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Interlayer coupling in spin valves studied by broadband ferromagnetic resonance
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The magnetization dynamics of coupled and uncoupled spin valves with the structure
NiFe (20 nm)/Cu(tc,)/NiFe (20 nm)/IrMn (10 nm) is probed by broadband ferromagnetic resonance
absorption measurements. The coupling intensity between the free and the pinned layers is tailored by varying
the Cu thickness f#c,. Broadband spectra exhibited two resonant modes for each value of the applied field. It is
observed that the coupling between NiFe layers modifies the amplitude of the absorption peaks and the shape of
the dispersion relations for each mode, which becomes particularly distorted in the antiparallel magnetization
state. The observed phenomena are well described by applying a semianalytical model that properly takes into
account the coupling interactions and allows an efficient numerical calculation of the absorption peak amplitudes

and the dispersion-relation shapes.
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I. INTRODUCTION

Interlayer coupling is an important ingredient in several
devices, such as spin valves'-? and magnetic tunnel junctions®-°
(MT1Js), multilayered materials, and any system based on two
or more ferromagnetic layers separated by a nonmagnetic
spacer. In spin valves and MTlJs, strong interlayer coupling
is a key issue for devices using synthetic free or pinned
layers,”® whereas, weak coupling is usually observed be-
tween the free and the pinned layers.'®!> In both cases,
the dynamic behavior is influenced by the strength of the
interlayer coupling in both saturated and unsaturated magnetic
states. This coupling has been studied extensively in the
past by several experimental techniques as magnetization
measurements and mag.gnetoresistance,13’14 ferromagnetic res-
onance (FMR),">~!® Brillouin light scattering'*-' (BLS), and
others.?>??

An interesting and recent approach for studying the effect
of interlayer coupling on the high-frequency response of
materials and devices is the use of broadband ferromagnetic
resonance. This technique is based on a vector network
analyzer (VNA), and it is usually known as VNA-FMR .>* With
this technique [VNA-FMR (Ref. 24)], we are able to measure
the dynamic properties (permeability or absorption) in a
frequency range from a few MHz to dozens of GHz. Moreover,
all measurements can be performed in a magnetic-field range
—Hpax < 0 < 4 Hpax, where Hp,x can be adjusted from a few
Oe to several kOe. Therefore, besides measuring the saturated
states as in traditional FMR, a broadband measurement can be
performed on unsaturated states and even at zero field.

Here, we study the static and dynamic properties of spin-
valve systems using VNA-FMR and magnetometry measure-
ments. Our samples consist of Py/Cu/Py/IrMn layers described
as follows. The bottom Py = permalloy (Nig;Fe;9) layer acts
as a free magnetic layer (F'), whereas, the top Py layer is
coupled to an antiferromagnet (Ir,0Mng,) and behaves as a
pinned layer (P). We are able to analyze the behavior of each
layer and the effect of the interaction mediated by the Cu
spacer. By varying the Cu layer thickness 7c,, we are able
to control the interaction between the Py layers, producing
new features on broadband spectra in unsaturated magnetic
states. In particular, we observe complex dispersion relations,
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including frequency jumps and absorbed power intensities,
depending on the oscillation modes.

A semianalytical model based on the magnetic free energy
for the macrospin, together with the Landau-Lifshitz-Gilbert
equation (LLG), is proposed and is applied to these systems.
This model allows an efficient numerical calculation of the
broadband absorption amplitudes and dispersion relations and
describes the experimental results remarkably well. Moreover,
the model provides further insight into magnetization dynam-
ics of spin-valve-like systems in both saturated and unsaturated
magnetic states.

