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We investigate the ground-state phase diagram and critical properties of the S = 1/2 two-leg Heisenberg spin
ladder system with a negative four-spin interaction using a numerical exact diagonalization method. Using the
perturbation theory in the strong negative rung-coupling limit, we derive an S = 1 bilinear-biquadratic chain as
an effective model. We discuss the ground-state phase diagram in this limit. Next we numerically determine a
phase boundary between the rung singlet phase and the columnar dimer (CD) phase by the phenomenological
renormalization group method, and one between the CD phase and the Haldane phase by the twisted boundary
condition method. We confirm that the phase transition between the CD phase and the Haldane phase is of second
order and this universality class is described by the k = 2 SU (2) Wess-Zumino-Novikov-Witten nonlinear σ

model, calculating the central charge and scaling dimensions.
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I. INTRODUCTION

Quantum phase transitions and quantum critical phenomena
are very interesting subjects in condensed matter, statistical,
and mathematical physics.1 Low-dimensional quantum sys-
tems need not have ordered ground states because of the
effects of quantum fluctuations. Spin chains and spin ladders
are typical systems having such ground states. In particular,
quantum spin ladders have been studied from both theoret-
ical and experimental points of view.2 Spin-ladder systems
have rich physics related to the Haldane conjecture,3 high-
pressure-induced high-Tc superconductivity,4 and spin-gap
problems.5

In recent years, multiple spin exchange interactions have
attracted attention. It is well known that these types of
interaction have played an important role for magnetism
in solid 3He for a long time.6–8 And it is expected that
these interactions play a significant role in other sys-
tems, for example, 3He absorbed on graphite,9 and Wigner
crystal.10

These multispin interactions are derived from several
origins, for example, the direct exchange process in solid 3He,
higher-order perturbation in the strong-coupling limit of the
half-filled Hubbard model,11,12 the effects of phonons,13 orbital
degeneracy,14 and effective models for higher spin systems
using composite spins.15 The three-body cyclic exchange
interactions can be rewritten as a summation of two-body
interactions. Thus, the smallest-order many-body interactions
that we note are four-body terms. The existence of four-spin
(cyclic) exchange interactions is reported in inelastic neutron
scattering and Raman scattering experiments for several
copper oxides,16–23 for example, a two-dimensional square
lattice La2CuO4, which is a high-Tc superconductor parent
compound, and a spin ladder compound, La6Ca8Cu24O41.

In general, because general multiple (ring) spin exchange
terms have complex forms represented by many spin operators,
it is difficult to understand their effects. Therefore, it is better
to investigate a simpler Hamiltonian first. In this paper, we
study an S = 1

2 two-leg Heisenberg spin ladder system with
a four-spin exchange interaction which is described as the

following Hamiltonian:

H = Jleg

2∑
α=1

L∑
i=1

Sα,i · Sα,i+1 + Jrung

L∑
i=1

S1,i · S2,i

+ J4

L∑
i=1

(S1,i · S1,i+1)(S2,i · S2,i+1), (1)

where Sα,j is an S = 1
2 spin operator at a site (α,j ), where α is

the index of spin chains (1 or 2), j is a site number and we set
Jleg = 1 and J4 � 0, and L is the length of the ladder in the
leg direction. This is one of the simplest models, which has
four spin interactions (see Fig. 1).

Previously, a ground-state phase diagram and criticalities
in a Jrung > 0 and J4 > 0 regime, for the case of not large
Jrung,J4, were discussed.24 In this regime there are two phases;
one is a rung-singlet (RS) phase which has a unique gapped
ground state, and the other is a staggered dimer (SD) ordered
phase which has twofold degenerate gapped ground states. We
determined the phase boundary using the twisted boundary
condition method and confirmed the universality class of
this second-order transition calculating the central charge
c � 3

2 and scaling dimensions x � 3
8 ,1 numerically. The phase

transition between these phases is of second order, which is
described by the k = 2 SU (2) Wess-Zumino-Novikov-Witten
nonlinear σ model (WZNW model) in the weak-coupling
regime and of first order in the relatively strong-coupling
regime.

