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Phenomenological model of anomalous magnon softening and damping in half-metallic manganites
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To describe anomalous zone-boundary softening and damping of magnons in manganites we present a
phenomenological two-fluid model containing ferromagnetic Fermi-liquid and non-Fermi-liquid components
associated with the itinerant and core electrons of Mn. The observed discontinuous increase of magnon damping
is explained by the intersection of magnon dispersions with the electron-hole Stoner continuum arising due to
the breakdown of the half-metallic ground state of manganites supported by the experiments and analysis of
zero-point effects. Coupling of the Fermi-liquid and non-Fermi-liquid fluids yields conventional long wavelength
magnons damped due to their interaction with longitudinal spin fluctuations.
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Metallic ferromagnetic manganites with colossal magne-
toresistance in addition to numerous potential applications
demonstrate fascinating physics including their anomalous
magnetic dynamics below the Curie temperature TC . In the
high-TC manganites such as La0.7Sr0.3MnO3 (TC = 378 K)
and La0.7Pb0.3MnO3 (TC = 355 K) magnon spectra can be
well explained within the effective Heisenberg model,1 which
for manganites follows from the canonical Vonsovsky and
Zener description usually addressed as the double-exchange
(DE) model.2

In the low-TC manganites Pr0.63Sr0.37MnO3 (TC = 301 K),
La0.7Ca0.3MnO3 (TC = 238 K), and Nd0.7Sr0.3MnO3 (TC =
198 K) magnons exhibit appreciate damping in the long
wavelength limit and on approaching the Brillouin zone
boundary they are softened and strongly damped,3 which
cannot be attributed to the Heisenberg-type interactions.
According to Ref. 3 at low temperatures magnon damping
in these systems abruptly increases near the wave vec-
tor kc ∼ 0.3 (in the reciprocal lattice units, r.l.u.) where
magnons merge with longitudinal optical phonons. How-
ever, no signs of magnon-phonon coupling could be seen
in the magnon spectra including an energy gap between
magnon and phonon frequencies. For the wave vectors kc >

0.3 the magnon dispersion curves in the [001] and [110]
directions follow almost flat optical phonon dispersions,
and higher-frequency magnons are wiped out.1,3 Proba-
bly, it would be more adequate to speak about locking
of magnon modes on the optical phonon branches and
about the magnetovibrational nature of the zone-boundary
magnons.4

Several mechanisms were proposed to account for the
anomalies of the zone-boundary magnon spectra in the low-TC

manganites using the effective Heisenberg Hamiltonian or
the DE approach2 to describe (i) four-magnon scattering,1

(ii) magnon-phonon scattering with emission (absorption)
of a phonon by magnons,5,6 (iii) two-magnon scattering by
itinerant electrons without spin flip,7 and (iv) scattering of
magnons by orbital fluctuations.8 An additional mechanism
due to (v) scattering of magnons by longitudinal spin
fluctuations (SF) with emission (absorption) of a SF by
magnons first discussed in Ref. 9 could also describe magnon
anomalies in manganites and will be discussed elsewhere.

Here we only apply the latter mechanism to account for the
long wavelength magnon damping.

First, we comment on the scattering mechanisms
(i)–(iii) which result in magnon damping with the model-
independent temperature and wave-vector dependencies
(model-dependent parameters only affect the coupling ma-
trix elements). Magnon damping due to four-magnon scat-
tering processes [(i)] was analyzed in the Heisenberg
magnets10,11 and ferromagnets with itinerant electrons12 more
than half a century ago and were shown to be negligibly
small, ∼k2T 2 ln2[kBT /h̄ωm(k)]T →0 → 0 at low temperatures
[kBT � h̄ωm(k)], vanishing in the ground state (T = 0),
where k and ωm(k) are the wave vector and magnon frequency,
and T is the temperature. So, four-magnon scattering cannot
contribute to the observed anomalous magnon damping at low
temperatures in manganites.