II. EXPERIMENT

Spin valves with the structure
Py (20 nm)/Cu(tcy)/Py (20 nm)/IrMn (15 nm), where
tcy = 0.75, 1.0, and 2.5 nm, were produced using magnetron
sputtering on a Si(100) substrate with a Ta (5-nm) buffer
and capping layers. The deposition conditions were 5-mTorr
pressure and 50 sccm Ar gas flow after a 5 x 10~8-Torr base
pressure had been attained in the whole chamber. A rf power
source was used for Py depositions, whereas, dc sources were
used for Ta, Cu, and IrMn depositions. All deposition rates
were calibrated by low angle x-ray reflectivity measurements.
During the growth process, an in-plane magnetic field of
about 200 Oe was applied in order to induce an unidirectional
anisotropy at the ferromagnetic (FM)/antiferromagnetic
(AFM) interface, leading to the pinning of the top FM layer
through the exchange bias effect.

We performed static magnetic measurements (M vs H) with
a vibrating sample magnetometer under dc fields of £300 Oe.
For the dynamic measurements, we used a broadband ferro-
magnetic resonance setup composed of a Rohde & Schwarz
ZVA24 vector network analyzer, combined with a co-planar
waveguide for frequencies in the range of 0.1-7.0 GHz
and dc magnetic fields in the range of 300 Oe. For these
measurements, each sample was placed on top of a two port
co-planar waveguide (CPW) where the external field H was
applied along the propagation direction as shown in Fig. 1. The
transmission S,; and reflection S;; coefficients were measured
in the field and frequency ranges specified above. The absorbed
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Sample

FIG. 1. (Color online) Schematic of the CPW structure and a
sample placed on top of it. The central conductor of the CPW is
about 260-um wide. High-frequency microprobes and coaxial cables
(not shown) were used to connect the structure to the VNA. The
sample’s anisotropy axis (a.a.) is aligned with the direction of the
applied external field H.

power ratio in the waveguide was calculated as*
Pross/ P =1~ |Sul* — |Sal. 1)

The ferromagnetic resonant spectra (magnetic absorption)
were obtained by measuring this ratio with respect to a
reference measurement of the dielectric losses, acquired with
the sample saturated along the direction of the 1f field.

III. EXPERIMENTAL RESULTS

Our samples were engineered so as to have distinct coupling
intensities between their FM layers. From the static hysteresis
loops, measured with the external field aligned with the easy
magnetization axis (as shown in Fig. 2), we can clearly see
how the thickness of the Cu spacer modulates the intensity of
the coupling between the FM layers.

The sample with ¢, = 2.5 nm [Fig. 2(a)] shows typical
spin-valve behavior with well-known parallel and antiparallel
magnetization states. Coming from negative saturation, the
first layer to flip is the P layer at a field related to the
unidirectional anisotropy, then the F layer flips at a field
close to zero. This is observed in the magnetization curve as a
shifted response for the P layer and a centered response for the
F layer.

Such features indicate negligible coupling between the FM
layers. On the other hand, for 7o, = 1.00 nm [Fig. 2(b)], the
coupling now manifests itself as a small shift (toward negative
H) in the response of the F layer. A larger coupling is observed
for tc, = 0.75 nm with a greater shift in the F-layer response,
and the antiparallel state is no longer observed. Instead of
that, a gradual rotation of the magnetization is now the main
switching process.

The right side of Fig. 2 shows the measured absorbed power
spectra for our samples. The color scale denotes the amplitude
from blue (minimum) to red (maximum). The amplitude
maxima on the branches correspond to the resonant modes. In
these measurements, we can see two clear resonant responses
[Fig. 2(b)] for the sample without coupling (#c, = 2.50 nm),
one centered and the other field shifted, corresponding to
the F and P layers, respectively. As already observed?® in
simple or exchange biased magnetic systems, the reversal of
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FIG. 2. (Color online) Measured and calculated magnetic hys-
teresis loops (left) and the broadband FMR spectra (right) for
tcy = 2.50 nm (top), tc, = 1.00 nm (middle), and #c, = 0.75 nm
(bottom). The symbols represent the experimental data, and the solid
line is the calculated curve.

