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Spin-torque switching efficiency in CoFeB-MgO based tunnel junctions
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It is convenient to define the spin-torque switching efficiency in nanostructured magnetic tunnel junctions
as the ratio between the free-layers thermal activation barrier height Eb and the threshold switching current
Ic0. Recent device exploration has led to occasional observations of spin-torque induced magnetic switching
efficiency in magnetic tunnel junctions that exceeds the macrospin limit by a factor of 2–10. In this paper we
examine the possible origins for such enhancement, and materials properties that may allow the full realization
of such enhancements.
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I. INTRODUCTION

Spin-transfer torque switched magnetic tunnel junction is a
basic building block for a new class of solid-state technologies
as represented by the so-called spin-transfer-torque magnetic
random access memory, or STT-MRAM.1 For the approach to
be competitive commercially, it is important to scale the device
structures below 30 nm while maintaining a strong magnetic
anisotropy energy for data retention. At the same time, one
needs to keep the switching current minimized for reducing
the load on the bit-selection transistor and for power savings.
The magnetic anisotropy energy Eb needs to stay above
60 or so kBT where T is the ambient temperature. The spin-
torque switching involves a threshold current Ic0 (or voltage
Vc0 for a tunnel junction) whose value is, in an ideal macrospin
limit, proportional to Eb. A macrospin limit is equivalent to
setting the exchange energy Aex → +∞. For an ideal tunnel
junction in a pure uniaxial anisotropy potential, the threshold
voltage is symmetric in magnitude for parallel-to-antiparallel
(P-AP) and antiparallel-to-parallel (AP-P) switching.2,3 At low
tunnel junction bias when the conductances are nearly bias
independent, this voltage is approximately2,3
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where m is the total magnetic moment of the macrospin,
Hk is the uniaxial anisotropy field of the macrospin, whose
axis is here assumed to be in collinear alignment with the
spin current’s polarization, and η = √

mr (mr + 2)/2(mr + 1)
is the spin-polarization factor related to the tunnel magne-
toresistance (TMR) value mr = (Rap − Rp)/Rp.4 Obviously,
Ic0 ≈ GpVc0, and the threshold current density
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where Ms is the free-layer film’s saturation magnetization, and
d is its thickness. Note the quantity 1

2MsdHk → �eff can be
viewed sometimes as an areal density of anisotropy energy,
especially in the ultrathin film limit discussed below.

The spin-torque switching efficiency κ is empirically
defined as the ratio κ = Eb/Ic0. In the macrospin limit,
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for the P-AP switching.3

The validity of the macrospin assumption depends on a
comparison of length scales. A finite exchange energy Aex of
the ferromagnet gives rise to several length scales, originating
from the competition between an exchange energy penalty due
to spatially inhomogeneous magnetization orientation and the
change of various other energy terms. A basic expression of
the total energy density at a given point r inside a ferromagnet
with order parameter M = Msnm (r) is

Kv (nm,r) = Kani − Msnm · Heff + Aex |∇nm|2, (4)

where Ms is the ferromagnet’s saturation magnetization and
is assumed to be uniform throughout the material, nm (r)
is the local magnetization direction, assumed to be position
(r) dependent. Kani is the total materials-related anisotropy
which gives rise to a local nm dependent energy, and Heff

is the total effective magnetic field acting on the volume
element at location r, including any applied field Happl and
dipolar field Hdipole from the ferromagnetic moment elsewhere.
Note that Kani and Heff can both be position r dependent
by themselves in addition to the position dependence in nm.
The spatial derivative in the exchange energy density term is5

|∇nm|2 = (∇nmx)2 + (∇nmy)2 + (∇nmz)2 in a Cartisian coor-
dinates system {ex,ey,ez} where ∇ = ∂xex + ∂yey + ∂zez, and
nm = nmxex + nmyey + nmzez. Within the effective magnetic
field Heff in the context of a perpendicularly magnetized thin
film nanomagnet, an important contributor is the effective
demagnetization field from nm, which in the thin-film limit
where film thickness d is small compared to the rest of the
structures is often reduced to a simple −4πMs in the direction
normal to the film thickness when nm is perpendicular,
giving rise to a so-called demagnetization energy 2πM2

s to
the −Msnm · Heff term in Eq. (4). The competition between
exchange energy and this demagnetization gives rise to a
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dipolar exchange length for such thin films that is

λd =
√

Aex/2πM2
s . (5)

In thin films with perpendicular magnetic anisotropy
(PMA), Kani in Eq. (4) contains a driving anisotropy term
that is perpendicular to film surface, and is to the lowest order
uniaxial in symmetry, meaning the total energy varies as sin2 θ ,
where θ is the angle between nm and the film normal. This may
originate from either the bulk or the interfaces of the thin film.
One can in either case write an effective uniaxial volume PMA
energy density as K⊥. Then it is convenient to write the total
perpendicular anisotropy for such a thin film as Kpma in the
form of {

