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Phase sticking in one-dimensional Josephson junction chains
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We studied current-voltage characteristics of long one-dimensional Josephson junction chains with Josephson
energy much larger than charging energy, EJ � EC . In this regime, typical I-V curves of the samples consist
of a supercurrent-like branch at low-bias voltages followed by a voltage-independent chain current branch,
Ichain at high bias. Our experiments showed that Ichain is not only voltage-independent but it is also practically
temperature-independent up to T = 0.7TC . We have successfully model the transport properties in these chains
using a capacitively shunted junction model with nonlinear damping.
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I. INTRODUCTION

Josephson junction (JJ) chains exhibit many interesting
phenomena such as Coulomb blockade of Cooper pairs,1

coherent phaseslips,2 synchronous Cooper pair tunneling,3

and superinsulation.4 These properties are utilized for various
applications such as the development of the Fluxonion for
quantum information processing,5 development of voltage
standards in metrology,6 and for widely tunable parametric
amplifiers.7 Furthermore it is suggested that very long one-
dimensional Josephson junction chains formed in a transmis-
sion line geometry can be employed for creating an analog of
the event horizon and Hawking radiation.8,9

The Josephson junction is described by two ratios: the
ratio of the characteristic energies, the Josephson energy (EJ )
and the charging energy (EC), and the ratio of the effective
damping resistance (Rdamp) and the quantum resistance (RQ =
h/4e2 = 6.45 k�). Depending on these ratios, either the
charge or the phase behaves as a classical variable. There
have been extensive studies of long and compact chains of
Josephson junctions in the limit EJ /EC � 1 and RQ/Rdamp �
1.1,10–12 In this extreme, the JJ chain forms a high impedance
transmission line1 for the Josephson plasmon mode13 and
when this impedance exceeds the quantum resistance RQ,
coherent quantum phase slips14 give rise to a Coulomb
blockade of Cooper pair tunneling.15 This phenomenon is
the quantum-mechanical complement of the Josephson effect.
While numerous groups have observed the Coulomb blockade
of Cooper pair tunneling16–18 a robust demonstration of the
complement to the ac Josephson effect, or synchronization to
Bloch oscillations, is yet to be demonstrated.

In the other extreme, EJ /EC � 1 and RQ/Rdamp � 1,
the phase of the junction can be treated as a classical
variable while the charge fluctuates strongly. Recently, it was
demonstrated that chains in this regime can be used as so-called
superinductors, which have a high-frequency impedance much
larger than the quantum resistance.19,20 There have been
several successful experiments of the observation of quantum
phase slips in chains with large Josephson energy.21,22

The aim of this study is to understand the current-voltage
characteristics of long Josephson junction chains. We have
fabricated and studied one-dimensional Josephson junction
chains of three different lengths (384, 2888, and 4888
junctions) in the regime where the Josephson energy is much
larger than the charging energy, EJ � EC . We characterize
the damping by the normal state resistance of the junctions,
RN which falls in the range 1 � RQ/RN � 100. The dc I-V
curves of these samples consist of a supercurrentlike (S.C.)
branch at low-bias voltages followed by a voltage-independent
chain current branch, Ichain, which is a small fraction of the
Ambegaokar-Baratoff critical current23 for a single junction,
IC , Ichain/IC ∼ 0.2. We focus on the large voltage behavior,
2�0/e � V < N2�0/e, where the classical phase slips24,25

are a determining factor for the phase dynamics in the chain.
We did simulations in order to understand the complicated
phase-slip dynamics that occur inside the Josephson junction
chain causing this novel behavior.

The paper is organized as follows. In Sec. II, we describe
the fabrication process and the measurement setup. In Sec. III,
we have presented experimental results together with a circuit
model and details of the simulations, and in the final section,
we present the conclusions.