There has been some research for some models with J4 > 0
and other types of four-spin exchange terms related to the
ring exchange,25–29 spin-orbital model,30 and exact solvable
models.31–33 On the other hand, negative J4 cases have hardly
been studied. We can get these negative four-spin interactions
to consider effects of optical phonons and a Hubbard ladder
with additional π flux in each plaquette. Nersesyan and Tsvelik
predicted that the dimerization occurs in the J4 < 0 regime.13

Recently, Takayoshi and Sato discussed a phase diagram of
Eq. (1) in the weak-coupling regime using the bosonization
technique.34 They proposed that there are four phases in the
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FIG. 1. Schematic structure of the S = 1
2 two-leg spin ladder

system with a four-spin interaction in Eq. (1).

|Jrung|,|J4| � 1 regime: the RS phase, the columnar dimer
(CD) phase, the SD ordered phase, and the Haldane phase.
In their proposal, the phase transitions between the RS and
the CD phases and between the CD and the Haldane phases
are of second order and belong to the two-dimensional Ising
universality class. And a transition between the RS and the SD
ordered phases and between the Haldane and the CD phases are
of first- or second order and are described by c = 3

2 conformal
field theory (CFT).

In the J4 = 0 case, the model (1) becomes a simple two-leg
spin ladder Hamiltonian. We well know the ground-state phase
diagram. The ground state is the RS phase for Jrung > 0, and it
is the Haldane phase for Jrung < 0. Each phase is unique and
gapful. We can distinguish these phases by the hidden Z2 × Z2

symmetry. The phase transition at Jrung = 0 is the Gaussian
transition with the central charge c = 2(=1 + 1) because the
system consists of two decoupled spin chains.35,36 From these
previous results, we expect that there are three phases for
the J4 < 0 case: the RS phase (see Fig. 2), the CD phase
(see Fig. 3), and the Haldane phase.

The aim of this paper is to determine the ground-state
phase diagram of Eq. (1) and to discuss critical properties
for a negative J4 regime using numerical calculations and the
perturbation theory.

The organization of this paper is as follows. In the next
section, we discuss the strong negative rung-coupling limit
Jrung → −∞. We derive an Ŝ = 1 bilinear-biquadratic model
as an effective model. We briefly review this effective model
and discuss a ground-state phase diagram in this limit. In
Sec. III, we determine the phase boundary between the
RS phase and the CD phase using the phenomenological
renormalization group (PRG) method. Next we determine a
phase boundary between the CD phase and the Haldane phase
using the twisted boundary condition method, and we study the
critical properties of the CD-Haldane transition using the CFT
with the numerical diagonalization analysis. The last section
is the summary and discussion.

FIG. 2. A schematic picture of the rung-singlet state. Two spins
enclosed by a dotted line represent a singlet state 1√

2
(|↑↓〉 − |↓↑〉).

FIG. 3. A schematic picture of the columnar-dimer state. Two
spins enclosed by a dotted line represent a singlet state.

II. PERTURBATION THEORY FROM THE STRONG
NEGATIVE RUNG-COUPLING LIMIT

Here we investigate the strong negative rung-coupling limit
Jrung → −∞. There are two spins on each rung, coupled as
JrungS1,j · S2,j . In the Jrung → −∞ limit, we can consider that
there are Ŝ = 1 pseudospins on each rung, Ŝj = S1,j + S2,j .
This pseudospin basis (|1〉,|0〉,| − 1〉) is a triplet in the original
S = 1

2 basis (|↑〉1|↑〉2, 1√
2
(|↑〉1|↓〉2 − |↓〉1|↑〉2), |↓〉1|↓〉2).