Kpma = K⊥ − 2πM2
s = 1

2MsHk,

Q = K⊥
/(

2πM2
s

) = Hk

4πMs
+ 1,

(6)

where one has defined the thin film’s net measurable hard-
axis anisotropy field as Hk , and the “quality factor” Q that
describes the strength of PMA in relation to demagnetization.
Obviously, Q = 1 describes the strength of K⊥ = 2πM2

s

which is necessary to bring the moment out of the plane.
The larger Q is, the stronger the total PMA density. The
competition of the exchange energy with this total PMA
strength leads to a PMA exchange length

λpma =
√

Aex

Kpma

=
√

2Aex

MsHk

. (7)

It follows that λpma = λd/
√

Q − 1. An ultrathin-film limit
is defined as the film thickness d 	 min(λpma,λd ). For a
typical CoFeB-based thin-film MTJ considered here, one has
d ≈ 2 nm, Ms ≈ 900 emu/cm3, Hk ≈ 4.5 kOe, with Aex

within a range 2–6 × 10−6 erg/cm,6 thus one has Q ∼ 1.4,
λd ≈ 6–10 nm, and λPMA ≈ 10–17 nm. So d 	 λd is satisfied,
and one is within the ultrathin-film limit where the magnetic
moment can normally be considered position independent
along the direction of the film norm.

In more detailed analysis, the locational nature of K⊥
could also be significant, especially when K⊥ is dominated by
interface-originated anisotropy energies. In such a situation,
an interface anisotropy energy density �s would introduce
another nontrivial length scale:

λspma = Aex

�s

(8)

whose significance will become more apparent in later
discussions.

When device sizes are comparable or larger than these
length scales, the free-layer typically exhibits nonmacrospin
behavior, which also causes a coherent thermal fluctuation
length that is shorter than the device size, resulting in a reduced
thermal activation energy. For such relatively large devices, the
thermal activation energy is limited by shorter length-scale
fluctuations mostly related to λpma ,6–9 that could nucleate
magnetic reversal events, and is not simply proportional to
the lateral area of the device. As discussed above, λpma for
our CoFeB-based free layer is of the order of 10–17 nm—a
small lateral size only became lithographically accessible
fairly recently.

For the smaller devices, the more fundamental macrospin-
dictated switching efficiency Eq. (3) is being approached.10,11

Since Eq. (3) contains only two relatively well-known materi-
als and device parameters (α ∼ 0.005–0.01 for most free layer
materials in use today, and mr ≈ 0.5–1.0 for a high-MR, low-
RA MTJ), the macrospin-limit efficiency typically evaluates to
κ ≈ 1 kBT /μA where T is the ambient temperature of 300 K.

For devices with sizes below 30 nm (conductances below
about 0.1 1/k
), a range of efficiencies between 1 and
10 kBT /μA has been seen. The lower end of this range, about
1 kBT /μA, agrees well with the macrospin-based estimate
Eq. (3). The high end of the efficiencies are about three times
higher than the macrospin model would comfortably expect.
Similarly high efficiency values have also been reported
in recent literature on individual junction devices by other
researchers.12,13

This paper will attempt to analyze the dependence of
efficiency κ on MTJ size and other properties, and propose
a few plausible mechanisms that may account for the larger
than macrospin values for κ .

II. EXPERIMENT

Tunnel junctions with MgO barrier and CoFeB as free
layer with perpendicular magnetic anisotropy were produced
in ways similar to what has been reported earlier.11 These
include the sputter deposition, at ambient temperature, a
CoFeB-based MTJ materials stack. The wafers are then
postdeposition annealed in vacuum at 300 ◦C for 1 h prior
to being lithographically patterned down to sizes ranging from
about 15 nm to >100 nm in diameter for circular-shaped
devices in this series of samples. A reactive ion etch is used
for the main junction etching step, followed by a low-energy
(<200 eV), grazing incidence Ar ion-beam etch for trimming
the junction sides to the desired dimensions. The finished
structures are characterized for their spin-torque switching
properties using methods described in Ref. 8.

These junction devices are used to deduce a set of junction-
size dependent quantities including thermal activation energy
Eb, spin-torque switching threshold voltage Vc0, spin-torque
switching threshold current Ic0, as evaluated from Vc0/Rp, and
the switching efficiency Eb/Ic0. A detailed description of these
measurements in our experiments can be found in Refs. 7 and 8.