the slopes of the branches occurs at the switching fields of
the respective layers. On the other hand, for the samples with
coupled FM layers (fc, = 1.00 and fcy = 0.75 nm), a pair of
resonant branches is still observed in parallel magnetization
states, whereas, a completely different behavior is observed in
unsaturated states, including frequency jumps in the resonant
branches for both layers at their switching fields. These
features will be addressed in Sec. V after we present our model
and numerical calculations for these systems. In all cases
(saturated and unsaturated samples), we observe different
absorption intensities on each resonant branch. In order to
gain further insight into the absorption of the saturated states,
in Fig. 3, we plot the absorption profiles for these samples at
3.7 GHz. In this figure, four absorption peaks are observed for
all samples. In the uncoupled case [Fig. 3(a)], the small peaks
represent the oscillation of the P layer, whereas, the larger
peaks are associated with the resonance of the F layer.
Therefore, the difference in height of the peaks can clearly
be ascribed to the larger damping parameter « for the exchange
biased P layer.”’ This is related to a broader linewidth,
which results in a smaller peak height. For the samples in
which FM layers interact [Figs. 3(b) and 3(c)], the inner peak
amplitudes are reduced relative to the outer peaks without a
significant increase in the measured linewidths (not shown),
indicating that damping is not responsible for this behavior.
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FIG. 3. (Color online) Absorbed power profiles at 3.7 GHz for
samples with three different Cu spacer thicknesses: (a) tc, = 2.5,
(b) tcy = 1.0, and (c) tcy, = 0.75 nm. The symbols correspond to the
experimental data, and the solid line corresponds to the calculated

curve. The arrows represent the oscillating vectors (see Fig. 5 for
further details).

This reduction depends on the coupling intensity, and it will
be explained later in terms of our model and numerical
calculations.

From Fig. 3 and thereafter, the filled arrows represent
the magnetization vectors, whereas, empty arrows represent
the oscillating vectors, and they were colored red and blue
for the pinned and free layers, respectively.

IV. SEMIANALYTICAL MODEL AND NUMERICAL
CALCULATIONS

In order to understand the features observed in our M vs
H curves and broadband measurements, we have adopted
a macrospin model that takes the usual free-energy density
terms for each ferromagnetic layer plus a term describing the
effective interaction between the free (F) and the pinned (P)
layers into account as follows:

E = EPinned + EFree + Elmeraclion~ (2)

The perpendicular anisotropy term that appears in the free
energy corresponds to the uniaxial anisotropy along the hard
axis direction, which is perpendicular to the plane of the thin
film.

The free-energy densities for the two layers Epiypeq and
Erpree incorporate the Zeeman, in-plane uniaxial anisotropy,
shape anisotropy, and out-of-plane anisotropy terms.
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FIG. 4. (Color online) Sketch of the theoretical model adopted for
the numerical calculations. The magnetization vectors (filled arrows)
lie on the plane of the samples, their orientations being defined
by angles 6 and ¢ measured from the sample’s normal and a.a.,
respectively. The oscillating vectors (empty arrows) are parallel to
the ¢ directions (not shown). The radio-frequency field h'f is also
parallel to the sample and is perpendicular to the a.a.

Generally, out-of-plane anisotropy can be originated from
surface roughness, crystalline ordering, or interface effects.
Epinnea also includes the exchange bias interaction term that
keeps the corresponding layer pinned and the related rotatable
anisotropy,”’ which arises from interfacial antiferromagnet
grains with weak effective anisotropy and behaves like
an anisotropy where the easy axis rotates toward the direction
of the magnetization vector. In our system, as shown in
Fig. 4, both layers have the same thickness ¢ and saturation
magnetization Mg, and we express the energy density in terms
of the polar 6 and azimuthal ¢ angles of the magnetizations
and the anisotropy axis. Since the shape anisotropy energy
is dominant in our system, the magnetization vector always
lies on the plane of the thin film so that 6 = /2. Also,
considering that the anisotropies have an in-plane easy magne-
tization axis direction, parallel to ¢ = 0, and having applied the
external field H applied at ¢, then the normalized free-energy
density (n = E/Mjy) for the F and P layers, keeping only the
¢ dependent terms, can be written as follows:

Npinned = —H cos(@y — ¢p) — Hip cos(pp) — 3 H cos*(¢p),
. 3)
Niree = —H cos(py — ¢r) — SH{ cos® (@),

where H, HF, ¢p, and ¢ are the uniaxial anisotropy fields
and the in-plane magnetization angles of the P and F layers,
respectively; Hgp is the exchange bias field acting on the
pinned layer. The adopted interaction energy density reads

M = —H{ cos(pp — @r) + H; cos’(¢p — @r), (4

with HIJ = 1171? and HZJ = 1172;’ where J; and J, are the
bilinear and biquadratic interaction constants between the two
layers, respectively.