II. EXPERIMENTAL

The Josephson junction chains consist of serially connected
SQUIDs (superconducting quantum interference devices). A
SQUID is formed by connecting two Josephson junctions
in parallel and when the SQUIDs loop inductance is small
compared to the Josephson inductance, Lloop � LJ , where
LJ = h̄/(2eIC), the effective Josephson coupling energy, EJ

of Josephson junctions can be modulated by an external
magnetic field, EJ = EJ0| cos(π�ext/�0)|. EJ0 is the Joseph-
son coupling energy at low-temperature limit without any
external magnetic field and determined from RN and the
superconducting energy gap �0, EJ0 = (RQ/RN )(�0/2). We
estimate Lloop � 0.1–0.2 pH, whereas the LJ � 500 pH.
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FIG. 1. (Color online) (a) Optical microscope images of a Joseph-
son junction chain. The chain consists of 2888 SQUIDS with total
length 500 μm. Shunt capacitors with the sizes 1000 μm × 800 μm
are placed to the input and output of the chain. (b) Scanning
electron microscope (SEM) images of SQUID chains together with
termination lead. (c) A group of SQUIDs that consists of two parallel
Josephson junctions with the dimensions 300 nm × 100 nm.

Figure 1(a) shows the optical microscope image of a sample
together with shunt capacitors and connection pads. Two thin
film capacitors are fabricated on-chip and connected in series
to shunt the Josephson junction chain (CShunt ∼ 1 nF) in order
to reduce the high-frequency impedance seen by the chain and
provide filtering for the fluctuations coming from the external
leads and circuitry. The first layer of the shunt capacitors are Al
rectangles defined by optical lithography on Si/SiO2 substrate.
The insulating layer is formed by sputtering a 15-nm-thick
SiO2. The final layer is formed by depositing Au connection
pads, there by creating Al/SiO2/Au capacitors. Figures 1(b)
and 1(c) shows scanning electron microscope images of a chain
together with a termination lead. The Josephson junction chain
is defined by electron beam lithography and the overlapping
Al/Al2O3/Al tunnel junctions are made by the standard double
angle shadow evaporation technique.26

All the experiments are conducted in a dilution refrigerator
with a base temperature of ∼15 mK. Figure 2 shows the
schematic diagram of the measurement circuit. The sample is
mounted on a printed circuit board, which is in turn mounted
in a RF tight copper can. The measurement leads in the fridge
are made of lossy 50-� coax cables.

III. RESULTS

A. Voltage-independent chain current

Typical dc I-V curves of long Josephson junction chains
with EJ /EC � 1 and RQ/RN � 1 show practically voltage-
independent constant current branches, Ichain, between the
supercurrentlike branch and the normal tunneling branch.
As an example, experimental and simulated dc I-V curves
of a long Josephson junction chain with EJ0/EC = 36 in
zero magnetic field and RQ/RN

∼= 13 are shown in Fig. 3.
The experimental dc I-V curve consists of a supercurrentlike,
S.C., branch at low-bias voltages and a voltage-independent
constant current branch at higher bias voltages. This sample

FIG. 2. (Color online) Schematic diagram of the measurement
circuit.

had 2888 junctions in series. The total junction area of a single
SQUID is AJun = 0.05 μm2 and the normal state resistance
of a single SQUID is RN = 0.5k�. The charging energy is
defined by EC = e2/(2CSAJun) with CS = 45fF/μm2 being
the specific capacitance. Throughout the paper, the quoted
critical current value is the low-temperature limit of the
calculated Ambegaokar-Baratoff critical current for the single
SQUID, IC = π�0/(2eRN ).

The simulated dc I-V curve of the sample is shown in
Fig. 3(b) and the details of the simulations will be given
below. It is important to emphasize that the simulation
parameters were either experimentally measured or estimated
from sample geometry. We find qualitative agreement between
the simulation and experiment and by adjusting only the
critical current IC , it is possible to get quantitative agreement
between experimental and simulated dc I-V curves. We
therefore conclude that the circuit model accurately simulates
the phase-dynamics of the Josephson junction chains.