Figure 1 shows a set of switching efficiency vs parallel-state
junction conductance Gp and vs junction TMR plots. Data
include devices from multiple wafers of the general materials
parameters as described above, with the dominant variation
of Gp originating from junction size differences, although a
junction RA variation of about 5–20 
μm2 is also part of the
variables convoluted in this summary. For larger devices where
Eb is relatively constant against size variations (consistent with
earlier findings7,8), their efficiency κ is inversely proportional
to the junction area, reflecting a relatively size-independent Eb ,
and a junction Ic0 scaling with junction area. In the small Gp

region below 0.1 (k
)−1, corresponding roughly to junctions
of about 30 nm or so in size and below, the data in Fig. 1(a)
suggest a change of slope, caused by a decrease of Eb for
smaller junction size. The exact mapping of junction size at the
small-size end from Gp however may be unreliable, as there
are variations of device-level junction resistance-area product
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FIG. 1. An overview plot of the measured efficiencies of spin-torque switchable MTJs of different sizes. (a) The dependence of observed
efficiency κ vs junction size. Here the parallel-state conductance Gp is used to represent the junction area, with an averaged junction
resistance-area product ranging between 5 and 20 
μm2. Junctions are all of circular shape. (b) The same set of devices showing the efficiency
vs junction’s MR. The two dashed lines are comparisons to Eq. (3) with α = 0.005 (upper) and 0.015 (lower).

that are process and junction size dependent. Regardless, the
switching efficiency is seen to increase with decreasing device
size. This is expected as the device size is decreased towards
the magnetic exchange lengths. Data in Fig. 1 suggest that
for the majority of devices the macrospin-level efficiency of
κ > 1 kBT /μA is not reached. Most of that is due to the
device size being larger than the exchange length. However,
for those very small devices at the lowest conductance end in
Fig. 1(a), and on the top boundary of Fig. 1(b), they have κ

values exceeding 3 kBT /μA, some even with apparent values
exceeding 5 kBT /μA. For such small devices it is important
to unambiguously establish the physical size of the same
junction the transport measurements were performed on, so
as to ascertain the relationship between Eb, κ , and device size.

Figure 2 gives a subset of devices shown in Fig. 1.
Here the transport-measured properties are directly plotted
against their individual physical device sizes as determined
from cross-sectional transmission-electron microscopy (TEM)
images obtained post-transport measurement. Figures 2(a) and
2(b) indicate the thermal barrier Eb decreases with decreasing
device size when devices are smaller than about 40–50 nm in
diameter. For such small devices, Fig. 2(b) shows that Eb scales
almost linearly with device diameter, rather than with device
area—as a comparison with Fig. 2(a) would demonstrate. On
the other hand, for switching current threshold Ic0, Fig. 2(c)
shows a scaling over this entire junction size range that is
essentially linear with device area, with a near-zero intercept.
This particular set of experimental observations, namely with
Eb ∝ a and Ic0 ∝ a2 (where a is the device diameter), leads to
an efficiency κ ∝ 1/a, and is the apparent reason the observed
efficiency keeps increasing with decreasing junction size a, as
shown in Fig. 2(d). At the small device sizes around 17 nm, one
observes an efficiency around 3.5 kBT /μA which stretches the
best estimate one could expect from a macrospin-based model
according to Eq. (3).

In sections following, one examines these two size-
dependent scaling behaviors in more detail—that of Eb vs a,
and Ic0 vs a2. This examination leads one to conclude that the
Eb ∝ a scaling results mostly from an edge-demagnetization
field correction, whereas the Ic0 ∝ a2 scaling may be indicative

of a spin-wave instability threshold that is governed by the
combined interface and bulk anisotropy area density.

III. NEARLY LINEAR DEPENDENCE
OF Eb ON DIAMETER

In the thin-film limit it is often assumed that the total PMA
energy density described by Eq. (6) is sufficient to estimate
the total thermal activation barrier height in the macrospin
limit. This would give rise to an Eb = Kpmad(π

4 )a2 for a
circularly shaped film disk where d is the film thickness and a

is the film diameter. Such Eb should scale with disk area. The
experimentally observed Eb however shows predominantly a
linear dependence on a for the size ranges between around 15
and 50 nm with nearly zero intercept, as shown in Fig. 2(b).

There could be several plausible sources for an Eb that
would depart from simple area dependence on disk size. Below
one evaluates a few of the most likely causes quantitatively to
identify the leading cause.

A. Reversal through a domain-wall sweep across the disk

Here one is concerned mostly with disk-shaped ferromag-
netic thin films with diameter a approaching that of the
exchange length λd . In this size range one candidate for
magnetic reversal is a domain-wall-like object sweeping across
the disk.14 This would produce a total thermal activation
energy roughly proportional to the length of such a wall-
like structure, and could potentially explain the linear size
dependence of the observed Eb. A closer examination of
this mechanism however shows that it is unlikely to be the
dominant reason for the linear size dependence of Eb in this
set of experiments.