Using this basis, we can derive an effective Ŝ = 1 Hamiltonian
from the first-order perturbation theory. This Ŝ = 1 effective
Hamiltonian is the following:

Ĥ =
(

1

2
+ 1

8
J4

) L∑
j=1

Ŝj · Ŝj+1

+ 1

4
J4

L∑
j=1

(Ŝj · Ŝj+1)2 + 5

16
J4L, (2)

where a first 1/2 term arises from the Jleg term. This
Hamiltonian is known as the Ŝ = 1 bilinear-biquadratic model.
This is traditionally parametrized as follows:

H = cos θ

L∑
j=1

Ŝj · Ŝj+1 + sin θ

L∑
j=1

(Ŝj · Ŝj+1)2. (3)

The ground-state phase diagram of this model is well known,
and there are some exact solvable points. There are four
phases as follows. The dimer phase is in −3π/4 < θ < −π/4,
which is gapful and twofold degenerate. This degeneracy is
related to the spontaneously one-site translational symmetry
breaking. The Haldane phase is in −π/4 < θ < π/4, which
is gapful and a unique ground state which is called the
valence-bond-solid (VBS) state.3,37 The trimerized massless
phase is in π/4 < θ < π/2.38 The ferromagnetic phase is in
π/2 < θ < 3π/2. There are some exact solvable points in this
model. At θ = π/4, this model is solved by the Bethe ansatz.39

This point is massless, and the soft modes appear at wave
numbers q = 0,±2π/3. This model has an SU (3) symmetry
on this point and is described by the k = 1 SU (3) WZNW
model.40

At θ = arctan( 1
3 ), this model has an exact VBS state as

the ground state.37 It is proved that the system has a finite
excitation gap at this point. At θ = −π/4, this model is
solved by the Bethe ansatz.41 This point is massless, and
the soft modes appear at wave numbers q = 0,π . Thus,
the phase transition between the Haldane phase and the
dimer phase is of second order, which is described by
c = 3

2 CFT, as the k = 2 SU (2) WZNW model.40,42 This
has been confirmed by the Bethe ansatz.43 At θ = 3π/4,
this model is solved by Haldane.44 This point is in the
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ferromagnetic phase. At θ = −π/2, this model is solved by
Barber, Batchelor, and Klümper using the Bethe ansatz.45,46 On
this point the ground state is gapful and twofold degenerate
and has an SU (3) symmetry.40 This ground state is the dimer
state.

In this effective model (2), the ground-state phase diagram
is simple. The correspondence between θ and J4 is as follows:
J4 = ∞ ↔ θ = arctan (2), J4 = 0 ↔ θ = 0, and J4 = −∞
↔ θ = arctan (−2). So the trimerized massless phase is in
J4 > 4, the Haldane phase is in − 4

3 < J4 < 4, and the dimer
phase is in J4 < − 4

3 . Now we pay attention to the J4 < 0
case. In this case, two phases appear: the Haldane phase in
− 4

3 < J4 and the dimer phase in J4 < − 4
3 . A phase transition

between the Haldane and the dimer phases occurs at J4 = − 4
3 ,

which is an exact solvable point. This is a second-order phase
transition which is described by c = 3

2 CFT as the k = 2
SU (2) WZNW model. There exists another exact solvable
point at θ = −π/2 which corresponds to the J4 = −4 case.
The ground state at this point is the dimer state in the
Ŝ = 1 case, which smoothly connects to the CD state in
the original S = 1

2 case. On this point, the original ladder
Hamiltonian has an additional symmetry. We can show that
a staggered rung dimer operator

∑
j (−1)j S1,j · S2,j com-

mutes with the Hamiltonian (1) with Jleg = 1, Jrung = 0, and
J4 = −4.

Then we can obtain the ground-state phase diagram of
the original spin ladder system in the strong negative rung-
coupling limit as follows. The Haldane phase is in − 4

3 < J4 <

0 and the CD phase is in J4 < − 4
3 , and this phase transition at

J4 = − 4
3 is of second order.

III. NUMERICAL ANALYSIS

In this section, we determine transition points and the
universality class. We numerically analyze the S = 1

2 two-
leg Heisenberg spin ladder system with a negative four-
spin interaction (1). We use results by the numerical exact
diagonalization up to L = 16 (the number of sites, N = 32)
with the periodic boundary condition (PBC) and the twisted
boundary condition (TBC).

