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Response to a twist in systems with Zp symmetry: The two-dimensional p-state clock model
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We study response to a twist in the two-dimensional p-state clock model, which has the discrete Zp symmetry.
The response is measured in terms of helicity modulus, which is usually defined with respect to an infinitesimal
twist. However, we demonstrate that such a definition is inappropriate for the clock model. The helicity modulus
must be defined with respect to a finite, quantized twist which matches the discrete Zp symmetry of the model.
Numerical study of the appropriately defined helicity modulus resolves controversy over the clock model, showing
the existence of two Berezinskii-Kosterlitz-Thouless transitions for p > 4.
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I. INTRODUCTION

Symmetries govern various phases of matter and transitions
among them. There are two distinct classes of symmetries:
continuous and discrete, with quite different consequences.
For example, gapless Nambu-Goldstone modes are required in
a spontaneous symmetry breaking phase, only if the symmetry
is continuous. The cyclic group Zp symmetry appears in many
important problems of current interest, including the melting
transition in the hard-disk model,1–3 antiferromagnetic Ising
model/Ising-spin Kondo model on a triangular latice,4–7 and
antiferromagnets in the vicinity of the deconfined quantum-
critical point.8 While the Zp symmetry is discrete for any
value of p, it approaches to the continuous U(1) symmetry in
the limit of p → ∞. It is an interesting problem if a statistical
system with the discrete Zp symmetry can effectively possess
a continuous U(1) symmetry for a large enough p.

Such an emergence of the U(1) symmetry due to statistical
fluctuations is indeed predicted in the framework of the
renormalization group (RG). The emergent U(1) symmetry
is expected, in two dimensions, for sufficiently large p in a
finite region of the phase diagram. Namely, the now-standard
RG analysis9 shows that systems with the Zp symmetry have,
for p > 4, a Berezinskii-Kosterlitz-Thouless (BKT) phase10,11

between two BKT transitions. The BKT transition at higher
temperature is similar to that in the XY model with the U(1)
symmetry. It can be said that the U(1) symmetry emerges in
the models with only the Zp symmetry.

However, we may ask if the discrete nature of the Zp

symmetry of the microscopic model is actually negligible at
the BKT transition with the emergent U(1) symmetry. In this
paper, we address this question by analyzing the response
of Zp symmetric systems to a twist. We demonstrate that,
in measuring the response of the system to the twist, the
discrete symmetry at the microscopic level has to be respected
despite the emergent continuous symmetry in the macroscopic
scale. Namely, the helicity modulus, which is usually defined
with respect to an infinitesimal twist, must be rather defined
with respect to a finite, quantized twist which matches the
discrete Zp symmetry of the model. This crucial fact has
been apparently overlooked, resulting in the popular use of
the inappropriately defined helicity modulus for models with
the Zp symmetry.12,13 We elucidate these points, by analyz-

ing a concrete example, the two-dimensional p-state clock
model.

This paper is organized as follows: In the next section,
we introduce the two-dimensional p-state clock model with
respect to a twist and briefly review preceding studies of the
model. Section III is devoted to an analysis of the helicity
modulus by high-temperature expansion. In Sec. IV, we
show numerical studies of the appropriately defined helicity
modulus. In the last section, we give conclusions which support
the existence of two BKT transitions for p > 4.

II. MODEL

We consider the p-state clock model on the two-
dimensional L × L square lattice with periodic boundary
conditions:

Hp = −
∑
〈�r,�r ′〉

cos(θ �r − θ �r ′ − A�r,�r ′ ), (1)

where �r = (r1,r2) (r1,2 ∈ Z,0 � r1,2 < L), 〈�r,�r ′〉 runs over all
the nearest neighbor sites on the square lattice, and 0 � θ �r <

2π takes integral multiples of 2π/p. We have set the coupling
constant to unity. The gauge field A�r,�r ′ is usually set to zero
but is introduced to impose a twist, as we will discuss later.