The maximum energy point of such a wall sweep process
is the symmetric situation illustrated in the inset of Fig. 3,
where the center of the wall-like structure crosses the disk,
lying along its diameter in, say, the ey direction. In fact,
if one ignores long-range dipolar interaction, but includes
the related thin-film demagnetization into the local PMA
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FIG. 2. Size dependence of junction properties. Here for most devices [except the relatively large ones marked in gray pentagons in (a)–(c)],
the size of the actual junction is confirmed post-transport measurement with cross-section transmission electron microscopy (TEM) images.
(a) The dependence of thermal activation energy on junction area, showing the initial rise followed by saturation at larger junction area. Note
that the initial rise does not follow a simple linear area dependence with zero intercept but rather there is a significant intercept at zero device
area. (b) The dependence of Eb on the diameter of junction, showing a large region of nearly linear dependence with zero intercept before
reaching saturation Eb (Refs. 6–9) as indicated by line (3). (c) The dependence of switching current on junction area showing the expected
linear dependence with zero intercept. (d) The dependence of spin-torque efficiency κ = Eb/Ic0 on junction area. The gray scale represents
the actual measured resistance-area product RA of the junction. It shows that the effect of RA on κ is minor compared to κ’s very strong size
dependence.

energy, the one-dimensional domain-wall solution of θ (x,y) =
2 tan−1[e(x/λ)]16 would be a good approximation for a thin-film
disk with uniform total perpendicular anisotropy density Kpma .
Here θ is the polar angle of the local magnetization with respect
to the easy-axis (film-perpendicular) direction of ez = ex × ey ;
−a/2 < x < a/2 with x being the horizontal coordinate, and
λ = λpma = √

Aex/Kpma . Integrating throughout the volume
of the disk in the thin-film limit with thickness d 	 λ, and one
gets a wall-sweeping activation energy (measured in reduced
unit of Kpmadλ2) as a function of the disk diameter a as
the straight line 0-A in Fig. 3. The cross point at 4.63λ

is the diameter above which domain-wall sweep yields a
lower barrier height energy than macrospin rotation, and thus
becomes the preferred mode of reversal.

This reveals a significant problem with the estimate. The
crossover point thus estimated (point A in Fig. 3) lies well
above the subvolume saturation value of Eb. This is illustrated
in Fig. 3. The subvolume saturation Eb, roughly estimated to
be of the order of 4πAexd (which was already an overestimate
when compared with experiment), is seen to be crossed
by the macro-spin branch of the Eb(a) at point B, with
a ∼ 4λ < 4.63λ, the latter being what is for crossing over into
domain-wall sweeplike reversal. If this simple picture were

correct, one would not see the presence of a domain-wall
sweep-mediated reversal mode, and the macrospin mode
would directly cross into subvolume reversal with saturated
Eb ∼ 4πAexd. Thus, if the domain-wall sweep mode is what
gave rise to the linear Eb vs a scaling, to be consistent with
experimental observations, the Eb(a) relationship has to have a
shallower slope than predicted by this simple model described
above, and intersect the macrospin reversal Eb at a much
shorter length than 4.63λ as illustrated in Fig. 3.

Although a more careful inclusion of long-range dipolar
interactions into such a picture could moderate the DW-like
structure’s maximum energy, it is still unlikely that it could
be the leading-order effect to explain our observation. This is
especially the case when an alternative factor appears to be
more significant in controlling the leading order Eb vs size
behavior, as will be discussed below.

B. Edge-enhancement of K pma

As described by Eq. (6), the net PMA energy volume den-
sity Kpma is a balance between the perpendicular anisotropy
energy K⊥ (bulk or interface, here represented in volume
density; if interface, then K⊥ would contain a 1/d dependence
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FIG. 3. A sketch of the various model predictions of thermal
activation energy vs disk diameter a compared with experimen-
tal observations. Here d is the disk thickness. Eb,MS is the
macrospin energy barrier, Eb,DW is the energy barrier for a domain-
wall-like object sweeping across the disk, Eb,saturated ≈ 4πAexd is
the subvolume related saturation activation energy (Refs. 6–9). The
gray curve illustrates our experimentally observed behavior. The
inset shows the energy maximum state of a domain-wall-like object
sweeping across the disk. The gray scale represents the polar angle
of nm with disk-film normal ez = ex × ey . The choice of Kpma here,
and the related relationship between the macrospin branch and the
experimental curve is only for illustrating the difference in trend.
Scaling relations with “∼” symbols are only crude estimates, while
those with “=” are exact predictions. A more quantitative comparison
is given by the model calculation presented in Fig. 2.

inside) and the shape-dictated dipolar demagnetization energy
density −2πM2

s . Such definitions are based on extended films
over a length scale far greater than the film thickness. In any
patterned structures with finite size, the edge demagnetization
field is reduced. Based simply on symmetry, a half-infinite
plane of film would have the edge demagnetization field only
of 1/2 the value of that deep inside the film. Thus an edge
demagnetization energy density at most would be only about
−πM2

s . Therefore, even if the intrinsic PMA energy density
K⊥ is uniform and position independent, one would have a
total PMA energy density Kpma showing an enhancement near
sample edges due to the reduction of demagnetization.