A. Haldane–columnar dimer transition

In this section, we study the phase transition between
the Haldane phase and the CD phase. This CD phase is
smoothly connected to the Ŝ = 1 dimer phase in the Ŝ = 1
bilinear-biquadratic model (2). So we expect that a direct
transition occurs in a (Jrung,J4) parameter space. Because
of the bosonization study for the weak-coupling limit34 and
discussions of the strong negative Jrung limit in Sec. II, this
phase boundary starts from (Jrung,J4) = (0,0) to (Jrung,J4) =
(−∞,− 4

3 ) in the Jrung � 0 and J4 � 0 region. The start point
and the end point are gapless. And the phase transition for
the corresponding effective Ŝ = 1 model is the integrable
Takhtajan-Babujian model,41 which is described by the k = 2
SU (2) WZNW model.40,42,43 So we expect that this Haldane-
CD phase transition belongs to the same universality class.
Then we can use the TBC method47,48 in order to determine
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-17.8
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-17.5

-0.5 -0.46 -0.42 -0.38 -0.34
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FIG. 4. (Color online) Level crossing in the system under the
twisted boundary condition for L = 16 (N = 32) at Jrung = −1.0
with the absolute unit Jleg = 1. The symbol + is the lowest energy
with Sz

T = 0, P ∗
l = 1, and P ∗

r = 1. The symbol ∗ is the lowest
energy with Sz

T = 0, P ∗
l = −1, and P ∗

r = 1.

this phase boundary. The TBC is as follows:

S±
α,j+L = −S±

α,j , Sz
α,j+L = Sz

α,j , (4)

where α = 1,2 denotes the chain index and L(=N/2) is the
system size. Here we define quantum numbers under this TBC.
We define a leg parity P ∗

l which is related to the inversion
symmetry along the leg direction S

β

α,j ↔ S
β

α,L−j+1 where α =
1,2 and β = x,y,z. Next we define a rung parity Pr which
is related to the inversion symmetry along the rung direction
S

β

1,j ↔ S
β

2,j . The TBC does not affect this rung parity. We
define Sz

T ≡ ∑
α,j Sz

α,j as a total magnetization. The TBC does
not affect the total magnetization.

We can detect phase-transition points using level crossing
points between two lowest energy eigenvalues with quan-
tum numbers Sz

T = 0, P ∗
l = 1, Pr = 1 with the TBC and

the lowest one with Sz
T = 0, P ∗

l = −1, Pr = 1 with the
TBC.47,48 We show numerical results for L = 6,8,10,12,16
(N = 12,16,20,24,28,32) using the exact diagonalization. In
Fig. 4, we show the level crossing for L = 16 and Jrung =
−1.0. These crossing points depend on the system size. In
Fig. 5, we show the size dependence of crossing points for
Jrung = −1.0. Because there are finite size corrections from
the irrelevant field, we need to extrapolate crossing points.
These leading corrections come from the irrelevant field with
the scaling dimension x = 4 such as L−2L̄−21, L2

−21, and
L̄2

−21,50,51 where L−n,L̄−n are generators of the conformal
transformation.52 These fields are related to the lattice effect
not included in the continuum theory. We extrapolate crossing
points as follows:

J cross
4 (L) = J cross

4 + a
1

L2
+ b

1

L4
+ (higher-order terms),

(5)

where we neglect higher-order terms. We present the phase
boundary (level crossing points) in Fig. 6.

Next we confirm the universality class of this Haldane-
CD transition, and we justify this type of level crossing
method with the TBC to determine this phase boundary.
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FIG. 5. (Color online) Size dependence of crossing points for
Jrung = −1.0 as a function of 1/L2 with the absolute unit Jleg = 1.