In order to gain insight into the complex dynamics of the
Josephson junction chains, we appeal to the analogy with a
simpler and more well-studied resistively capacitively shunted
junction (RCSJ) model.27 In normalized units, this model gives
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FIG. 3. (Color online) Experimental (a) and simulated (b) dc I-V
curves of a long Josephson junction chain with N = 2888 SQUIDs,
EJ0/EC = 36 at zero magnetic field and RQ/RN

∼= 13. IC = 634 nA
is the Ambegaokar-Baratoff critical current for a single junction in
this chain,23 and superconducting energy gap of Al is �0 = 200 μeV.
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FIG. 4. (Color online) Phase-space diagram of a single junction
from the RCSJ model with Q = 5 and I = 0.5IC .

the current as

I/IC = φ̈ + φ̇/Q + sin(φ), (1)

where φ is the phase difference over the junction. The
damping in this model is due to a frequency-independent
ohmic shunt resistance R, and it is expressed in terms of
a dimensionless quality factor Q2 = π2(R/RQ)2(EJ /2EC).
This quality factor is sometimes called the Stewart-McCumber
damping parameter β = Q2.

A very well-known mechanical analog for the RSCJ
model is a particle in a tilted washboard potential. In the
mechanical model, 1/Q corresponds to friction and hence
small Q represents large damping. This model has two distinct
states, one is the particle resting at the potential minimum
(0-state) corresponding to the S.C. branch and the other
state is the particle running down the washboard potential
(1-state) corresponding to the dissipative branch. A graphical
way to visualize the dynamics of a Josephson junction is a
phase-space diagram. Figure 4 shows the phase-space diagram
of a Josephson junction with underdamped dynamics biased
below the critical current (Q = 5 and I = 0.5IC). Two basins
of attraction are separated by the red lines. A particle escaping
from the 0-state through the saddle point (green dot, indicating
the local maximum of the tilted washboard potential) can not
move directly to the basin of the next 0-state attractor without
entering the basin of 1-state attractor. For fluctuation-free
dynamics, once the particle is at the 1-state it will continue
to run down the washboard potential.

Fluctuations, which necessarily accompany the damping,
give rise to transitions between the two stable attractors, known
as escape and retrapping. The energy required to switch the
system from 1-state to 0-state is called activation energy and
it is approximately equal to the kinetic energy of the particle
in the 1-state. The kinetic energy decreases with increasing
damping. Therefore unstable switching between the 0-state
and 1-state require large thermal energy and/or large damping.
In Refs. 28 and 29, it was shown that in a certain range of
parameters, the RCSJ model with noise current predicts that
both of these states can be unstable and junction can switch
rapidly back and forth between running and resting states,
creating a constant current branch on dc I-V curve. While these
simulations were performed on a single junction with linear
damping, we propose that this type of instability leads to a

FIG. 5. A circuit model of the SQUID chain. Damping is provided
by the linear resistors terminating each end of the chain, which
model reflection-less transmission lines, and by a nonlinear resistance
parallel with each junction. The SQUID junctions are modeled as
ordinary Josephson junctions with tunable EJ .

voltage-bias independent current due to a continuous phase
slipping and phase sticking in Josephson junction chains.

B. Simulations

The dynamics of a Josephson junction chain is far more
complex than that of the simple RCSJ model. In the chain,
collective modes can exist and the damping is far more
complicated than a simple ohmic resistor. To address this,
we performed simulations of long chains, modeled using the
circuit diagram shown in Fig. 5. Each junction of the SQUIDs
in the chain is modeled as an ideal Josephson junction shunted
by a capacitance C and a nonlinear resistor R, which only lets
current through when the voltage across it exceeds the gap
voltage Vg = 2�0/e. The total current through junction i is
thus

I tot
i = I s

i + IC
i + IR

i

= Ic sin(θi − θi+1) + C(V̇i − V̇i+1) + IR
i , (2)

where θi is the phase of the superconducting order parameter
at the island to the left of junction i, and Vi = h̄θ̇i/2e is the
voltage. The nonlinear resistive current is taken to be

IR
i =

{
(Vi − Vi+1)/R + I n

i if |Vi − Vi+1|〉Vg,

0 otherwise, (3)

where R is the normal resistance of a single junction. (The
subgap resistance is thus assumed to be infinite.) In addition,
a thermal noise current I n is included in Eq. (3). The latter is
modeled as a Gaussian random Johnson-Nyquist noise with
zero mean and covariance 〈I n

i (t)I n
j (t ′)〉=(2kBT /R)δij δ(t−t ′).