One may estimate the amount of PMA gain from this mech-
anism crudely by integrating the edge-fringe field related loss
to dipolar demagnetization energy, assuming the disk diameter
is far greater than the film thickness. The demagnetization
field distortion near the film edge extends at least the order of
a film thickness d into the lateral direction of the film. Thus
the total energy gain from this mechanism is of the order of
ηgπ

2 (Msd)2 a where ηg is a geometry dependent integration
constant of the order ∼1. This would give

Eb ≈
(

π

4

)
a2dKPMA + ηga (πMsd)2 (9)

giving a leading order linear dependence in the small a limit
of

δEb

δa
= ηgπ

2 (Msd)2 . (10)

The geometry constant ηg can be roughly estimated by using
a long stripe thin film with width L → +∞, thickness d, with
perpendicularly magnetized moment density Ms . In such a
case, with −L < x < 0 and x = 0 defined as one edge, the
near edge-dipole related field profile can be calculated to be,
for the edge near x = 0,

H (x) ≈
[

2π + 4 cos−1

(
d√

d2 + 4x2

)]
Ms (11)

and thus the per-unit edge-length dipole demagnetization
energy to be, at distance s into the plate in the −x direction,

Eed = −
(

dM2
s

2

) ∫ 0

−s

H (x)dx

= (
2πM2

s

)
(sd) − (Msd)2

[
1 + ln

(
2s

d

)]
, (12)

where the first term is the uniform demagnetization field
4πMs’s contribution, and the second term is the edge-dipole
related energy reduction per unit length. If one crudely assumes
the integration depth s to be around the radius (a/2) of our disk,
this gives an estimate to the ηg value in Eq. (9) as

ηg ≈ 1

π

[
2 + ln

(
a

d

)]
. (13)

For MTJs in this study, Ms ≈ 900 emu/cm3, d ≈ 2 nm. Thus
δEb

δa
≈ 1.3 kBT /nm. While this is an extremely crude estimate

considering the logarithmic nature of the edge dipole energy’s
distance dependence, it is of the same order of magnitude
as the experimental value of around 2 kBT /nm, as shown
in Fig. 2(b).

A slightly more refined way of estimating the edge-dipole
field reduction of a disk geometry is to directly integrate out
the total demagnetization energy for the disk shape. This
can be done numerically, again assuming a uniform local
magnetization orientation leading to an effectively uniform
surface magnetic charge density Ms , giving a magnetic field
inside the disk in the ez direction along the disk axial direction
as Hz(r2) = Ms

∫
2(r12 · ez/|r12|3)d2r1, where r12 = r2 − r1

is the relative position vector. r1 resides on one of the
disk surfaces while r2 is inside the disk. With a rigid local
magnetization assumed to be perpendicularly aligned, one
only concerns the ez component of the demagnetization field.
Integrating once more over the disk’s entire volume for r2, one
has the disk’s total contribution to energy barrier height due to
demagnetization as

Udemag (d,a) = − (
2πM2

s

)
(da2π/4)

[
3

2
Nz

(
2d

a

)
− 1

2

]
, with

Nz (ξ ) = 1

2π2

∫
2 (r12 · ez)

| r12 |3 d2r1d
3r2, (14)

where d2r1 gets integrated through a surface of the disk, and
d3r2 gets integrated through the volume of the disk. The
integral runs through a disk of normalized radius 1 and the
normalized thickness ξ = 2d/a, and can be numerically eval-
uated. limξ→0 N (ξ ) = 1 is the ez direction demagnetization
factor of the disk in the limit of zero thickness. For the first
line in Eq. (14) one also employed an approximate sum rule17

of 2Nx + Nz = 1 for the demagnetization factors as a way
to offset the effect of in-plane demagnetization of the disk at
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finite thickness when the moments are rigidly aligned in the
plane of the disk—a position that corresponds to the energy
maximum during reversal of a macrospin state.

This estimate would give, in place of Eq. (9):

Eb = (πa2d/4)K⊥ + Udemag(d,a). (15)

For our experimental data, assuming Ms ≈ 900 emu/cm3,
d = 2 nm, and K⊥ = 5.5 × 106 erg/cm2, one has the cal-
culated Eb from Eq. (15) shown in Figs. 2(a) and 2(b) as
the short-dashed line labeled (2) in Fig. 2(b). This produces
a size dependence far from quadratic in diameter a, and
agrees with the experimental data. The gray curve (1) in
Fig. 2(b) is the Eb of the same parameter set, but assuming
a simple uniform demagnetization energy of −2πM2

s . Of this
model calculation the only adjustable parameter without prior
independent measurement is the value of K⊥.

Based on these estimates, one concludes that the edge dipo-
lar field reduction-related PMA enhancement is significant,
and it could largely explain the observed size dependence
of Eb in our device size range. Further refinement of the
energy calculation would need to include both exchange and
the edge enhancement that would produce more realistic size
dependencies over wider size ranges. These however are
too complex for analytical estimates, and would have to be
evaluated with micromagnetic computation.

IV. SCALING OF SWITCHING THRESHOLD
Ic0 ON JUNCTION DIAMETER

The previous sections have established, both in terms of ex-
perimental observations and in investigations of mechanisms,
a thermal activation energy’s scaling relation with device size
that is not areal but more linear. It then begs the question of
how would the spin-torque switching threshold’s current scale
with device size. In the experimental data shown in Fig. 2(c),
the junction’s switching current Ic0 is seen to scale robustly as
a2. This implies a constant current density scaling, without
being much moderated by the reduction of the measured
Eb in small devices. This is clearly an unexpected behavior
from a macrospin point of view, as in macrospin limit, the
switching current is expected to scale as the barrier height Eb.
The observed nonareal scaling of Eb apparently does not get
translated into a nonareal scaling of Ic0.