According to the seminal RG analysis,9 for p � 4, there is a
single critical point separating disordered and ordered phases,
while the BKT phase appears for p > 4 in a finite range of
temperature between the disordered and ordered phases. This
has been also supported by later examinations.14–16 In order to
verify the prediction numerically, one needs a good physical
quantity measurable in numerical simulations. In the systems
with the U(1) symmetry, although the BKT phase exhibits
no spontaneous symmetry breaking, it is characterized by the
response to a twist. The helicity modulus,17 which quantifies
such a response, is finite in the BKT phase while it vanishes in
the high-temperature (disordered) phase. At the BKT transition
separating these two phases, the helicity modulus exhibits
a universal jump,18 which was confirmed numerically and
experimentally.19,20

The standard RG picture on the Zp symmetric models
seems to suggest, for p > 4, the similar behavior of the helicity
modulus at the BKT transition between the high-temperature
disordered phase and the BKT phase. However, several recent
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numerical studies12,13,21,22 do not conform to this expectation.
While details differ in each work, they suggest, in particular,
the absence of the BKT transition for p = 5. The most
important evidence against the BKT transition picture is the
lack of the universal jump of the helicity modulus at the
transition. It would be a major problem for statistical physics if
the standard RG picture turns out to be incorrect. On the other
hand, Monte Carlo simulations are very effective for the clock
model and the numerical results also must be taken seriously.

III. DEFINITION OF HELICITY MODULUS FOR
SYSTEMS WITH DISCRETE SYMMETRY

The helicity modulus is often defined with respect to
an infinitesimal global twist. We first introduce the gauge
field A�r+x̂,�r = �̃/L for all the sites �r , where x̂ = (1,0) is
the unit vector in the x direction, as a global twist to the
Hamiltonian (1). Then we define the helicity modulus by the
second derivative,

ϒ̃p ≡ ∂2Fp(�̃)

∂�̃2

∣∣∣∣
�̃=0

, (2)

where Fp(�̃) is the free energy in the presence of the twist �̃

introduced above. Being defined in terms of the derivative, it
probes the response to an infinitesimal twist spread over the
entire system.

This definition of the helicity modulus is convenient for
numerical calculations, since it can be written as an expectation
value of a local physical quantity,

ϒ̃p = 1

L2

〈 ∑
�r

cos φ �r+x̂,�r

〉
− β

L2

〈( ∑
�r

sin φ �r+x̂,�r

)2〉
, (3)

where β = 1/T is the inverse temperature (we normalize the
Boltzmann constant to unity), and φ �r+x̂,�r ≡ θ �r+x̂ − θ �r .

It was indeed this definition of the helicity modulus that
was used in Refs. 12 and 13 to study the p-state clock model.
The most striking aspect of their results for p = 5 is that the
helicity modulus thus obtained does not show the universal
jump which is expected for a BKT transition. In fact, the
helicity modulus is nonvanishing even in the high-temperature
disordered phase, in stark contrast to the expected behavior at
a BKT transition.

This seems to contradict with the standard RG picture with
two BKT transitions.9 In the standard picture, the helicity
modulus should vanish in the disordered phase, while it
diverges proportionally to the system size L in the ordered
phase owing to the extra free energy of the induced domain
wall. However, we find that ϒ̃p remaining nonzero in the high-
temperature phase is rather a consequence of the inappropriate
definition of the helicity modulus. Indeed, for any finite p,
we shall demonstrate that the helicity modulus as defined in
Eq. (2) is nonvanishing at an arbitrary high temperature, where
the system is certainly disordered, even in the thermodynamic
limit.

To see this, let us consider the high-temperature (char-
acter) expansion of Eq. (2), using the identity eβ cos φ =∑∞

k=−∞ Ik(β)eikφ for the modified Bessel function Ik . For the

FIG. 1. (Color online) (a) A lowest order diagram for the XY
model. This diagram has no contribution to ϒ̃p . (b) A lowest order
diagram which has a nonzero contribution to ϒ̃p for the p-state clock
model.