By minimizing 7 = 7pinned + MFree + Mine fOr a given H, the
equilibrium angles ¢p and ¢r of the magnetization vectors
can be deduced.

The magnetization dynamics in our system is described by

the LLG equation adapted for our purpose,
aM;
) ®

dt

aM;

o;
— =—-yM; x H))+ — | M;
o y(M; x H;) + My < X

104431-3



D. E. GONZALEZ-CHAVEZ et al.

with i = F, P. Each layer is expected to follow this equa-
tion independently; hence, in angular coordinates, it can be
expressed as

a6, Y _(H, +a;Hy)

—_ = +a; Hy),

d— (1+a2) * o ©
sin 9,-@ = L(ain. — Hy,),

dt (1 + aiz) ' '

where H, and Hy are the azimuthal and polar components of
the effective field, « is the dimensionless damping parameter,
and y is the gyromagnetic ratio, which is the same for
both layers. The effective field components can be expressed
as

1 0E A
Hei:___—i_hrf'eis
Mg 36; o
H — 1 oE Thtg
A MS sin 9,‘ 8<p, i

where h'™ is the dynamic component of the applied external
field, §; = cos @; cos 0;X + sin ¢; cos ;9 — sin 6;Z,and ¢; =
—sin @;X 4+ cos @;J.

In our specific case, sin 8p = sin 6y = 1, which means
that we can rewrite Eq. (6) for the F and P layers as
follows:

bp IE/36p ht - dp
@p OE/dpp hrf‘@P
L= -La +yAll L ®
Or M IE/30r h - 9
OF AE/0pF h' . ¢p
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where

1 ap 1
() 0
[A] = '*“"(Ol ) ey | ©)

l+az \ =1 aF

A. Susceptibility tensor

The differential susceptibility tensor [x] = dM/dH char-
acterizes the dynamic magnetic response of a system to an
external field. In our system, [x ] gives us the relation between
the radio-frequency field h™™ and the oscillating part M of the
magnetization vectors,

My +Mp = [x]hT, (10)

where M; = M[6;0; + sin 0;¢;¢;] for each layer. In order
to derive an equivalent expression as a function of the
angular coordinates, we define = (6p,¢p,0F,pF) with =
Q) +<‘SSZ”‘, where Q" o ¢/" are small deviations around
the equilibrium positions $2y. The magnetization deviations
89" are driven by the radio-frequency field h™; thus, they
oscillate at the same frequency w. The projections hf =
h'" . €y are related to the magnetization oscillations s by a
pseudosusceptibility tensor [ X ], defined by

sQ" = [X]hy. (11)
Next, if we expand the energy terms around $2p as in
AE/IQET =Y, %SQ}Q Eq. (8) can be expressed as

—MLS[A][EWJ[thg +y[AIL = jox[XThE, (12)

. a2
where the matrix [ Egg] has elements Eqqy, = % For our
particular system, the nonzero values of [ Eqg] are as follows:

s[4mMs — H, + H cos(py — p) + HE cos® op + Hgp cos @p + Hg + H{ cos(pp — @F) — 2Hj cos*(pp — ¢r)],

13)

Eo,0, = Ms|

Egppp = Ms{H cos(py — ¢p) + HY cos(Rep) + Hgp cos pp + Hg + H cos(pp — ¢r) — 2H; cos[2(pp — ol
Ep.g, = Ms[4mMs — H, + H cos(pn — ¢F) + H{ cos’ or + H{ cos(pp — gr) — 2Hj cos*(pp — ¢F)],

Egppp = Ms{H cos(py — ¢r) + H cos2pr) + H{ cos(pp — @) — 2Hj; cos[2(pp — ¢r)l},

Eg,6, = Eg0, = —Ms[H{ + 2HJ cos(pp — ¢r)].