Experimentally, the Josephson junction chain is voltage
biased. Therefore the currents entering the chain from the left
through the left lead resistance and leaving the chain on the
right are given by

IL = (Vbias − V1)/Rterm + I n
L, IR = VN/Rterm + I n

R. (4)

The Johnson-Nyquist noise I n
R,L in the terminal resistors have

zero mean and obey 〈I n(t)I n(t ′)〉 = (2kBT /Rterm)δ(t − t ′).
These terminal resistances consists of lead resistances
together with the characteristic impedance of the coaxial
cables, approximately equal to Z0/2π ≈ 60 �, where Z0 is
the free space impedance. In our simulations we therefore
set Rterm = 50 �. This low impedance is a main source of
dissipation and noise in the system. Now, Kirchhoff’s law
holds at each superconducting island,

C0V̇i + I tot
i − I tot

i−1 = 0, (5)
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where C0 is the capacitance to ground. This gives a coupled
system of second-order differential equations for the super-
conducting phases θi . These are integrated with a symmetric
time discretization using a leap-frog scheme, with a small time
step �t = 0.02(h̄/2eIcR) = 0.02(RC/Q2). Each iteration
requires the solution of a tridiagonal system of equations. By
varying the bias voltage and calculating the resulting current,
we obtain the I-V-characteristics of the structure. The voltage
is stepped up slowly from zero, or down from a high value,
to avoid sharp transient effects near the left lead where the
voltage is applied. We also keep track of the locations and
times of phase slip events, i.e., when the phase difference
across a junction θi − θi+1 passes between the disjoint
intervals Im = [−π + 2πm, + π + 2πm] for integer m.

C. Ichain/IC as a function of βN

Figure 6(a) shows the Ichain/IC as a function of βN for
various samples. Each data point represents the measurement
of a different sample at zero magnetic field. The data in the
figure are collected from the measurements of 12 different
samples with three lengths and different critical currents.
The chain current Ichain is taken as the voltage-independent
current at large bias voltages (V ∼ 100�0/e). The figure
consists of two distinct parts that are separated by a rapid
decrease of the Ichain/IC level around βN ∼ 1 where dynamics
of the long Josephson junction chains undergo a qualitative
change. This behavior is consistent with what we expect
from the RCSJ model. At βN � 1, the damping is strong
and activation energies for escape and retrapping are similar,
every phase-slip event (escape) is followed by a phase sticking
(retrapping). As will be discussed below, this behavior is
consistent with the phase slips happening randomly throughout
the chain and a continuous slip-stick process is manifest as a
constant current branch in the dc I-V curves [see Fig. 6(b)].
The rate of phase slip and phase stick is determined by the bias
voltage. In the opposite limit when βN � 1, the damping is
small, which inhibits phase sticking. Once the junction starts
slipping it continues to slip, resulting in lower Ichain/IC and
features in the dc I-V curve at multiples of the gap voltages,
V = n2�0/e where the nonlinear damping rapidly increases
[see Fig. 6(c)].
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FIG. 6. (Color online) (a) Ichain/IC vs βN = Q2 for various
samples. Each data point represents the measurement of a different
sample at zero magnetic field. The I-V curves in (b) and (c) are of the
samples marked with the arrows.
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FIG. 7. (Color online) (a) Ichain as a function of βN . For three
different values of βN , we plot the dc I-V curves (a1,b1,c1) and
grey-scale plots of the phase slips (a2,b2,c2) across the Josephson
junction chains as a function of bias voltage. The grey-scale bar gives
the number of phase slips in the fixed simulation time.

