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Chiral anomaly and classical negative magnetoresistance of Weyl metals
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We consider the classical magnetoresistance of a Weyl metal in which the electron Fermi surface possesses
nonzero fluxes of the Berry curvature. Such a system may exhibit large negative magnetoresistance with unusual
anisotropy as a function of the angle between the electric and magnetic fields. In this case the system can support
an additional type of plasma wave. These phenomena are consequences of the chiral anomaly in electron transport
theory.
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Materials with nontrivial topological properties have
attracted considerable interest since the discovery of topologi-
cal insulators.1 One type of such materials is the so-called Weyl
semimetals, characterized by the the presence of points of band
touching (Dirac points).2–10 In this paper, we study the metallic
counterparts of these materials—the Weyl metals, where Dirac
points are hidden inside a Fermi surface. We show that
these materials may exhibit large negative magnetoresistance
with unusual anisotropy. This negative magnetoresistance is
connected to the triangle anomaly and a related effect—the
chiral magnetic effect, but it occurs in the classical regime,
where the electron mean free path is short compared to the
magnetic length. We also find an additional type of plasma
wave in these systems.

At low magnetic field B and at relatively high temperature
Landau quantization can be neglected, and electron transport
in metals can be described using the semiclassical Boltzmann
kinetic equation

∂np

∂t
+ ṙ · ∂np

∂r
+ ṗ · ∂np

∂p
= Icoll{np}. (1)

Here np(r,t) is the electron distribution function, p is the
quasimomentum, Icoll{np} is the collision integral, and

ṙ = ∂εp

∂p
+ ṗ × �p, (2a)

ṗ = eE + e

c
ṙ × B. (2b)

The last, “anomalous,” term in Eq. (2a), proportional to the
Berry curvature

�p = ∇p × Ap, Ap = i〈up|∇pup〉, (3)

was introduced in Ref. 11. (See also reviews on the subject
in Refs. 12 and 13.) In systems with time-reversal symmetry
�p = �−p, while in centrosymmetric systems �p = −�−p.
Thus, in systems which are both time and centrosymmetric
�p = 0. In this case the magnetoresistance described by
Eq. (1) is positive and is governed by the parameter (ωcτtr)2.14

Here ωc is the cyclotron frequency and τtr is the electron trans-
port mean free path. The Berry curvature is divergence-free
except at isolated points in p space, which are associated with

band degeneracies. As a result, in the case where the electronic
spectrum has several valleys, they can be characterized by
integers (see, for example, Ref. 15)

k(i) = 1

2πh̄

∮
dS · �(i)

p = 0,±1, . . . . (4)

Here the index “i” labels the valleys, and dS is the elementary
area vector. Nonzero values of k(i) are realized if, near the
degeneracy points, electrons can be described by the massless
Dirac Hamiltonian16

H = ±vσ ·
(

− h̄∇ − e

c
A

)
. (5)

Here A is the vector potential, σ is the operator of pseudospin,
v is the quasiparticle velocity, and the signs ± correspond to
the different chiralities of the Weyl fermions.

It is well known that massless Dirac fermions exhibit a
chiral anomaly which can be understood in the language of
level crossing in the presence of a magnetic field.17 According
to the Nielsen-Ninomiya theorem,18 the number of valleys with
opposite chiralities (positive and negative values of k(i)) should
be equal, and so

∑
i k

(i) = 0. Recently, gapless semiconductors
with topologically protected Dirac points (Weyl semimetals)
have attracted significant attention.2–10 Both time-reversal-
breaking2 and noncentrosymmetric4 versions of these systems
have been proposed. In the absence of a random potential and
doping, the chemical potentials in these systems are at the
Dirac points.

In this article we consider the case where in equilibrium the
chemical potential μ = μi measured from the Dirac points is
finite, and show that the semiclassical Eqs. (1) and (1) can yield
a substantial anomaly-related negative magnetoresistance. The
latter also exhibits unusual anisotropy as a function of the
angle θ between E and B. Here μi is the chemical potential in
the ith valley, measured from the Weyl point. Using Eqs. (2)
we get

ṙ =
(

1 + e

c
B · �p

)−1[
v + eE × �p + e

c
(�p · v)B

]
,

(6)

ṗ =
(

1 + e

c
B · �p

)−1[
eE + e

c
v × B + e2

c
(E · B)�p

]
,
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where v = ∂εp/∂p. Substituting Eqs. (6) into Eq. (1) we get the kinetic equation in the form

∂n
(i)
p

∂t
+

(
1 + e

c
B · �(i)

p

)−1
[(

eE + e

c
v × B + e2

c
(E · B)�(i)

p

)
∂n

(i)
p

∂p
+

(
v + eE × �(i)

p + e

c

(
�(i)

p · v
)
B

)
∂n

(i)
p

∂r

]
= I

(i)
coll{n(i)

p }

(7)