Damping of magnons due to magnon-phonon scattering
processes [(ii)] was also discussed long ago for the Heisen-
berg magnets13 and itinerant electron systems14,15 and was
shown to be exponentially small at low temperatures,14,15

∼k4/T [exp(kBϑ2
D/h̄ωm(k)T ]T →0 → 0 (where ϑD is the De-

bye temperature), vanishing in the ground state. Three decades
later this result was independently reexamined with respect to
manganites using the DE5 and Heisenberg6 models. However,
the authors5,6 analyzing this mechanism arrive at absolutely
different results, e.g., they find finite magnon damping in
the ground state, which is in strong disagreement with the
previous findings.13–15 In addition, finite magnon softening in
the ground state was reported.6 These results should perhaps
be reexamined.16

Two-magnon scattering by itinerant electrons without spin
flip [(iii)] was first analyzed about five decades ago and
shown to give finite magnon damping in the ground state
of ferromagnets with itinerant electrons17 ∼k6. Later this
result was generalized to account for finite temperatures and
complicated Fermi surfaces18 and applied for the s-d model for
ferromagnets.19 Independently similar results were obtained
within the DE model for manganites.7

A joint feature of the approaches7,8 describing the effects
of scattering of magnons by electrons and orbital fluctuations
is the continuous increase of magnon damping on approaching
the Brillouin zone boundaries which disagrees with the
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observed abrupt rise in magnon damping near1,3 k ≈ kc ∼
0.3 r.l.u. Finally, all mentioned mechanisms (i)–(iv) are based
on the assumption of weak magnon damping although they are
used to explain strong damping of magnons on approaching
the Brillouin zone boundaries.

On the other hand, the obvious reason for the abrupt increase
of magnon damping could be related to a possible intersection
of the magnon dispersion curve with the electron-hole Stoner
continuum20 leading to the strong Landau damping. However,
Landau damping is ruled out if to use the canonical DE
description of manganites or band structure calculations
leading to their half-metallic character.21

Here it is necessary to comment on the nature of
half-metallic behavior of manganites. According to the
mean-field treatment of the one band DE exchange model
itinerant eg electrons of Mn are 100% polarized and oc-
cupy only majority-spin subbands due to strong Hund’s-
rule coupling. Within this treatment manganites have only
one spin channel for the electron conductivity at the Fermi
surface and should be considered as half-metallic. Indeed,
spectroscopic measurements in La0.7Sr0.3MnO3 (TC = 378 K)
using spin-polarized photoemission22 at T = 40 K and inverse
photoemission23 at T = 100 K discovered 100% polarization
which was questioned in Ref. 24. The results of photoemission
measurements22,23 are essentially different from those inferred
from the tunnel junctions experiment which led to the
essentially lesser values of the polarization25,26P ∼ 80%,
which seems to be more realistic.24,27

Besides that, there are fundamental limitations for the
half-metallic behavior caused by the mixing of electronic
spins due to the effects of magnons and phonons coupled
to the magnetic system and the appearance of minority
spin electrons at the Fermi surface at finite temperatures.24

This conclusion was generalized by accounting for SF in
the classical approximation, which were shown to lead to
a significant decrease of the polarization above T > 0.4TC

and the disappearance of half-metallicity above27 T > 0.7TC .
The main finding of Refs. 24 and 27 is that half-metallicity
in manganites may be at best expected at zero temperature.
Similar effects on the spin polarization one should expect in the
ground state, which are caused by zero-point SF,28 are usually
considered to be giant.29,30 However, the analysis of zero-point
effects needs a microscopic approach,31 which is out of the
scope of the present paper and will be discussed elsewhere.

Anyhow, the measurements of the spin polarization in
manganites25,26 seriously question their half-metallicity in the
ground state and allow for the low-frequency electron-hole
Stoner continuum which may play an essential role in their
magnetic dynamics and give rise to strong Landau damping of
magnons (see Refs. 1 and 20).