Egppr = Egpypp = —Mg{H{ cos(op — or) + 2Hj cos[2(pp — o)1},

where Hy and H, are the effective rotatable and perpendicular
anisotropy fields. For an arbitrary field h™ oscillating at a
frequency w, we can obtain the pseudosusceptibility tensor
from

-1
[X] = (j%[A]—1 ¥ [Eszsz]> . (14)

This equation can be solved efficiently by standard numerical
methods, resulting in the susceptibility tensor for each applied
external field H and excitation frequency w.

B. Resonant frequencies

Important features of our system are the resonant frequen-
cies. These can be calculated from

L[A][EQQ]SSZ = —jw, 9. (15)
Mg

This equation can be solved as an eigensystem by numerical
methods. The eigenvalues provide us with the resonant fre-
quencies w, and the eigenvector values of § €2 at that frequency.
Two positive values of w, are found for each external field
H. The computed values of 6 = (60p,5¢p,80F,8¢F) show
that the amplitude of the out-of-plane oscillations is negligible
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(80p =~ 660F =~ 0) as expected. The analysis of the in-plane
oscillations égp and S¢r of a given eigenvector allows us
to determine which layer oscillates more strongly at the
frequency of the corresponding eigenvalue. When [§¢p| >
|§¢r|, we associate the resulting eigenvalue with natural
resonant frequency wp of the pinned layer. In the opposite case
of (|6¢p| < |8¢F]), it is associated with natural frequency wpg
of the free layer. It should be noted that 52 values, obtained
by this method, are multiplied by an unknown amplitude and
phase and, thus, are not suitable for calculating the absorbed
power or to compare them at different fields H. However,
they provide relevant information on the relative phase and
amplitude of the oscillation of each layer over the dispersion
relation.

C. Absorbed power

In order to compare our calculations directly with the
experimental results, it is important to compute the average
power absorbed by our system at a given field and frequency.
We start by describing the instant power per unit volume
absorbed by our system,

P =—h". (Mg + Mp). (16)

It should be noted that the amplitude of P depends on three fac-
tors: (a) the relative orientation between h™ and the oscillating
vectors M;, (b) the temporal phase difference between M and
Mp, and (c) the relative orientation of the oscillating vectors,
which depends on the direction of the magnetization at the
equilibrium position for each layer. A graphical representation
of several possible cases is presented in Fig. 5.

The average absorbed power per unit volume over an
oscillatory cycle also depends on the temporal phase difference
between h™ and the magnetization response and can be
calculated by

(P) = —wMgIm [Z hgkmgg}
k
= —wMsIm |:Z hgkazhg,} . (17)
k,l
(a) (b) (c)
ol P, i p
) = | [T

@ © b
F
LN XN

FIG. 5. (Color online) Geometrical representation of the magne-
tization vectors (filled arrows) and oscillating vectors (empty arrows).
Magnetizations are shown in (a) and (b) parallel states, (c) antiparallel
state, and (d) and (e) noncollinear states. The oscillations are in phase
in (a), (c), and (d) and are out of phase in (b) and (e). For the shown
h'f, (a) and (e) should have greater absorbed power than (b), (c), or

(d).
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TABLE 1. Parameters used in simulations.

Parameters common to all samples

Ms (emu/cm®) 800 (Ref. 28)

y (MHz/Oe) 17.59 (Ref. 28)
Opinned 0.018
OlFree 0.010
HE (Oe) 5
HE (Oe) 15
Hpg (Oe) 9
Sample-dependent parameters
tcu 2.5 nm 1.0 nm 0.75 nm
Hgg (Oe) 70 83 81
H (Oe) 0 13 35
HJ (Oe) 0 1.0 4.5
H, (Oe) 0 600 600
(pH 40 20 50

V. DISCUSSION

Here, we separate the discussion on samples that exhibit
coupling between the ferromagnetic layers from that on the
sample with uncoupled layers. The coupling strengths were
obtained by comparing the calculated and experimental data.
All simulation parameters are collected in Table I.