(cf. Ref. 19). Let us consider the case where μ � T and h̄ωc =
h̄|e|v2B/cμ, and assume that the conductivity of the system
is determined by elastic scattering. Then the collision integral
Icoll in Eq. (7) describes elastic intra- and intervalley scattering
characterized by intravalley τintr and intervalley τ scattering
times, respectively. If μτintr,μτ � 1, then these characteristic
times can be calculated using standard perturbation theory,
while all interference corrections to these quantities can be
neglected. We assume that τintr � τ , the anisotropy of the
distribution function within each valley can be neglected, and
the latter depends only on the energy ε: n

(i)
p = n(i)(ε). In this

case the transport scattering time in the absence of magnetic
field τtr is essentially τintr. Denoting by ρ(i)(ε) the density of
states,12,13

ρ(i)(ε) =
∫

dp
(2πh̄)3

(
1 + e

c
B · �(i)

p

)
δ(εp − ε), (8)

in the homogeneous case we get the kinetic equation in the
form

∂n(i)(ε)

∂t
+ k(i)

ρ(i)(ε)

e2

4π2h̄2c
(E · B)

∂n(i)(ε)

∂ε
= I

(i)
coll{n(i)(ε)},

(9)

where the collision integral now includes only intervalley scat-
tering. For this, we will use the relaxation time approximation

I
(i)
coll = −δn(i)(ε)

τ
, (10)

where δni(ε) is the deviation of the distribution function from
its equilibrium value.

The electron density and entropy density in the ith valley
are

N (i) =
∫

dε ρ(i)(ε)n(i)(ε), (11)

S(i) = −
∫

dε ρ(i)(ε){(n(i)(ε) ln n(i)(ε)

+ [1 − n(i)(ε)] ln[1 − n(i)(ε)]}. (12)

Integrating Eq. (9) over ρ(i)(ε)dε we get the conservation law
for particle number in each valley:

∂N (i)

∂t
+ ∇ · j(i) = k(i) e2

4π2h̄2c
(E · B) − δN (i)

τ
, (13)

j(i) =
∫

dp
(2πh̄)3

[
v + eE × �(i)

p + e

c

(
�(i)

p · v
)
B

]
n(i)

p . (14)

Thus, in the presence of electric and magnetic fields, the num-
ber of particles in the ith valley, N (i), is not conserved even if
τ → ∞. This is the chiral anomaly which was originally
introduced in field theory in Refs. 20, and later discussed in
the context of electron band structure theory in Ref. 17, and
in the theory of superfluid 3He.21,22 It is interesting that the

anomaly can be understood completely in the framework of
the semiclassical kinetic equation (1), characterized by k(i),23

and that the term proportional to E · B in Eq. (13) is the same
as obtained in Ref. 17 in the ultraquantum limit.

Equation (7) represents a low-energy effective theory. To
see why the number of electrons in an individual valley is not
conserved one has to take into account the spectral flow process
which brings the energy levels (together with electrons occu-
pying them) from one Dirac point to another through the bulk
of the valence band, as schematically shown in Fig. 1. Such a
possibility exists only in the presence of a magnetic field.

The existence of the chiral anomaly results in a rather
unusual mechanism for the negative magnetoresistance. The
easiest way to calculate the magnitude of the effect is to
estimate the rate of entropy production in the presence of an
electric field,

Ṡ =
∑

i

∫
dp

(2πh̄)3

(
δn

(i)
p

)2

τ

1

n0
p

(
1 − n0

p

) = σE2

T
. (15)

At small E, the stationary solution to Eq. (9) is

δn(i)(ε) = − k(i)

ρ(i)(ε)

e2τ

4π2h̄2c
(E · B)

∂n0(ε)

∂ε
. (16)

For simplicity let us assume there are only two valleys, with
k1,2 = ±1, and with the same quasiparticle velocity v. Let the
z axis be parallel to B. Then, from Eqs. (15) and (16) we get
an anomaly-related contribution to the component σzz of the

FIG. 1. Schematic three-dimensional electron spectrum in a Weyl
metal. Only two valleys in the electron spectrum are shown. The
dashed line indicates the direction of the electron spectral flow in the
presence of parallel electric and magnetic fields.
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conductivity tensor,

σzz = e2

4π2h̄c

v

c

(eB)2v2

μ2
τ. (17)

Note that σzz given by Eq. (17) is an increasing function of the
magnetic field. All other anomaly-related components of the
conductivity tensor σij are zero. In other words, the anomaly-
related current can flow only in the direction of B. One can
also understand this fact by noticing that, at E = 0, and in the
presence of a magnetic field, Eq. (14) gives an expression for
the current density (the chiral magnetic effect)24,25

j = e
∑

i

ji = e2

4π2h̄2c
B

∑
i

k(i)μ(i). (18)

Here we assume that the electron distribution functions in
the individual valleys have equilibrium forms. In the case
of a global equilibrium, all μi = μ, and the contributions to
Eq. (18) from different valleys cancel each other. According
to Eq. (13), in the presence of electric and magnetic fields,
an imbalance of electron populations and, consequently, a
difference between the the chemical potentials μi is created.
As a result, there is a finite current density, which can relax only
via intravalley scattering. In agreement with Eq. (17), its value
is proportional to τ , its direction is parallel to B, and it responds
only to the component of the electric field parallel to B.