To analyze the transverse magnetic dynamics and anomalies
of the magnon spectra of manganites we use a phenomeno-
logical approach based on the concept of the generalized
magnetic susceptibility χ (k,ω) which is associated with the
transverse fluctuations of the magnetic order parameter with
an amplitude m(k,ω), where ω is the frequency of SF. This
approach is based on the assumption that all variables other
than magnetic (e.g., individual Fermi excitations, charge and
lattice fluctuations) are integrated out,31–33 which means that
all nonmagnetic collective modes including lattice vibrations

adiabatically follow magnetic (spin) fluctuations which can
be viewed then as coupled spin-lattice fluctuations.32 The
approach is advantageous for manganites where spin-lattice
coupling is believed to be strong.1

To calculate the susceptibility χ (k,ω) we use a phenomeno-
logical two-fluid model decoupling the amplitude m(k,ω) =
m1(k,ω) + m2(k,ω) into two transverse components m1(k,ω)
and m2(k,ω). The first one describes a ferromagnetic Fermi
liquid which may be associated with itinerant outer-shell
electrons of Mn, and the other is related to a non-Fermi-liquid
component of the magnetization born out of the core electrons
on Mn sites. Both components are associated with the “partial”
dynamical susceptibilities χ1,2(k,ω) of two fluids and describe
their linear response m1,2(k,ω) = χ1,2(k,ω)B(k,ω) to the
transverse magnetic field B(k,ω).

Allowing for the coupling of two fluids one arrives at the
following explicit form for the generalized dynamical suscep-
tibility of the total system in the mean-field approximation (cf.
Ref. 34):

χ (k,ω) = χ1(k,ω) + χ2(k,ω) + 2λχ1(k,ω)χ2(k,ω)

1 − λ2χ1(k,ω)χ2(k,ω)
. (1)

Here λ accounts for coupling of fluids, which we assume to
be ferromagnetic and neglect its spatial and time dispersions,
λ = const > 0. The susceptibility (1) founds the basis for the
phenomenological two-fluid model for transverse magnetic
dynamics of manganites presented here. Similar models were
used for the description of the neutron scattering spectra in
heavy fermion systems34,35 and for the interpretation of the
density functional calculations in iron pnictides.36

It should be noted that Eq. (1) formally gives the dynamical
susceptibility in the DE model if one considers χ1(k,ω) and
χ2(k,ω) as “partial” susceptibilities of itinerant and localized
moment subsystems and λ as a coupling constant describing
the interaction between them.37 Unlike the DE model the
susceptibility (1) is not related to any microscopic Hamiltonian
and founds the basis for a phenomenological approach being
an alternative to microscopic descriptions, which is justified
below by the analysis of the anomalies of the magnon spectra
in manganites.

Here we use a minimal phenomenological model in order
to explain anomalies of the magnon spectrum of manganites
and take the partial Fermi-liquid susceptibility χ1(k,ω) in the
following form:

χ1(k,ω) = χ1(k)
ω0(k)

ω0(k) − ω − i�(k,ω)
, (2)

where ω0(k) is the frequency of “bare” optical magnons not
vanishing in the long wavelength limit [ω0(k = 0) = ω0 �= 0].
We emphasize that these bare magnons describing the poles
of the partial magnetic susceptibility (2) are not the normal
magnon modes of the total system, and due to strong spin-
lattice coupling in manganites they must be better viewed as
magnetovibrational modes.4 Here

�(k,ω) = θ [ω − ωS(k)]
ωω0(k)

ωf l(k)
(3)

is a conventional Fermi-liquid term accounting for the Landau
damping in the Stoner continuum, ωf l(k) is the characteristic
frequency of transverse SF, the function θ [ω − ωS(k)] is unity
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inside the Stoner continuum [when ω > ωS(k)] and zero
otherwise, and ωS(k) is the lower boundary of the Stoner
continuum. As we shall see later, ω0(k) appears to be close
to the frequencies of longitudinal optical phonons, confirming
strong spin-lattice coupling in the low-TC manganites.

For the non-Fermi-liquid component of the magnetic
susceptibility we use a static approximation χ2(k,ω) ≈ χ2(k).
Here we do not consider the magnetic relaxation aside the
Stoner continuum, which we account for later.