XY model with the U(1) symmetry, we find

ϒ̃ = 1

βL2

∑
{k �r,�r′ ∈ Z}∑

�r′ k �r,�r′ = 0

(∑
�r

k �r,�r+x̂

)2 ∏
〈�r,�r ′〉

Ik �r,�r′ (β)

I0(β)
, (4)

where k �r,�r ′ is an integer defined for each link between the
nearest neighbor pairs, and k �r ′,�r ≡ −k �r,�r ′ . The constraint∑

�r ′ k �r,�r ′ = 0 means that the lattice divergence vanishes at
every site. Thus, each term in the high-temperature expansion
corresponds to a configuration of an integer-valued “flux field”
{k �r,�r ′ } forming closed loops. Since Ik(β) ∼ β |k|, each term
corresponds to the order

∑
〈�r,�r ′〉 |k �r,�r ′ | of the high-temperature

expansion. In Fig. 1(a), we show the lowest-order nontrivial
diagram in the high-temperature expansion for the XY model.
Unless there is a flux loop winding the entire system, which
can occur only above the order L, we have

∑
�r k �r,�r+x̂ = 0.

Thus, for the XY model in the thermodynamic limit L → ∞,
the helicity modulus defined in Eq. (2) vanishes at any finite
order in the high-temperature expansion (4).

Now let us consider the p-state clock model. The only
difference from the XY model is due to the fact that∑

θ=0,2π/p,...,2π(p−1)/p einθ = p, if n is an integral multiple of
p. Thus, the high-temperature expansion of Eq. (2) for the
p-state clock model is exactly the same as Eq. (4), except
for the constraint at each site now replaced by

∑
�r ′ k �r,�r ′ ≡ 0

mod p. This allows various flux configurations which were
not permitted in the XY model. The lowest order in the
high-temperature expansion among such configurations is
given by k �R, �R+x̂ = p for a certain site �R and all other fluxes
k �r,�r ′ = 0. In Fig. 1(b), we show the corresponding diagram
for the p-state clock model. This term leads to a nonvanishing
contribution to ϒ̃p as

ϒ̃p ∼ p

(p − 1)!

(
β

2

)p−1

, (5)

in the lowest order of β. This proves that the helicity modulus
ϒ̃p as defined in Eq. (2) does not vanish at an arbitrary high
temperature, for any finite p, even in the thermodynamic limit.
This implies that Eq. (2) does not sharply distinguish the
disordered and other phases. We note that, while this is the
case actually for an arbitrary large finite p, the contribution
becomes rapidly smaller for larger p. This is the reason why
the problem in the high-temperature phase has been noticed
numerically only for smaller p, in particular p = 5.
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FIG. 2. (Color online) Twist dependence of the helicity modulus
ϒp for the p-state clock model in disordered phase. ϒp is zero if the
twist angle � is an integral multiple of 2π/p. The finiteness of ϒ̃p

with respect to an infinitesimal twist reflects the curvature at � = 0
of the free energy difference, Fp(�) − Fp(0), in Eq. (6).

Thus we need a different quantity to describe the phase
transition. Intuitively, the problem with the infinitesimal twist
we have used could be understood as the introduction of a
mismatch between neighboring spins, whose directions are
quantized in the p-state clock model. Therefore, let us define
the helicity modulus as a response to the finite twist A�r+x̂,�r =
� localized on the horizontal links localized on a single column
�r ∈ C ≡ {(L − 1,r2)|0 � r2 < L}:

ϒp ≡ 2(Fp(�) − Fp(0))
�2

. (6)

Matching with the Zp symmetry of the model would require
� to be an integral multiple of 2π/p. We note that, in the
original introduction of the helicity modulus,17 the twist was
not restricted to be infinitesimal.