D. Simulated results on the effect of damping

In this section, we present simulation results. The exper-
imental parameters used in the simulations are kBT /EJ =
0.0033, C0/C = 0.01, and the damping parameter is tuned
between βN = 0.1 and βN = 4.5. Figure 7(a) shows the
Ichain/IC as a function of βN and there are three distinct
branches. These branches correspond to different phaseslips
distributions in the chains. We have selected one point from
each branch, A, B, and C (βN = 1, 1.5, and 4.5), and plotted the
dc I-V curves together with grey-scale plots of the phase slips
across the Josephson junction chains. We emphasize that each
of the different branches A–C all have qualitatively similar
phase-slip distributions and current-voltage characteristics.
The dc I-V curve of point A with βN = 1.0 is shown at
Fig. 7(a1), and it consists of a supercurrentlike branch followed
by a uniform current level very similar to the I-V curve shown
in Fig. 6(b). Figure 7(a2) shows the grey-scale plot of the
phase slips across the chain as a function of bias voltage.
The plot shows that the phase slips are not confined to any
specific point but rather distributed uniformly across the chain,
increasing in magnitude as the bias voltage is increased. This
distribution is consistent with the picture where every phase
slip is followed by a phase stick. This behavior is expected in
the high-damping regime and phase slips happens randomly
throughout the chain, without preference for any particular
point in space.

Figure 7(c1) shows the dc I-V curve of point C with
βN = 4.5. There are strong gap features in the I-V curve
and the dissipative branch flattens out at large bias voltages.
The phase-slip distribution shows that once a junction starts
slipping it continues this motion without retrapping and these
slipping junctions are randomly distributed across the chain
[see Fig. 7(c2)]. This simulation point corresponds to the I-V
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curve in Fig. 6(c) where βN � 1. Finally, Fig. 7(b1) shows
the dc I-V curve of point B with βN = 1.5. Here, we also see
a S.C. branch followed by a constant current branch similar
to the point A. However, there are strong fluctuations on the
constant current branch, which are not present at point A.
These fluctuations are very similar to the gap features seen in
the I-V curves for point C. There is one specific junction at one
end of the chain where the phase slip nucleates and as the bias
voltage is increased neighboring junctions starts slipping one
by one.

Thus we find that the qualitative shape of the dc I-V curve
is affected by the spatial distribution of phase slips in the chain
and we also find qualitative agreement between experiment
and simulation in the shape of the dc I-V curve for high
and low damping, in regions A and C [compare Figs. 7(a1)
and 7(c1) with Figs. 6(b) and 6(c)]. The experiment shows a
sharp decrease of Ichain/IC at βN

∼= 1.0, which is not observed
in the simulation. The reason for this apparent discrepancy
is that the simulation changes βN at fixed EJ , whereas the
experiment compares junctions of different RN , effecting both
EJ and βN , where EJ varies over two orders of magnitude.
However, we do find that the experimental Ichain is always
lower than that expected from simulation. This discrepancy
might be explained by an additional source of fluctuations not
present in the simulation, for example, quantum fluctuations
of the phase, or self-heating in the chain. The later is however
unlikely as the chain current observed Ichain/IC remains
constant out to very high voltage.

Figure 8(a) shows the dc I-V experimental curves of a
sample for temperatures between 20 mK and 1.1 K, at zero
magnetic field. Figure 8(b) shows the simulated I-V curves with
the experimental parameters of the sample and similar range of
temperatures, kBT /EJ = 0.001 to 0.01. Experimental results
and the simulations are in good agreement and both show that
Ichain is independent of temperature up to T = 0.7TC (TC ≈
1.56 K). This temperature independence is an indication
that the overall current-voltage characteristic is determined
primarily by the damping and not driven by fluctuations. The
finite slope of the S.C. branch observed in the experiment [see
Fig. 8(a)] is probably due to quantum phase slips, which are not
accounted for in the classical simulation. The simulation [see
Fig. 8(b)] does take into account phase-diffusion or thermally
activated phase slips on S.C. branch but these are not able
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FIG. 8. (Color online) (a) I-V curves of a sample (N = 2888,
βN ≈ 1, EJ0/EC ≈ 88, and EJ0/kB ≈ 90 K) at zero magnetic field
with various temperatures. (b) Simulated I-V curves with the same
sample parameters.