The static partial susceptibilities χ1,2(k) we present in the
form

χ−1
1,2 (k) = χ−1

1,2 [1 + a1,2(k)], (4)

where the terms a1,2(k) account for their spatial dispersion
which in the long wavelength limit we assume to be isotropic
and quadratically dependent on the wave vector,

a1,2(k) = (ξ1,2k)2, (5)

where ξ1,2 are correlation lengths.
Using Eq. (2) and assuming that ω � ωf l(k) we present

the generalized dynamical susceptibility (1) near the magnon
dispersion in the following explicit form:

χ (k,ω) = χ (k)z(k)
ωm(k)

ωm(k) − ω − iτ−1(k)
, (6)

which has a pole at the magnon frequency

ωm(k) = ω0(k)[1 − λ2χ1(k)χ2(k)], (7)

describing a true normal mode of our two-fluid system. Here

χ (k) = χ1(k) + χ2(k) + 2λχ1(k)χ2(k)

1 − λ2χ1(k)χ2(k)
(8)

is the static transverse susceptibility,

z(k) = χ1(k)
[1 + 2λχ2(k)]2

χ1(k) + χ2(k) + 2λχ1(k)χ2(k)
(9)

is the relative weight of the magnon mode, and τ−1(k) =
�[k,ωm(k)] describes damping of magnons in the Stoner
continuum.

Below the magnon dispersion ω < ωm(k) the susceptibility
(6) describes overdamped transverse SF in the Stoner con-
tinuum, which are out of the scope of the present paper.
We also emphasize that all the parameters (2)–(5) defining
the dynamical magnetic susceptibility (1) and (6) and the
spectrum of magnons (7) characterize the ground state of
manganites in our phenomenological model and incorporate
all quantum zero-point effects from the transverse SF in the
Stoner continuum and longitudinal SF in the continuums of
electrons and holes with the same polarization.

The factor [1 − λ2χ1(k)χ2(k)] plays the role of an enhance-
ment factor for the susceptibility (8), and vanishes in the long
wavelength limit,

1 − λ2χ1χ2 = 0. (10)

This equality could play a role of the magnetic equation of state
if one would know the dependencies of χ1,2 on the magnetic
order parameter.

The important consequence of Eq. (10) is the gapless
character of the magnon spectrum (7) which with account

of Eq. (4) takes the form

ωm(k) = ω0(k)
a1(k) + a2(k) + a1(k)a2(k)

[1 + a1(k)][1 + a2(k)]
(11)

and vanishes in the long wavelength limit

a1,2(k) ≈ (ξ1,2k)2 � 1, (12)

where the magnon dispersion is isotropic and quadratic,

ωm(k) ≈ ω0(k)[(ξ1k)2 + (ξ2k)2] ≈ Dk2, (13)

and D = ω0(k = 0)(ξ 2
1 + ξ 2

2 ) is the magnon stiffness.
Equation (13) agrees with the measured isotropic long wave-
vector spectrum of manganites.1 As follows from Eq. (9), the
weight factor z(k) in this limit equals unity [z(k → 0) ≈ 1].

It should be noted that within our two-fluid model the
high-frequency mode ω = ω0(k) of the Fermi-liquid fluid
is transferred into the acoustical magnon (11) due to the
exchange coupling of the fluids. In a sense, this is similar to the
transfer of the plasma ion mode in metals into the acoustical
longitudinal phonon due to the electron Coulomb screening of
ions. It should also be noted that the magnon spectrum (11)
is not directly affected by magnon damping defined by the
Stoner excitations and, therefore, by zero-point longitudinal
and transverse SF, which only renormalize the ground state
parameters ω0(k) and a1,2(k).

The magnon spectrum and damping given by Eqs. (6)
and (11) may account for anomalous magnon softening
and damping on approaching the Brillouin zone boundaries
observed in manganites.1,3 To explain the anomalies of the
magnon spectrum in manganites within our phenomenological
model one should take into account anisotropic dependencies
of ω0(k), ωf l(k), and a1,2(k) on the wave vector, which must
be inferred from the measured data.