If Ic0 is not scaling with the barrier height as macrospin
would dictate, what determines it? The slope of Ic0 vs
device area of the data shown in Fig. 2(d) gives a threshold
current density of Jc0 ≈ 5.4 × 106 A/cm2. The question
then becomes, what determines this experimentally observed
threshold current density, if not Eb? The rest of this section
is going to address this question from a spin-wave excitation
threshold point of view.

Before going into such detailed model considerations, one
simple observation can be made here with the experimental
data. If one uses the Jc0 expression derived based on macrospin
type of model as in Eq. (2), one sees that Jc0 can be related to an
areal anisotropy energy density �eff . In macrospin limit, that
is the areal density of the net uniaxial anisotropy Kpmad where
d is the film thickness. In our case here, using the slope from
Fig. 2(c) and mr ∼ 0.5, α ∼ 0.005 as assumed before, and
using Eq. (2), it appears the experimentally obtained effective

areal energy density is about �eff ∼ 0.66 erg/cm2. Note that
our extended-film measured Hk ∼ 4.5 kOe would give a net
PMA energy density of �pma = MsdHk/2 ∼ 0.41 erg/cm2,
and the demagnetization energy density corresponding to
Ms ∼ 900 emu/cm3 is �demag ≈ 1.02 erg/cm2. In an extended
film limit, �eff = �⊥ − �demag, which leads to an intrinsic
PMA energy density of the order �⊥ � K⊥d ≈ 1.43 erg/cm2.
These areal energy densities are within a factor of 2 or so of
what is deduced from Jc0, possibly implying a correlation.

A. Spin-torque excitation with interface and bulk
perpendicular anisotropy

As well known in the past,19,20 magnetic anisotropies
concentrated at interfaces of thin-film ferromagnets can alter
their spin-wave excitation behaviors, and under favorable
conditions encourage the formation of interface spin waves.
More recently, interface-localized perpendicular anisotropy
has been shown to induce a particular type of softening in
spin-wave modes that could reduce the spin-torque excitation
threshold for inducing spin-wave instabilities in thin slabs
of YIG crystals.21 Below the same methodology is explored
to relate our observations above to such interface-anisotropy
related possible softening of spin-wave modes.

To this end in a classical-dynamics limit one can start with
the continuous-medium Landau-Lifshitz-Gilbert equation for
a description of the magnetodynamics of the free layer of
the MTJ:

− 1

γ

[(
∂nm

∂t

)
− αnm ×

(
∂nm

∂t

)]

= nm × H +
(

2Aex

Ms

)
nm × ∇2nm, (16)

where nm = nm (x,y,z) is the unit vector of the local magnetic
moment. At an interface of the ferromagnet with a nonmagnet,
one writes the boundary conditions for nm to be19–21

nm ×
[(

2γAex

Ms

) (
∂nm

∂n

)
+

(
2γ�s

Ms

)
(nm · n) n

− hs (ns × nm)] = 0, (17)

where n is the interface normal unit vector pointing into the
ferromagnet. �s is the interface anisotropy energy. �s > 0 in
this sign convention of n defines a perpendicular interface
anisotropy. hs is the spin current in units of (γ /Ms) Js

where Js is the conventionally defined magnetic moment flow
density, in magnetic moment per unit area per unit time. One
assumes here that the spin-torque term applies only to the
bottom interface—a simplifying assumption that is justified by
the very short spin-decoherence length in ferromagnets with
strong s-d exchange coupling. γ = gμB/h̄ ≈ 2μB/h̄ > 0 is
the gyromagnetic ratio, here defined as a positive number. To
keep the problem to a manageable size, one ignores dipolar
interactions between the magnetic free layer and the reference
layers inside an MTJ, and focuses instead on the basic dynamic
problem of the free layer itself.

Further for simplicity, here one only examines the result
in the thin-film limit, with film thickness d 	 min{λd,λspma},
and attempts to find the characteristics of spin-torque exci-
tation threshold at such an interface as it depends on the
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materials parameters. To this end, assume that nm ∼ n ‖ ez,
with ez = n defined as the film-normal direction. Assume
further that only the bottom interface has a perpendicular
anisotropy through �s . The top interface is assumed to be free
of either spin-current or interface anisotropy, for simplicity.