This phase transition is expected to be of second order.
Because it is believed that ground states of one-dimensional
quantum systems on critical points are invariant for conformal
transformations, we can determine the universality class using
the CFT.52

In the CFT, the leading finite size correction of the ground-
state energy on a critical point with the PBC has the following
form:

Eg (L) � εL − πvc

6L
, (6)

where L is the system size, Eg(L) is the ground-state energy
for a finite system size, ε is the energy per unit length in the
infinite system limit, v is the velocity of the system, and c is the
cental charge.42,53 By the way, we can obtain this central charge
from the entropy profile of finite systems.54 However, we need

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

-5 -4 -3 -2 -1  0  1  2

J 4

Jrung

Rung-Singlet

Haldane

Columnar-Dimer

FIG. 6. (Color online) The ground-state phase diagram of the spin
ladder system (1) for J4 < 0 with the absolute unit Jleg = 1, which is
obtained from L = 6,8,10,12,14,16. The phase boundary between
the rung-singlet phase and the columnar-dimer phase is determined
by the PRG method and this is a second-order phase transition
which belongs to the two-dimensional Ising universality class. The
phase boundary between the Haldane phase and the columnar-dimer
phase is determined by the twisted boundary condition method
and is a second-order phase transition which is described by
c = 3

2 CFT.

very large systems in order to obtain accurate values from the
entropy numerically.55 So we obtain the central charge from
Eq. (6).

Unfortunately, there are logarithmic corrections for the
ground-state energy of finite size systems on critical points
because of the marginally irrelevant field as follows:

Eg (L) � εL − πv

6L

(
c + b

(ln L)3

)
+ higher order, (7)

where b is constant. Fortunately, it is proved that there are
no O( 1

ln L
), O( 1

(ln L)2 ) terms.56–58 In this paper, we neglect

O( 1
(ln L)3 ) and higher-order terms, since these corrections are

expected to be small enough.
To obtain the central charge, we need the value of the

velocity. We can determine the velocity v by the current
field with the scaling dimension x = 1 and the wave number
q = 2π/L,

v = lim
L→∞

L

2π

(
E

(
q = 2π

L

)
− Eg

)
. (8)

The finite system velocity is

v(L) = L

2π

[
E

(
q = 2π

L

)
− Eg

]
. (9)

Since there are no logarithmic corrections in a current-current
correlation,59 we can extrapolate the velocity as follows:

v (L) = v + a
1

L2
+ b

1

L4
+ higher-order terms, (10)

where a and b are fitting parameters. In Fig. 7, we show
the central charge on the crossing line obtained with the
TBC. We can see the central charge decreasing from c = 2
to c = 3

2 . At (Jrung,J4) = (0,0), the system consists of two
independent antiferromagnetic Heisenberg chains and has
SU (2) × SU (2) symmetry. In this case, we know the exact
solution by Bethe ansatz. This system is described by the
two independent Tomonaga-Luttinger (TL) liquids. One TL

 0

 0.5

 1

 1.5

 2

 2.5

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5  0

Jrung

FIG. 7. (Color online) The central charge (+) and scaling di-
mensions (×), (�) on the phase transition line. Scaling dimensions
are extrapolated after logarithmic corrections removed. ∗ denotes the
scaling dimension x = 1 for a q = 0 mode; � denotes the scaling
dimension x = 3

8 for a q = π mode. Here we set the absolute unit
Jleg = 1.
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liquid has the central charge c = 1, so this system has
c = 2(=1 + 1). This point is a multicritical point among the
RS phase, the SD phase, the Haldane phase, and the CD
phase. Now the central charge is expected to be c = 3

2 on the
transition line between the Haldane phase and the CD phase.
At the end point (Jrung,J4) = (−∞,− 4

3 ), we know the central
charge c = 3

2 from the Ŝ = 1 effective model, which is the
exact solvable model, called the Takhtajan-Babujian model.41

We can expect that the Haldane-CD transition connects
to the strong-coupling limit continuously. It is consistent
with Zamolodchikov’s c theorem60 that the central charge
decreases.

