetic flux density emerging from the Wigner-Seitz
ellipse is B cos θ , but the area of the ellipse is larger by a factor
of 1/ cos θ than the cross-sectional area of the Wigner-Seitz
cylinder inside the sample, so that the total magnetic flux is
the same, 	 = BπR2

0 .
As in Sec. III C1, the field-energy cost of the intermediate

state per unit sample volume is

F2 = cos θ

πμ0R
2
0d

∫
dV (b2 − B2 cos2 θ ), (64)

where the integral is to be carried out within a new Wigner-
Seitz elliptical cylinder above the sample surface at z = 0.
However, this integral can be evaluated using the same scale
transformation we used in Sec. III C1.

Taking the sum of F1 and the resulting F2, and making use
of R/R0 = √

fs , we find that the net cost in free energy per
unit sample volume for superconducting tubes is

F3′ = B2
c

μ0

[
δ
√

fs

R0
+ 4R0fs cos3/2θS1(

√
fs)

d

]
. (65)

For fixed values of f0, θ0, fn, and θ , we obtain at the value
of R0 that minimizes F3′ ,

R0 =
√

δdfs

2	3′
, (66)

R = fs

√
δd

2	3′
, (67)

F3′ = 4B2
c

μ0

(
δ

d

)1/2

	3′ , (68)

	3′ = [
cos3/2θf 3/2

s S1(
√

fs)
]1/2

. (69)
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FIG. 7. Plots of the normalized free energies vs f0 in an inclined
field with θ0 = π/4 for normal tubes: 	1′ (dashed), array of normal
flux tubes, Eq. (55), laminae: 	2′ (solid), parallel array of normal and
superconducting domains, Eq. (62), and superconducting tubes: 	3′

(dot-dashed), array of superconducting cylinders, Eq. (69). The free
energy cost F for θ0 = π/4 is smallest for normal tubes when 0 �
f0 � 0.410, laminae for 0.410 � f0 � 0.911, and superconducting
tubes for 0.911 � f0 � 1.

4. Free-energy comparisons in an inclined field

Tilting the applied field away from the normal (i.e.,
increasing θ0) initially increases the range of values of
f0 = H0/Hc over which the parallel-domain structure is
energetically favorable. An example of this behavior is shown
in Fig. 7, in which for θ0 = π/4 the range of values of f0 over
which the parallel-domain structure is favored has expanded
to 0.410 � f0 � 0.911 from the range 0.346 � f0 � 0.654
shown for θ0 = 0 in Fig. 5.

Figure 8 shows a diagram indicating which intermediate-
state structure is favored for given values of f0 = H0/Hc and
field angle θ0 (see Fig. 2). Parallel domains (laminae, the
Sharvin structure28) are favored for f0 not far from 1 when
the tilted field H0 is nearly parallel to the sample’s surface
(i.e., when θ0 is not far from π/2).

IV. SUMMARY AND CONCLUSIONS

In summary, we have compared the energies of three
realistic topologies of the intermediate state in an infinite

Case 1': flux tubes

Case 2': parallel domainsCase 2': parallel domains

Case 3':
superconducting
tubes

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

θ0 π 2

f 0

FIG. 8. Diagram indicating which of the intermediate-state struc-
tures considered theoretically in Secs. III C1-III C3 is energetically
favored for given values of f0 = H0/Hc and θ0 (see Figs. 2, 5, and
7). Normal tubes (	1′ ) are favored for small f0, laminae (	2′ ) for
intermediate values of f0 and larger values of θ0, and superconducting
tubes (	3′ ) for large f0 and smaller values of θ0.

104504-9



CLEM, PROZOROV, AND WIJNGAARDEN PHYSICAL REVIEW B 88, 104504 (2013)

type-I superconducting slab of macroscopic thickness. The
present calculation takes the energy of the external field for
all three cases into account in the same manner, which is a
significant improvement, since the energies of the different
topologies are so close to each other. Specifically, we use
essentially the same method to calculate the free energy of
the intermediate-state structure as a function of the applied
field for three assumed model structures, described briefly
as model (1), an array of normal flux tubes surrounded by
superconducting phase, model (2), an array of alternating
parallel normal and superconducting domains, and model (3),
an array of superconducting tubes surrounded by flux-filled
normal phase. We find that as the applied field increases,
the structures with the lowest free energies, in order, are the
following: normal tubes, laminae, and superconducting tubes.
However, magnetooptical images of the intermediate state in
the corresponding field ranges are generally not accurately
described by one of these three simple models, and there are
many reasons for this, as detailed below.

Nevertheless, the images tend to show that the intermediate-
state structure most closely resembles model (1) (separated
normal domains) at low applied fields, model (2) (stripelike,
connected normal domains) at intermediate fields, and model
(3) (separated superconducting domains) at high fields.

It is found that for a close to perpendicularly applied field,
superconducting tubes (at high field), stripes (at intermediate
field), and normal flux tubes or “macrovortices” occupy
roughly equal ranges in field from zero to the critical value,
Bc. For a close to in-plane applied field, for all but the highest
fields, normal tubes have the lowest energy. We note that
practically all published magnetooptical images for nearly
in-plane applied field (Sharvin geometry) show a very nice
laminar pattern. The reason for this apparent discrepancy is
that these experiments were generally done close to Hc, i.e.,
for f0 � 1. These experiments are thus consistent with our
theoretical result. A systematic experimental exploration of
the phase diagram in the region θ0/(π/2) � 0.9 for the whole
range 0 � f0 � 1 would be certainly interesting.

An important extension of the present work would take into
account the deviation from Bc of the magnetic flux density
in the normal domains. This is, in particular, important for
samples with thickness comparable to or smaller than λ, ξ , or
δ. For this, an extra contribution to the free energy density must

be taken into account. In a recent work,68 this was done for
the laminar pattern only. Furthermore, corrugations could, in
principle, be taken into account, as was shown by Faber.78 See
also the upper image in our Fig. 1. However, the analytical
calculation of the field energy would become much more
complicated, if possible at all.

As noticed in the introduction, we reiterate that experimen-
tal patterns may be quite different from the thermodynamic
predictions discussed in this paper because of several factors.
The small energy difference between different patterns in
conjunction with the effect of residual pinning remaining
in carefully annealed samples may add to hysteretic effects.
Additionally, since the tubes repel each other at large distances,
there are local barriers for the transformation from tubular
(closed topology) to laminar (open topology) patterns.24,70

Also, many experiments were conducted on well-controlled
and well-characterized thin films, which, however, do not
obey our starting assumption of the thick slab with its
thickness greater than all of the characteristic length scales. In
addition, flux tubes become more favorable for larger values of
Ginzburg-Landau parameter86 and for very thin type-I super-
conductors where the pattern turns into Abrikosov vortices.24

Furthermore, there is a possibility of quantum tunneling of the
domain S/N walls21 as well as a pronounced effect of confined
geometry. Recent numerical and experimental results obtained
on mesoscopic samples show the tendency toward increased
stability of flux tubes.7,19,87,88

We conclude by stating that the structure of the intermediate
state of type-I superconductors is remarkably complicated, and
no single theoretical paper would be able to provide an accurate
description of all cases. Yet, we believe it is important to have
a general thermodynamic picture, which is what we offer here.
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