Equations (16) and (17) are linearized in the small am-
plitude limit of nmxy in the x-y plane, with |nmxy | 	 1,
and nm ≈ ez + nmxy . Fourier transform them into a plane-
wave state and write nmxy = nm0 exp [i (ωt + k · r)], to-
gether with its accompanied oscillating magnetic field22

hxy = −4πMs(k · nmxy)(k/k2), satisfying the conditions of
∇ · (H + 4πMsnm) = 0 and ∇ × H = 0 as required by the
Maxwell equations, with H = (Heff − 4πMs)ez + hxy the
total magnetic field in Eq. (16), and Heff = Ha the volume
uniaxial anisotropy field of the film, also assumed to be along
ez. The eigenvalue problem for this set of equations gives
ω (k) dispersion relations whose imaginary parts’ zeros yield
the onset of magnetic instability. When expanded to the first
order in damping α and spin current hs and second order in
the in-plane spin-wave wave vector kx , the resulting instability
threshold for spin-current density Jsc = (Ms/γ ) hs is

Jsc = 2α
(
2πM2

s d
) [

Q + Q1 − 1 + k2
xQ

(
Aexd

�s

)

×
(

1 + 2Q + Q1 − 1

2Q2

)]
= 2αd

[
Kpma + (2νAex) k2

x

]
(18)

with Q = �s/(2πM2
s d), and Q1 = Ha/(4πMs) describing

the interface and bulk perpendicular anisotropy quality factor
for the thin film, respectively. The second line in Eq. (18) writes
the total PMA anisotropy Kpma = �s/d + Ku − 2πM2

s as dis-
cussed before, and ν = 1/2 + [Q + (Q1 − 1)/2]/Q2 ∼ 1 as
a dimensionless parameter depending on details of Q and Q1.

B. Spin-wave modes laterally confined by an edge
enhancement of K pma

At kx = 0, Eq. (18) leads to Jsc = 2αd[�s + Ms(Ha −
4πMs)/2], which is the macrospin threshold spin-current
density. For finite kx excitations the threshold current density
increases according to the dispersion relation of kx as expected.
Assuming a circular disk with diameter a, the net charge-
threshold current from Eq. (18) for the lowest spin-wave
branch of wavelength corresponding to 2a is

Ic ≈
(

4eα

h̄η

) [
Kpma

(
π

4
a2d

)
+ π3ν

2
Aexd

]
= Ic0 + Ic1, (19)

where Ic0 = ( 4eα
h̄η

)Kpma(π
4 a2d), and Ic1 = ( 4eα

h̄η
)π3ν

2 Aexd,
which is the first available confined spin-wave mode, and its
threshold current is an additional Ic1 above that of a macrospin.
Thus in normal conditions, the macrospin mode with kx = 0 is
the lowest-lying mode in terms of its spin-torque threshold.23

The situation could be different if Kpma is strongly position
dependent. As discussed above, in the case where edge-
demagnetization reduction plays a significant role in deter-
mining the total PMA energy, Kpma can become significantly
enhanced near the edges of a circular disk. Consider an extreme

limit, where most of the PMA energy for Eb is concentrated
near the edge of the disk, and for the interior of the disk Kpma

is essentially zero. In such a limit, the threshold for exciting
the first spin-wave mode would be of the order Ic1, while the
macrospin-threshold current for Eb would be Ic0. Assuming an
excitation of the spin-wave mode allows sufficient spin trans-
port into the precessing moments that could lead to an eventual
reversal of the total magnetization, then, even though the mo-
ments are edge-pinned to a total potential of Eb, the threshold
current for negative-damping related thermal activation would
become Ic1, whose ratio to the macrospin threshold is

Ic0

Ic1
≈ Eb

π3ν
2 Aexd

. (20)

This could contribute to a possible efficiency enhancement
over a certain size range—due to the excitation of the first
finite wavelength mode spin wave, which under the specific
conditions of a Kpma being weak near disk center could result
in Ic1 < Ic0.

This mechanism however has the fundamental difficulty of
Ic1 being a size-independent quantity, and could thus not be
consistent with the range of data observed in our experiments
described above, where the threshold involves a relatively
constant current density, while Eb scales roughly linearly with
sample diameter. This dilemma could not be easily resolved
by invoking the low-lying spin-wave modes of nonzero kx ,
confined by an edge-enhanced PMA potential.

C. Interface PMA-related mode softening

Another materials-related possibility is a significant reduc-
tion of the exchange constant Aex near the interfaces, which
under certain conditions could create a softened interface
spin-wave mode.21 Assume an interface layer of thickness d1

separating the bottom interface which Eq. (17) addresses and
the main slab of the ferromagnet with a thickness of d � d1.
Further assume the bottom d1 interface layer has an apparent
Aex that is reduced from the interior of the slab by a factor
of β with 0 < β 	 1. Solving the linearized LLG equations
with the properly defined boundaries gives a threshold current
density Jsc for the simpler case of kx = 0:

Jsc ≈ 2α
(
2πM2

s d
)[

Q + Q1 − 1 +
(

βc

β

) (
Q

2
+ Q1 − 1

)]
,

(21)

where Q = �s/(2πM2
s d), Q1 = Ku/(2πM2

s ) with Ku being
the volume PMA of the interior of the ferromagnetic slab not
including demagnetization energy, and βc ≈ 2Qdd1/λ

2
d 	 1

is the critical softening value of β for the interface exchange
energy βAex .