Unfortunately, we cannot completely determine the uni-
versality class of the phase transition only by the central
charge. Using non-Abelian bosonization,61,62 we can obtain
a relation between the central charge and the topological
coupling constant k, called the level, of the SU (2) WZNW
model as follows:

c = 3k

k + 2
. (11)

Combining the symmetry of this system and this relation, this
phase transition with the central charge c = 3

2 is described by
the k = 2 SU (2) WZNW model.40,42

Usually, the universality class is classified by the set of
critical exponents. Here we consider scaling dimensions which
are related to energy gaps of the finite size system, because
scaling dimensions are related to critical exponents. The
scaling dimension x of a primary field in the Kac-Moody
algebra can be completely classified by the left and right spins
sL = sR = 0,1/2, . . . ,k/2,

x = 2sL (sL + 1)

k + 2
, (12)

where k is a level of the WZNW model.62 Now we have sL =
sR = 0, 1

2 ,1 because of k = 2. Thus, the k = 2 SU (2) WZNW
model has two relevant primary fields. One has sL = sR = 1

2 ;
then the scaling dimension is x = 3

8 with the total spin S = 0,1.
Since the operators with the half odd integer sL are odd under
one-site translation, they correspond to states with momentum
q = π . Another has sL = sR = 1; then the scaling dimension
is x = 1 with the total spin S = 0,1,2. Since the operators
with the integer sL are even under one-site translation, they
correspond to states with momentum q = 0.58 In the CFT,
scaling dimensions are related to excitation energy in the finite
size system with the PBC,49

�Ei = Ei − Eg � 2πv

L
xi, (13)

where Ei is the excitation energy, xi is the scaling dimen-
sion, and i is an index characterizing the excitation state.
Unfortunately, there exist logarithmic corrections because
of marginal operators.58,63 A leading logarithmic correc-
tion in the k = 2 SU (2) WZNW model is the following
form:58

�Ei � 2πv

L

(
xi − 1

2

S(S + 1) − sR(sR + 1) − sL(sL + 1)

ln L

)
.

(14)

Using this formula, we can remove leading logarithmic
corrections by selecting excitations with appropriate quantum
numbers. After we remove logarithmic corrections, there are
other finite size corrections from the irrelevant field with
x = 4, L−2L̄−21, L2

−21, and L̄2
−21.50,51 To remove effects of

this irrelevant field, we can use the following extrapolation
formula:

xi (L) = xi + a
1

L2
+ b

1

L4
+ higher-order terms, (15)

where a and b are nonuniversal coefficients, and we neglect
higher-order correction terms here.

For the x = 3
8 case with momentum q = π and spin s =

0,1, we obtain the following excitation energies from Eq. (14):

�Ei (S = 1) � 2πv

L

(
xi − 1

4

1

ln L

)
(16)

and

�Ei (S = 0) � 2πv

L

(
xi + 3

4

1

ln L

)
. (17)

Using these formulas, we can remove the leading logarithmic
corrections as follows:

xi � L

8πv
[3�Ei (S = 1) + �Ei (S = 0)] . (18)

In Fig. 7, we show the scaling dimension x � 3
8 on the phase

transition points after extrapolation by Eq. (15).
Next for the x = 1 case with momentum q = 0 and spin

s = 0,1,2, we obtain the following excitation energies from
Eq. (14):

�Ei(S = 2) � 2πv

L

(
xi − 1

ln L

)
, (19)

�Ei(S = 1) � 2πv

L

(
xi + 1

ln L

)
, (20)

and

�Ei (S = 0) � 2πv

L

(
xi + 2

1

ln L

)
. (21)

Using these formulas, we can remove the leading logarithmic
corrections as follows:

xi � L

4πv
[�Ei (S = 2) + �Ei (S = 1)] . (22)

In Fig. 7, we show the scaling dimension x � 1 on the phase
transition points after extrapolation by Eq. (15). We confirm
good agreement with c = 3

2 , x = 3
8 , and x = 1 on the transition

line.