(a) (b)

(c) (d)

FIG. 9. (Color online) (a) High-voltage characteristics of the
sample shown in Fig. 3. (b) Differential conductance dI/dV , (c)
simulated dc I-V curve, and (d) the simulated dI/dV of the same
sample. The arrows shows the direction of the sweep.

to account for the observed slope. The simulation also nicely
reproduces the observed peak in current at low-bias voltages.

E. High-voltage characteristics

Figure 9 shows the high-voltage characteristics of the same
sample as in Fig. 3. The large-scale differential conductance
[see Fig. 9(c)] curve shows five distinct peaks: the S.C. peak
around zero bias, two peaks at V = ±450 mV correspond-
ing to the sum-gap voltage, and two additional peaks at
V = ±300 mV. These extra peaks are due to a transition
between two different chain currents in the I-V curves,
Fig. 9(a). These peaks are also visible in the simulated current
voltage characteristics and the overall shape of the large scale
I-V curve is well reproduced by the simulation.

(a)

(c)

(b)

FIG. 10. (Color online) Simulated dc I-V curve (a) and distri-
bution of phase slips (b) and (c) for the sample shown in Figs. 3
and 9.
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Figure 10(a) shows the simulated I-V curve of the sam-
ple between zero bias up to the normal tunneling branch.
Figure 10(b) shows the distribution of the phase slips across
the chain, the grey scale represents the number of phase slips
at each junction and voltage. At low voltages, phase slips tend
to accumulate at one end of the chain. At higher voltages, they
become uniformly distributed across the chain. This random
phase-slip distribution is similar to the simulated behavior
seen in Fig. 7(a1) with high damping. Surprisingly, as the bias
voltage is further increased, a group of junctions loose this
randomness and form a cluster with a fixed number of phase
slips, independent of bias voltage [see Fig. 10(c)].

This cluster rapidly grows with increasing bias voltage,
causing an increase of the chain current. At the maximum
extent, there are approximately, N ∼ 1100 junctions in one of
the clusters, which is a considerable part of the chain. After that
point, as the voltage bias further increased the size of the cluster
gradually decreases with the junctions leaving the cluster in
the opposite order as they were added. This gradual decrease
creates a second flat branch in the simulated I-V curve. Thus we
see that the simulation gives insight into the complex dynamics
and allows us to study in detail the phase-slip distribution
throughout the chain.

IV. CONCLUSION

In this paper, we have presented experimental observation
of a voltage independent constant current branch, Ichain in the
I-V curves of long Josephson junction chains with βN < 1. We

have successfully simulated the current voltage characteristics
in this regime with a coupled RCSJ model. The observation of
voltage-independent chain current Ichain is a manifestation of
a random process of phase slipping and phase sticking that is
uniformly distributed throughout the chain. The phase slip rate
is defined by the bias voltage, and our simulations showed that
voltage independent constant current branch is created by un-
correlated phase slips. Moreover, experimental results showed
that there is a significant decrease of Ichain/IC when βN > 1.

Simulations showed that the damping parameter, βN , is
important for defining the distribution of phase-slip and
phase-sticking processes in the Josephson junction chains.
Different phase-slip distributions and phase-sticking processes
creates various shapes of the dc I-V curves, and it is possible
to gain insight into these processes by just analyzing the
shape of the I-V curves. Furthermore, our simulations showed
that Ichain is independent of temperature and we confirmed
this experimentally up to 0.7TC . We found good agreement
between our classical model and the experimental data. In
particular, the shape of the dc I-V curve was determined by the
distribution of phase slipping and phase sticking events. We
conclude that phase slipping together with phase sticking, is
the dominant mechanism which defines the dynamics of the
long Josephson junction chains at finite voltages.
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