We chose the damping constants so that they reproduce the
field widths observed at 3.7 GHz (see Fig. 3). No frequency
dependence of the damping parameters was considered in this

paper.

A. No coupling

When there is no coupling between the FM layers, our
system behaves as two independent systems. The hysteresis
loop can be treated as the sum of two square loops, one
(centered) corresponding to F and the other (field shifted by
Hgp) corresponding to P. The broadband response is also the
sum of the individual responses of each layer. In our model, the
matrix [ Eqg] is then formed by two independent matrix blocks
along the main diagonal. Thus, an independent solution can be
found for each block, corresponding to the F and P layers of
our samples. The solutions for the resonant frequencies, when
the damping is neglected, are the well-known Kittel relations,

a)rP=y\/471Ms—HL:I:H:I:HEB+HkP+HR

x \/j:H + Hgs + H + Hg,

ol = y\/47rMS —H + H+HkF\/j:H+ H, (18)

the £ sign being chosen according to the direction of the
respective magnetic layer, + for ¢ = 0 and — for ¢ = 7 corre-
sponding to the right and left resonant branches experimentally
observed. The resonant branches cross each other when the
layers are in the antiparallel state and the external field is

H = Hy = —3(Hes + H + Hg — H). 19)

At this point, the total absorbed power is the sum of the power
absorbed by each individual layer.
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FIG. 6. (Color online) Experimental and simulation details in the
unsaturated states for 7c, = 1.0 nm (left) and #¢, = 0.75 nm (right).
(a) and (b) Experimental broadband spectra, (c) and (d) simulated
magnetization curves (single branch), (e) and (f) simulated dispersion
relation, and (g) and (h) simulated broadband average absorbed
power. Filled arrows represent the magnetization vectors, and empty
arrows represent the oscillating vectors at the marked circles.

B. Coupled FM layers

Figure 6 summarizes both the experimental and the numer-
ical results on an expanded scale of H. In Figs. 6(a) and 6(b),
we notice two arc-shaped (lower and upper) branches over
the unsaturated regime. These features are reproduced by our
model, resulting in the dispersion relations and the simulated
broadband average absorbed power shown in panels (e)—(h).

Examining Figs. 6(c) and 6(d), we realize that the hys-
teresis response of the F layer is no longer centered. For
a positive bilinear interaction (J; > 0), the loops of the F
layer are field shifted toward the position of the P-layer loop.
If the coupling is not large, as for the sample with fc, =
1.0 nm, the square shape of the loops is maintained, indicating
that the magnetization flips between the parallel and the an-
tiparallel directions with respect to the external field [Fig. 6(c)].
For the sample with 7, = 0.75 nm, whose coupling intensity
is larger, the hysteresis loop is no longer square but, instead,
acquires a rounded shape due to the simultaneous rotation of
the FM layers [Fig. 6(d)]. These magnetization states along
the magnetization curve were represented in the former figure
as pairs of filled arrows.

When excited by an external rf field, the magnetization
of each layer does not oscillate independently. Instead, they

PHYSICAL REVIEW B 88, 104431 (2013)

oscillate coherently with correlated amplitude and phase
difference. In this case, we find that, for a resonant mode
with frequency f., the phase difference of the oscillations
A¢p = arg[Spr] — arg[6pp] depends on the natural frequency
of the companion layer: A natural frequency higher or lower
than f, gives rise to a phase difference of A¢ =~ 0° or A¢ ~
180°, respectively. This information is depicted in Figs. 6(e)
and 6(f) where the resonant modes, classified (see Sec. IV B)
in terms of the dominant contribution for the oscillation, are
represented by the red and blue lines associated with the P and
F layers, respectively. The pairs of empty arrows represent the
oscillating vectors at the indicated open black circles, drawn
using the scheme of Fig. 5.