B. Rung singlet–columnar dimer transition

In this section, we study the phase transition between
the RS phase and the CD phase. In the CD phase, ground
states are gapful and twofold degenerate because of the
spontaneously broken Z2 symmetry which is related to the
one-site translational symmetry. In the RS phase, the ground
state is unique and gapful. So this phase transition is expected
to be of second order and belongs to the two-dimensional
Ising universality class.34 We can determine this type of phase
transition point using the PRG method.64 In this method, we
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FIG. 8. (Color online) The level crossing of the scaled gap L�E

with J4 = −1.1 between L = 14 and L = 16 with the absolute unit
Jleg = 1.

see the scaled gap L�E (L), for which the excited state is
degenerate to the ground state in the thermodynamic limit. This
energy gap for finite systems behaves as �E ∝ exp [−L/ξ ]
for L → ∞ in the CD phase, where ξ is a correlation length.
On the other hand, in the RS phase, �E remains finite in the
thermodynamic limit. Thus, this scaled gap L�E (L) increases
with the system size L in the RS phase (Jrung > Jc

rung) and
decreases in the CD phase (Jrung < Jc

rung), where J c
rung means

the critical value of Jrung at the RS-CD transition. We use the
following equation to determine the RS-CD transition point:

L�E
(
L,J c

rung(L,L + 2),J4
)

= (L + 2)�E
(
L + 2,J c

rung(L,L + 2),J4
)
. (23)

We show scaled gaps for J4 = −1.1 and L = 14,16 in Fig. 8.
These crossing points depend on the system size. So we need
to extrapolate crossing points of scale gaps in the following
equation:

J c
rung(L,L + 2)

= J c
rung + a

1

(L + 1)2
+ b

1

(L + 1)4
+ higher order, (24)

where we neglect higher-order terms. Here we show the size
dependence of crossing points for J4 = −1.1 in Fig. 9. We can
apply the same procedure for each J4. Then we can obtain the
phase boundary between the RS phase and the CD phase. This
phase boundary is shown in Fig. 6.

IV. SUMMARY AND DISCUSSION

In this paper, we have studied the S = 1
2 two-leg spin ladder

systems with the negative four-spin interaction. The expected
phases are the RS, the CD, and the Haldane phases. We have
determined the ground-state phase diagram using the TBC
method and the PRG method numerically.

First, we considered the strong negative rung-coupling
limit. We derived the Ŝ = 1 effective model. Then we obtained
a part of the phase diagram. In this limit, there are the Haldane
phase and the Ŝ = 1 dimer phase, which corresponds to the
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FIG. 9. (Color online) Size dependence of crossing points of the
scaled gap for J4 = −1.1 as a function of 1/(L + 1)2 with the absolute
unit Jleg = 1.

S = 1
2 CD phase. The phase transition between these two

phases is of second order, which is described by the k = 2
SU (2) WZNW model.

We numerically determined the phase boundary between
the Haldane phase and the CD phase using the twisted bound-
ary condition method. And we confirmed the universality
class of this phase transition by combining the CFT and the
numerical diagonalization. We obtained the central charge
c � 2 at (Jrung,J4) = (0,0) and c � 3

2 on this transition line.
This means that the phase transition is of second order between
these two phases in this ladder system, and this phase transition
connects from (Jrung,J4) = (0,0) to (Jrung,J4) = (−∞,− 4

3 )
smoothly.

And we numerically calculated scaling dimensions x

because we cannot completely determine the universality
class from the central charge only. We expected that this
universality class would be the k = 2 WZNW model. This
universality class has logarithmic corrections, because this
model has SU (2) symmetry. Assuming this universality class,
we removed logarithmic corrections. We obtained x � 3

8 and
x � 1 on this transition line. As a result, we conclude that
this phase transition is of second order, which is described
by the k = 2 SU (2) WZNW model. This is consistent to
Takayoshi and Sato’s prediction by a bosonization approach.34

Our results suggest that this phase transition smoothly connects
to the strong negative rung-coupling limit which is the
Takhtajan-Babujian point of the S = 1 bilinear-biquadratic
chain.
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