In the high-temperature expansion, the difference be-
tween Zp(�) and Zp(0) comes only from the factor
exp [i�

∑
�r∈C k �r,�r+x̂]. Thus, if � is an integral multiple of

2π/p, the effect of the twist in the p-state clock model again
disappears, even under the relaxed constraint

∑
�r ′ k �r,�r ′ ≡ 0

mod p, at any finite order of the high-temperature expansion in
the thermodynamic limit. ϒ(2π/p) indeed vanishes exactly in
the high-temperature disordered phase, as physically required
for the helicity modulus. The vanishing of the helicity modulus
in the high-temperature expansion was pointed out in a
related context in Ref. 23. To illustrate the point, we show
the twist dependence of the helicity modulus ϒp(�) in the
disordered phase (in the thermodynamic limit) schematically
in Fig. 2.ϒp(�) is zero only when the twist angle � is an
integral multiple of 2π/p. The popularly used helicity modulus
ϒ̃p defined with respect to an infinitesimal twist does not
vanish even in the disordered phase, reflecting the curvature
at � = 0 of the free energy difference, Fp(�) − Fp(0), in
Eq. (6). In contrast to the clock model, in the XY model with
the continuous U(1) symmetry, the helicity modulus ϒp(�)
vanishes for an arbitrary twist.

This is an explicit example in which the difference between
the discrete and the continuous symmetries at the microscopic
level appears in the macroscopic physical quantity, even when
the systems belong to the same phase. Again, we emphasize
that, for the response to a twist to distinguish different phases,
it should vanish in the disordered phase. This means that we
should apply a finite twist which matches the discrete Zp

symmetry of the model, in order to distinguish phases properly.

IV. NUMERICAL CALCULATIONS OF THE FREE
ENERGY DIFFERENCE DUE TO A TWIST

We have concluded that, in order to distinguish different
phases of the clock model in terms of its response to a twist,
the twist angle must be an integral multiple of 2π/p. The
change in the free energy due to a twist of a finite angle cannot
be simply reduced to an expectation value of a local physical
quantity, unlike in the case of the infinitesimal twist. Thus
it is more difficult to calculate the response in Monte Carlo
simulations. Nevertheless, it is possible to do so, as discussed
in the following.

We need to obtain the ratio of the partition functions,
Zp(�)/Zp(0), which can be calculated by boundary-flip
Monte Carlo method.24,25 This method treats not only spins
but also boundary conditions as variables. This is realized
by introduction of a boundary condition variable σ = {0,1}
with a twist A�r+x̂,�r = σ� localized on the horizontal links
on a single column �r ∈ C ≡ {(L − 1,r2)|0 � r2 < L} to the
Hamiltonian (1). σ = 0 (1) corresponds to a periodic (twisted)
boundary condition, respectively. The ratio of partition func-
tions Zp(�)/Zp(0) can be estimated from the ratio of
expectation values of each boundary condition 〈δσ,1〉/〈δσ,0〉.

We update both spins and the boundary condition variable
σ , by the Metropolis algorithm. To overcome the critical
slowing down of spin variables, we use the Wolff cluster
method26 at low temperatures. In contrast, it is difficult to
update the boundary condition at low temperatures because the
free energy difference between the periodic and twisted bound-
ary conditions is rather large in the BKT and ordered phase. To
overcome this difficulty, we add another term, gσ , in Hamilto-
nian (1) to balance the free energy difference between the two
boundary conditions. The parameter g is also updated during
the simulation adaptively to achieve the balance, in order to
minimize the rejection rate. In our simulations, the number of
Monte Carlo steps are O(107) up to O(109) after equilibration.