Irrespective of the coupling intensity, there is an external
field value Hy where both layers oscillate at the same frequency
(see the green dashed line in Fig. 6). As long as the antiparallel
state holds, which is the case for fc, = 1.0 nm, this field
takes the same value as in the uncoupled case [see Eq. (19)].
In all other cases as for 7c, = 0.75 nm, the magnetization
angles must be taken into account to calculate Hp, giving a
complicated analytical expression. The resulting values are,
however, usually close to the former cases (see the dotted line
on the right panel of Fig. 6). At this field Hy, two resonant
frequencies, rather than one as in the uncoupled case, are
found. The gap between these frequencies is proportional to
the intensity of the given coupling. In this magnetization state,
both layers oscillate with the same amplitude (|6¢p| = |5¢F|)
at any given frequency. This may indicate that the dominant
interaction in this state is the coupling energy.

For ¢y = 1.0 nm, the lower arc in the dispersion relation
is formed by oscillating modes where A¢ = 180°, but due to
the antiparallel magnetization state, the resulting oscillating
vectors are in the same direction and are parallel to h't,
favoring the absorption in this arc. On the other hand, in the
upper arc, A¢ ~ 0°, and the oscillating vectors are in opposite
directions. The relative amplitudes of the oscillating vectors
vary gradually on the upper arc resonant modes. Therefore, our
simulations describe the observed experimental spectra well.
When the amplitude difference of the oscillating vectors is
appreciable, e.g., at the marked circles in Fig. 6(e), a weak but
clear absorption response is observed. This response gradually
vanishes as the applied field approaches Hy where both layers
oscillate with the same amplitude. The similar oscillating
amplitude transition occurs on the lower arc; in this case, it can
be observed as a gradual change in the linewidth of the arc,
starting from a broad linewidth at the left where the P-layer
oscillation dominates toward a sharper linewidth at the right
side of the spectrum where the F-layer oscillation dominates.

The sample with fc, = 0.75 nm shows an appreciable
absorption only in the upper inverted arc. Here, the oscillating
vectors [shown in Fig. 6(f) as calculated at Hy] are no longer
parallel to the rf field. Instead, their vector sum is nearly
parallel to the rf field for the upper branch and is nearly
perpendicular to the rf field for the lower arc.

We are now able to understand the behavior of the peak
amplitudes shown in Figs. 3(b) and 3(c). When the calculated
oscillating vectors shown on top of each peak are in opposite
directions, the peak amplitude decreases. The smaller the
oscillating amplitude difference, the larger the decrease in
amplitude.
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VI. CONCLUSIONS

To summarize, we have reported the broadband res-

onance spectra in coupled and uncoupled magnetic
layers in a single spin-valve configuration, namely,
NiFe (20 nm)/Cu(¢c,)/NiFe (20 nm)/IrMn (15 nm), where

tcy = 0.75, 1.0, or 2.5 nm controls the coupling intensity. In
coupled cases, we observed that, at low field, the experimental
broadband spectra were complex, whereas, at high field, the
spectra showed the typical behavior of coupled saturated
samples. The coupling between the ferromagnetic layers was
observed to modify the relative amplitudes of the absorption
peaks.

We were able to reproduce the broadband experimental
results remarkably well, both in saturated and in unsaturated
states, by employing a numerical method based on the
macrospin approximation. Using our method, we obtained
the dispersion relations [Eq. (15)] and the broadband average
absorbed power [Eq. (17)]. The method provides further
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insight into the magnetization dynamics in coupled systems,
predicting frequency gaps and complex dispersion relations
in unsaturated magnetic states. Such states, despite their
importance in applications, are usually neglected by the
traditional descriptions of both regular FMR and broadband
FMR experiments.

As a final comment, we would like to point out that our
matrix mathematical approach easily enables the description
of magnetic systems with an arbitrary number of interacting
macrospins. It also permits an easy and fast software imple-
mentation of the method by using well-established numerical
subroutines.”’
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