Due to the lack of the experimental data for the magnon
spectra in the whole Brillouin zone we shall limit ourselves to
the qualitative analysis of magnon anomalies near the Brillouin
zone boundaries along several directions. Namely, we analyze
the magnon spectrum along the [001] and [110] directions
in the low-TC manganites La0.7Ca0.3MnO3, Pr0.63Sr0.37MnO3,
and Nd0.7Sr0.3MnO3.

This allows us to make further approximations minimiz-
ing the number of parameters that should be taken from
experiments. Namely, we neglect the spatial dispersion of
the frequency ωf l(k) ≈ ωf l(0) = ωf l and the partial suscep-
tibility χ1(k) ≈ χ1 [or set a1(k) = 0 and ξ1 = 0], and use an
approximate equality a2(k) ≈ (ξ2k)2 throughout the Brillouin
zone.

Then the magnon frequency (11) is given by the following
explicit formula:

ωm(k) = ω0(k)
(ξ2k)2

1 + (ξ2k)2
. (14)

It has a quadratic dispersion in the long wavelength limit
(ξ2k)2 � 1 with the magnon stiffness D = ω0ξ

2
2 , softens

at |k| ∼ ξ−1
2 = ks , and saturates ωm(k) ≈ ω0(k) at short

wavelengths (ξ2k)2 � 1.
Magnon damping in Eq. (6)

τ−1(k) = ω2
0(k)

ωf l

θ [ωm(k) − ωS(k)] (15)
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exhibits a discontinuous jump when the magnon dispersion
curve crosses the Stoner continuum boundary at the wave
vector k = kc defined by

ωm(k) = ωS(k). (16)

In microscopic descriptions magnon dispersion possesses
logarithmic softening when it crosses the Stoner continuum
boundary,38 so, one should expect that the wave vector kc

is close to the value ks at which the magnon dispersion
demonstrates softening.

In the low-TC manganites Pr0.63Sr0.37MnO3,
La0.7Ca0.3MnO3, and Nd0.7Sr0.3MnO3 the magnon dispersions
measured by inelastic neutron scattering1 are quadratic up
to the wave vector ks ∼ 0.2 r.l.u. At higher wave vectors
magnon energies exhibit softening and saturation, which
is strongly anisotropic being about 20 and 40 meV along
[001] and [110], and are close to the energies of longitudinal
optical phonons in these directions. It should be noted that
in Nd0.7Sr0.3MnO3 zone-boundary magnons in the [110]
direction are overdamped to be observed experimentally.3

To account for the anisotropy of magnon softening and
saturation in the low-TC manganites we are to allow for the
wave-vector dependence of the bare magnon frequency of the
ferromagnetic fluid,

ω0(k) ≈
⎧⎨
⎩
ω0, (ξ2k)2 � 1
ω1, (ξ2k)2 � 1, [001]
ω2, (ξ2k)2 � 1, [110]

, (17)

where we take the saturation energies in the [001] and [110]
directions h̄ω1 ≈ 22 and h̄ω2 ≈ 40 meV from Refs. 1 and 3,
which appear to be close to the energies h̄
1 ≈ 27 and h̄
2 ≈
49 meV of the optical longitudinal phonons.3

It should be emphasized that the frequencies ω1,2 are
the magnon (or magnetovibrational) frequencies defined by
the pole of the transverse magnetic susceptibility (6). Their
proximity to the optical phonon frequencies 
1,2 probably
results from the spin-lattice couplings incorporated into the
magnetic dynamics of our model. This proximity in our phe-
nomenological approach is not necessary for the description
of magnon softening and broadening, unlike the microscopic
approach5,6 assuming an intersection of magnon and phonon
dispersions.