Here we focus on the case with p > 4, where the standard
RG picture predicts two BKT transitions while some of the
recent numerical studies found apparent contradictions with
it. We emphasize that, while those recent papers do agree with
the RG picture and identify BKT transitions for sufficiently
large p, the helicity modulus as defined in Eq. (2) ϒ̃p they
studied is nonzero at an arbitrary high temperature. It is
just that Eq. (2) is smaller for higher values of p and more
difficult to be detected numerically. We still need to verify
if the alternative quantity ϒp, defined with respect to a finite
twist in Eq. (6), indeed confirms the BKT transitions. We
show the temperature dependence of ϒp for p = 5 and 6, in
Figs. 3(a) and 3(b). In the low-temperature regime, colored
blue, ϒp increases proportionally to the system size L, while
it decreases towards zero in the high-temperature regime,
colored beige. These are precisely the expected behaviors
in the low-temperature ordered (spontaneously symmetry
breaking) and the high-temperature disordered phases. These
behaviors of ϒp are indeed what are expected for the helicity
modulus and successfully distinguish the three phases. In
contrast, the helicity modulus ϒ̃p in Figs. 3(c) and 3(d), defined
as Eq. (2) with respect to the infinitesimal twist, does not
exhibit physically expected behaviors for a helicity modulus.
While the disagreement of Eq. (2) with the standard RG picture
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FIG. 3. (Color online) (a)–(d) Temperature dependence of ϒp and ϒ̃p for p = 5 and p = 6. In both cases, ϒ̃p with respect to an infinitesimal
twist does not reflect each phase appropriately. In comparison, for ϒp with respect to the finite twist 2π/p, we can find three regions: blue,
purple, and beige regions correspond to ordered, BKT, and disordered phase, respectively. In addition, as L is increased, ϒp approaches the
universal value on the higher and lower transition points, with the universal relations (7) and (8) shown, respectively, by yellow-green and
aqua lines. Colored lines are for a guide to the eyes. (e) and (f) Finite-size scaling of ϒ5 near T

high
BKT and T low

BKT. All the data points collapse into
universal curves in both cases. The estimated scaling parameters are (TBKT,L0) = (0.944,0.8),(0.908,1.9) for (e) and (f), respectively.

in the high-temperature phase, especially for p = 5, was
discussed previously, we also emphasize that Eq. (2) does not
detect the low-temperature ordered phase. The “finite twist”
helicity modulus ϒp we have introduced does distinguish the
three phases, as is physically expected.

Moreover, in the intermediate temperature regime (purple),
ϒp tends to be independent of L, which is indeed the expected
behavior in the BKT phase.17 This is rather clear for p = 6; the
approximate transition temperatures estimated from Fig. 3(b)
for p = 6, T

high
BKT ∼ 0.90 and T low

BKT ∼ 0.70, are in agreement
with the estimates T

high
BKT ∼ 0.90008(6) and T low

BKT ∼ 0.7014(11)
obtained by a different method.27 On the other hand, the
existence of the BKT phase for p = 5 is not very clear in
Fig. 3(a) because of the finite-size effects.

The well-known consequence of the BKT transition picture
is the “universal jump” of the helicity modulus. In terms of
RG, it is a consequence of the fact that the BKT transition
occurs at a definite Gaussian coupling constant (also known as
“Luttinger parameter” or “compactification radius”) where the
leading perturbation becomes marginal. A similar argument
also can be applied to the transition at the low-temperature
side of the BKT phase.9 For p > 4, we obtain the universal
relations at the two transitions as

lim
T →T

high
BKT−0

ϒp = 2

π
T

high
BKT, (7)

lim
T →T low

BKT+0
ϒp = p2

8π
T low

BKT. (8)

In Figs. 3(a) and 3(b), we compare the temperature dependence
of the “finite twist” helicity modulus ϒp with the universal
relations (7) and (8) shown, respectively, by yellow-green and
aqua lines. We can find, as L is increased, ϒp approaches
the universal values on the higher and lower transition points.
They do not, however, completely converge owing to finite-size
effects.