If the anisotropy strengths are such that Q1 < 1 − Q/2 <

1, as β → βc, a large amount of reduction in Jsc due to
this spin-wave mode softening could be expected, hence an
increase of the efficiency factor κ . Quantitatively, if one writes
Jscms as the macrospin threshold current, and Jscsw that of the
spin-wave mode, then

Jscms

Jscsw

≈ Q + Q1 − 1

Q + Q1 − 1 + (
βc

β

)(
Q

2 + Q1 − 1
) (22)

could become greater than 1 as β → βc.
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The origin of this mode softening is the coupling strength
limit of the weakened bottom layer exchange βAex in
maintaining perpendicular moment of the full slab. The
eigenfrequency of the full slab at zero spin current can be
written as

ω ≈ γ (4πMs)

(
Q + Q1 − 1 − βc

β
Q

)
. (23)

It shows the effect of β < 1 and approaching βc as a reduction
of the resonance frequency.

A more quantitative analysis would however need to
proceed cautiously, bearing in mind the uncertainties of the
materials model and parameters as well as the myriads of
assumptions made for such a simplified model. For one thing,
to safely stay within the ultrathin-film limit one would need
to confine the discussion to a length scale where the interface
anisotropy and exchange energy related length scale is beyond
that of the materials thicknesses. That is to require Aexβ

�s
� d1,

or β � d1/λspma . Since one could write βc = 2d1/λspma , it
follows that staying within the thin-film limit requires β � βc,
thus the region of β → βc cannot be approached too closely
without violating the ultrathin-film assumption used in this toy
model.

In reality of course the situation is even more complex. The
softening of the interface spin-wave mode would have some
consequences on the total thermal activation energy barrier as
well which is not investigated here. However this extremely
simplified analysis points to the possible importance of a
weakened exchange energy at the interface region where both
a majority portion of the PMA is induced as well as where the
spin torque is absorbed—an optimal match of this exchange
energy with the rest of the film would likely provide a threshold
current less than that of the simple macrospin threshold.

Such lowering of the threshold spin current for negative
damping instability does not necessarily translate into a low-
ering of threshold current for the reversal of the magnetic mo-
ment in the layer. What this simple analysis showed is only a re-
duction of the threshold for inducing an instability in the linear
regime. The large-angle dynamics are too complex to be ana-
lytically predicted. Numerical simulations would be necessary
to quantify the parameter space within which such reduction
of threshold instability could correspond to complete reversal.

In addition to relating the linear instability threshold to
reversal, for finite-time magnetic switching, there remains the
fundamental requirement of angular-momentum conservation,
and the slope of switching speed’s dependence on spin current.
The simple and robust relationship between switching time τ

and driving spin current Is (Ref. 24) remains. In the limit of
Is � Isc, τIs ∼ m where m is the total magnetic moment of the
free layer, although the detailed form of the finite-temperature
switching probability vs the spin-current intensity might be
significantly altered by such interface spin-wave excitations.

Nevertheless, this scenario provides a plausible explanation
to the fact of a threshold current that is area scaling, as
the spin wave dictates a threshold current density regardless
of the actual thermal activation barrier height’s size-scaling
behavior—even if the activation energy is saturated at large
device sizes by subvolume excitations.6–9 This could account
for the separate scaling properties of Eb and that of Ic0

observed experimentally as discussed earlier.
Furthermore, this conceptual model points out some basic

trends on how efficiency enhancement may depend on ma-
terials parameters. This type of spin-wave-softening induced
efficiency increase only occurs when interface PMA dominates
and the bulk PMA is insufficient by itself to overcome
demagnetization (i.e., Q1 < 1, but Q + Q1 > 1). Within this
constraint, an increase of bulk PMA strength (increasing Q1)
would reduce the amount of possible reduction in Jscsw,
and thus lessen the enhancement of the efficiency κ . These
qualitative trends may be of value for materials and device
optimization work.

V. CONCLUSIONS

An in-depth examination of spin-torque switched MTJs’
threshold current in relation to same-device thermal activa-
tion energy suggests that the experimentally evaluated spin-
torque switching efficiency borders on the maximum value
a macrospin model would yield. In all likelihood additional
mechanisms are at play. A set of size-dependence scaling
behaviors were experimentally observed. For the thermal
activation energy Eb, it is primarily linearly dependent on
junction diameter. For threshold current, it scales with the
area of the junction, over the size range 15 to over 100 nm.
The linear scaling of Eb can be semiquantitatively accounted
for by including an edge-fringe-field related reduction of
demagnetization energy. The area scaling of threshold current
is consistent with a spin-wave dictated threshold that may
involve additional softening due to the interplay between an
interface perpendicular magnetic anisotropy term and a net
in-plane magnetic anisotropy from the interior of the free layer.
An interface-dominant PMA with a net easy-plane anisotropy
for the interior could provide a mechanism for a softened
spin-wave mode that reduces its threshold current density to
values below what is required by a macrospin.
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