There is a significant difference between the anomaly-
related [Eq. (17)] and the conventional Drude contributions
σ

(D)
ij (B) to the B dependence of the conductivity tensor.

For an isotropic Fermi surface and in the relaxation time
approximation, all components of σ

(D)
ij , except for σ (D)

zz , are
decreasing functions of B. For an anisotropic Fermi surface,
at (ωcτtr)2 � 1, there is a B dependence of σ (D)

zz as well, which
can be estimated as

σ (D)
zz (0) − σ (D)

zz (B) ∼ σ (D)
zz (0)(ωcτtr)

2. (19)

Here σ (D)(0) = e2νv2τtr/3 is the Drude conductivity, and
ν ∼ μ2/v3 is the density of states at the Fermi level. For
small magnetic fields, both the Drude and the anomalous
contributions to the resistance scale as B2, and the anomaly-
related contribution [Eq. (17)] dominates the magnetoresis-
tance, provided that

τ

τtr

1

(μτtr)2
> 1. (20)

Generically, in small-gap semiconductors, the parameter
τ/τtr � 1, because the intervalley scattering requires a large
momentum transfer. If the scattering potential is smooth, this
parameter becomes exponentially large. Even in the case of
an anisotropic Fermi surface, depending on symmetry there
could be a direction of E for which σ (D)

zz is independent of B.
At small values of μ � T the conductivity is determined by
electron-hole scattering.6,7 In this case one has to substitute μ

for T in Eqs. (17) and (20), while the parameter τ/τtr � 1 is
exponentially large.

For ωcτtr � 1, the B dependence of σ (D)
zz (B) saturates and

it becomes independent of B. In contrast, the deviation of the
anomaly-related contribution from the quadratic-in-B behavior
takes place at much higher magnetic fields. Thus, σzz could be
a nonmonotonic function of B. Finally, the anomaly-related

contribution to the conductivity tensor may be distinguished
by its unusual frequency dependence: it is controlled by the
parameter (ωτ )2, rather than by the conventional parameter
(ωτtr)2. Here ω is the frequency of the electric field.

At low values of μ the anomaly-related contribution to the
conductivity can be even larger than the Drude contribution
σ (D). In this case the system supports an additional type of
weakly damped plasma wave with a frequency

ωp ∼ ±
√

e2

πh̄c

v

c

eBv

T
, μ = 0, (21)

provided that ωp � τ−1.
The approach based on the semiclassical equations of

motion, Eqs. (1) and (2), is valid if μ � h̄ωc. In the opposite,
ultraquantum, limit ωcτtr � 1, the anomaly-related negative
magnetoresistance has been previously discussed in Refs. 17
and 26. In this case the spectrum of the Dirac equation has the
form

εn(pz) = ±v

√
2n

h̄e

c
B + p2

z , n = 1,2, . . . . (22)

For the n = 0 case ε0 = ±vpz, where ± correspond to different
valleys. In other words, the n = 0 Landau level is chiral:
the branches of the spectrum with ε0 = ±vpz correspond to
different valleys, as shown in Fig. 2. Consider the case where
both the chemical potential and the temperature are small
compared to the energy difference between the zeroth and the
first Landau levels, i.e., μ,T < h̄v/LB , where LB = √

h̄c/eB

is the magnetic length. In this case only chiral branches of
the spectrum are occupied by electrons. Contributions to the
current from branches of the spectrum with different chiralities
can relax only by intervalley scattering processes characterized
by τ . If the electric field is applied in the z direction, electrons
move according to the law ṗz = eEz − pz/τ , vz = ±v, and
we get the following expression for the conductivity:17

σzz = τe2v

4π2h̄L2
B

. (23)

FIG. 2. Schematic electron spectrum of a Weyl metal in the
ultraquantum limit. n = 0,1 label Landau levels. The dashed line
indicates the direction of the electron spectral flow in pz space in the
presence of a z component of the electric field.
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By the same token we can obtain an expression for the plasma
frequency at zero wave vector,

ω2
p = rs

2v2

πL2
B

, (24)

where rs = e2/κh̄v, and κ is the dielectric constant.
Equation (24) is valid if rs < 1.

The fact that Eq. (24) does not have a classical limit (h̄ → 0)
is a particular example of a general property of collective
modes in the massless Dirac plasma.27 We note, however, that
in three dimensions and at B = 0 the plasma frequency is

proportional to μ. In contrast, Eq. (24) is independent of the
value of μ and remains finite even when μ = 0.

Equations (23) and (24) are valid only for Weyl metals
where time-reversal symmetry is preserved. In systems with
no time-reversal symmetry contributions to σzz linear in B are
allowed. The magnitude of these contributions is not universal
and depends on the details of the mechanism of time-reversal-
symmetry violation.
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