Therefore, we have also performed a finite-size scaling
analysis based on the RG theory at each transition. In the
vicinity of the transition at higher temperature, T

high
BKT, the Zp

anisotropy yp is always irrelevant, so we can approximately
neglect yp to obtain the standard BKT RG equations for the
vortex fugacity y and the Gaussian coupling.9,14 The scaling
form of the helicity modulus was derived28 from the RG
equations as

x(T ,L) = l−1f (l2δ), (9)

where x = πβϒp − 2, δ = β − β
high
BKT and l = ln(L/L0). Here,

β
high
BKT = 1/T

high
BKT is the inverse transition temperature, and L0 is

a scaling parameter. They are the fitting parameters to the data.
On the other hand, near the transition at the lower temperature,
T low

BKT, the vortex fugacity y is always irrelevant and thus may
be neglected. The RG equations involving yp, in the vicinity of
the lower-temperature transition, T low

BKT, are similar to that for
the higher-temperature transition at T

high
BKT. As a consequence,

for the lower-temperature transition at T low
BKT, a similar analysis

in the vicinity of the lower-temperature transition T low
BKT leads
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FIG. 4. (Color online) (a) and (b) Finite-size scaling of ϒ6 near
T

high
BKT and T low

BKT. All the data points collapse into universal curves
in both cases. The estimated scaling parameters are (TBKT,L0) =
(0.904,0.5),(0.700,0.9) for (a) and (b), respectively.

to the scaling equation, x ′(T ,L) = l−1f ′(l2δ′), where x ′ =
p2 − 8πβϒp and δ′ = β low

BKT − β, respectively, where β low
BKT =

1/T low
BKT, and f ′ is a different scaling function from f . The

present scaling analysis is more sophisticated and reliable than
the direct measurement of the universal jump of the helicity
modulus, which is often used in literature.

In Figs. 3(e) and 3(f), we show the finite-size scaling of ϒ5

near each of the transitions, at T
high

BKT and T low
BKT. We can find all

the data points collapse into universal functions if we set two
scaling parameters as (TBKT,L0) = (0.944,0.8),(0.908,1.9),
respectively. These are in good agreement with T

high
BKT =

0.95147(9) and T low
BKT = 0.90514(9) estimated earlier by a

different numerical method.29

We have also confirmed, for p = 6, that ϒ6 obeys the
same BKT finite-size scaling at each transition point. In
Figs. 4(a) and 4(b), we show the finite-size scaling of ϒ6

near each of the transitions, at T
high

BKT and T low
BKT. The estimated

transition temperatures T
high

BKT = 0.904(5) and T low
BKT = 0.700(4)

from the finite-size scaling are in good agreement with T
high

BKT =
0.90008(6) and T low

BKT = 0.7014(11) determined earlier by a
different numerical method.27

V. CONCLUSIONS AND DISCUSSIONS

All our observations support, for p > 4, the existence of the
BKT phase separated by two BKT transitions from the high-
temperature disordered phase and from the low-temperature
ordered phase, as predicted by RG.9 Much of the apparent
contradiction with recent numerical results was rather due
to the “helicity modulus” adopted in the numerical studies,
which was defined with respect to an infinitesimal twist. Such
a quantity is inappropriate for the p-state clock model with the
discrete Zp symmetry.

Thus we have established that, for this model, the helicity
modulus instead has to be defined with respect to a finite
quantized twist which matches the Zp symmetry of the system.
Namely, in measuring the response to a twist, the discrete
nature of the Zp symmetry at the microscopic level has to be
respected, even when the continuous U(1) symmetry emerges.
Although we have restricted the analysis to the simple p-
state clock model in the present paper, our discussion can be
readily applied to more general models with Zp symmetry,
including the XY model with a perturbation which breaks the
U(1) symmetry down to Zp. The present result would also
have implications in a wider range of problems with discrete
symmetries or discretized degrees of freedom.

Note added. After the submission of the present paper (see
also30), Baek, Mäkelä, Minnhagen, and Kim31 analyzed the p-
state clock model using the helicity modulus with respect to a
finite twist, as introduced in the present paper. Their conclusion
for p = 5 is, however, different from ours.
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