First, we analyze the long wavelength magnon spectrum
in the low-TC manganites Pr0.63Sr0.37MnO3, La0.7Ca0.3MnO3,
and Nd0.7Sr0.3MnO3 based on Eq. (11). To minimize the
number of parameters of our model we assume the energy h̄ω0

in Eq. (17) to be equal to its minimal zone-boundary value
h̄ω0 = h̄ω1 ≈ 22 meV. Using the measured magnon stiffness
h̄D = h̄ω0ξ

2
2 ≈ 165 meV A2 one estimates the correlation

length ξ2 ≈ 2.74 A and the wave vector ks = ξ−1
2 ≈ 0.2 r.l.u.

which agrees with the measured vector where softening of the
magnon spectra starts.1,3 It is also close to the value kc ≈ 0.3
marking the abrupt increase of magnon damping in the [001]
and [110] directions. From the analysis of magnon damping
in the [001] direction we can estimate the SF frequency ωf l

in the Stoner continuum. Using the equality τ−1 = ω2
1/ωf l

following from Eq. (15) and the measured abrupt increase
of magnon damping from ∼4 to 12 meV at kc ≈ 0.3 we get
the estimate h̄ωf l ≈ 60 meV, which looks reasonable for SF

in itinerant electron magnets39 and satisfies the assumption
ωf l � ωm(k) we used in Eq. (6).

Up to now we analyzed magnon damping and softening on
the basis of the mean-field magnetic susceptibility (6), which
is the linear approximation to nonlinear magnetic dynamics33

accounting for mode-mode couplings and giving rise to the
above–mentioned (i)–(v) scattering mechanisms.

Finally, we comment on the long wavelength magnon
damping in the low-TC manganites which is also anomalously
high and at the wave vector ks ≈ 0.2 r.l.u. is about 4 meV. The
most effective damping mechanism of magnons in magnets
with itinerant electrons (besides damping in the Stoner
continuum) is caused by the scattering processes with emission
(absorption) of longitudinal SF by magnons.9 In the Born
approximation it gives the following explicit expression for
damping of low-temperature [kBT � ωm(k)] long wavelength
magnons:9

τ−1(k,T ) = 4

5μ

ω2
m(k)

ωSF
∼ k4, (18)

where μ is the magnetic moment of the unit cell in the
units of the Bohr magneton and ωSF is the characteristic
frequency of longitudinal SF (different from the analogous
frequency ωf l of transverse SF in the Stoner continuum).
Comparing magnon damping (18) with the inverse lifetime
due to, e.g., magnon-electron scattering18 one finds that the
latter contains an additional small factor ∼k2 making the
magnon-electron scattering mechanism less effective at long
wavelengths.

Equation (18) is in reasonable agreement with the wave-
vector dependence of long wavelength damping in the low-TC

manganites.1,3 Using the values3 h̄τ−1 ≈ 4 meV and h̄ωm ≈
14 meV for magnons at the wave vector kc ≈ 0.3 r.l.u. in
the [001] direction and the magnetic moment μ ≈ 3.7, we
find the energy of longitudinal SF h̄ωSF ≈ 26 meV. The
difference between energies h̄ωf l ∼ χ−1

1 and h̄ωSF ∼ χ−1
l

of the transverse and longitudinal SF proportional to the
appropriate inverse magnetic susceptibilities39 should be due
to the exchange enhancement of the longitudinal susceptibility
χl compared to the partial transverse one χ1, ωf l/ωSF ∼
χl/χ1 ≈ 2.3, which looks reasonable.

To conclude, our main finding is that zone-boundary
magnon anomalies in the low-TC manganites cannot be
understood without using a concept of the electron-hole
Stoner continuum. We also argue that softening of magnons
near the Brillouin zone boundaries is closely related to their
magnetovibrational character and in our minimal description
can be well described within a two-fluid model containing a
ferromagnetic Fermi liquid and non-Fermi-liquid components.
Aside the Stoner continuum magnon damping can be described
by various mode-mode scattering processes among which
processes with emission (absorption) of longitudinal SF by
magnons are the most important. We emphasize that the
minimal phenomenological description presented here does
not account quantitatively for the anomalies of the magnon
spectra in manganites, which needs a more complicated
model.

This work was supported by the State Atomic Energy
Corporation of Russia “ROSATOM.”
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