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Hong Fang,1 Martin T. Dove,1,2,* Leila H. N. Rimmer,1 and Alston J. Misquitta2

1Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United Kingdom
2Centre for Condensed Matter and Materials Physics, School of Physics and Astronomy, Queen Mary University of London,

Mile End Road, London E1 4NS, United Kingdom
(Received 18 April 2013; revised manuscript received 29 August 2013; published 23 September 2013)

Pressure and temperature dependence of the negative thermal expansion in Zn(CN)2 is fully investigated using
molecular dynamics simulations with a built potential model. The advantage of this study is that it allows us to
reproduce the exotic behaviors of the material, including the negative thermal expansion (NTE), the reduction of
NTE with elevated temperature, the pressure enhancement of NTE, and the pressure-induced softening. Results
of the study provide us detailed data to link the properties in the energy space and the real space, giving us
insights to understand the properties and the connections between them.
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I. INTRODUCTION

Negative thermal expansion (NTE) is a rare and counterin-
tuitive phenomenon found primarily in low-density materials
with crystal structures that are networks of linked coordination
polyhedra. The study of these materials is not only of funda-
mental scientific importance, but also has many technological
applications such as aerospace technologies,1 optics,2 and
electronics.3 While much effort has been put into finding new
materials and investigating the origin of NTE in them, much
less attention has been paid to the change in NTE behavior
subject to heating and stress, which holds great importance
for the possible applications of the material. For example, due
to stresses and heating, problems such as phase transitions
of the NTE filler and thermal expansion misfit between the
NTE filler and matrix are always encountered in designed
composites with tailored thermal expansion.4,5

In this paper, we conduct a simulation study of Zn(CN)2

focusing on the pressure and temperature effects on its
negative thermal expansion. We chose this material for several
reasons. First, Zn(CN)2 is a well-known representative NTE
material.6 It has a framework structure consisting of tetrahedral
groups of atoms linked by diatomic rods of C–N and has
exceptionally large isotropic NTE of αlinear = −16.9 M K−1

(twice as large as that of ZrW2O8
7). Second, the material shows

a variety of exotic properties in experiments,8,9 including
reduction of its NTE on heating, pressure-enhanced thermal
contraction, and pressure-induced softening, none of which
are fully understood. Third, with previous DFT calculations
of Zn(CN)2

10–13 explaining the origin of NTE of the material
in terms of Grüneisen theory, it would be useful to draw a
clear link between the values of the Grüneisen parameters
in energy space and the structural vibrations in real space
with full anharmonicity (which should be important in such
an NTE system) based on theoretically reproducing the
aforementioned exotic properties.

Here, we have built a Zn(CN)2 potential model based
on first-principles calculations. Lattice-dynamic calculations
and large-scale molecular dynamics (MD) simulations were
carried out for the material using this model which was justified
by comparing against the available experimental data. The
results in both energy and real space provide us fundamental

clues to understand the NTE as well as the related exotic
behaviors of Zn(CN)2.

II. BUILDING THE MODEL

We started with total-energy calculations for a [Zn(CN)4]2−
cluster. The −2 charge comes from the fact that every zinc
is shared by four neighbor atoms (C or N), and that the
bond should be highly ionic according to an initial judgment
of zinc having much smaller electronegativity than carbon
and nitrogen. Four CN− molecular ligands around each
Zn2+ would give us a −2 charge on the cluster. Geometry
optimization of the cluster resulted in a perfect tetrahedral
conformation.

Total energies for different configurations of the cluster
(with bond stretching and angular distortions) were computed
using DFT in GAMESS(US) with the PBE0 functional.14,15

Correlation-consistent basis sets up to aug-cc-pVQZ were
tested, and an aug-cc-pVTZ basis set was found to have
sufficient accuracy and no significant basis set superposition
errors (BSSE) at different configurations.

Various interatomic potential forms were then fitted to the
calculated energy curves to obtain the initial potential param-
eters. The short-range interactions are the Morse potential
for Zn–C/N, a harmonic three-body-bond-bending term for
C/N–Zn–N/C, and a linear-three-body term for the angular
distortion of Zn–C/N–N/C. The long-range van der Waals
interactions are described by a Buckingham potential with
parameters from Williams.16

Two types of clusters with Zn–C–N order and Zn–N–
C order are used. The multipoles on each cluster were
calculated by distributed multipole analysis (DMA)17 using
CamCASP.18 The effective point charges on the atoms were
then obtained by fitting to the electrostatic potential from
the rank 4 (hexadecapole) distributed multipoles using the
MULFIT program.19,20 Figure 1 shows the difference in the
electrostatic potential between the point-charge model and the
DMA result. The root mean square of the difference is less
than 4 kJ/mol and 8 kJ/mol for clusters of Zn–C–N and
Zn–N–C, respectively, corresponding to about 1% relative
difference in the electrostatic potential around the clusters. The
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FIG. 1. (Color online) Plot showing the difference between the
electrostatic potentials arising from rank 4 DMA and rank 0 MULFIT

(Refs. 19,20), visualized on the van der Waals surface of (a) a Zn–C–N
ordered cluster and (b) a Zn–N–C ordered cluster. The color bar shows
values of the electrostatic potential difference in kJ/mol. The average
percentage error in the electrostatic potential made by the point charge
model on this surface is 1%.

averaged effective point charges on each atom are (in electron
units) +1.14 for Zn, −0.21 for C, and −0.36 for N. The initial
potential model was then refined by refitting to DFT energy
surfaces of various cluster configurations. The point charges
were fixed during this process.

This gave us final potential parameters that implicitly
incorporate the effects of higher ranking multipole moments
and atomic polarization. Due to the high strength of the C–N
bond,21–25 this group was treated as a rigid rod in all cases.
The potentials with their parameters are listed in Table I.

III. COMPUTATIONAL METHODS

Harmonic lattice dynamics (HLD) and quasiharmonic
lattice dynamics (QHLD) calculations were carried out us-
ing GULP.26 Molecular dynamics (MD) simulations were
performed using DL POLY27 for a 10 × 10 × 10 supercell
containing 10 000 atoms with periodic-boundary conditions. A
constant-stress constant-temperature (NσT ) ensemble with a
Nosé-Hoover thermostat28 was used. The long-range Coulomb
interactions were calculated using the Ewald method with
precision of 10−6. The equations of motion were integrated
using the leapfrog algorithm with a time step of 0.001 ps. A
total of 20 000 time steps were used to achieve equilibration.

At different temperatures and pressures, snapshots of atomic
trajectories after equilibration were recorded every 0.02 ps
up to a total of 50 ps for the follow-up analysis. Both ordered
model with P 4̄3m symmetry and disordered model with Pn3̄m

were used. The latter was constructed by randomly switching
C and N atoms in the supercell.

IV. AN INITIAL TEST OF THE MODEL

We compared some basic quantities obtained from the
model against experiment. The optimized structure gave the
cell parameter as a = 5.9176 Å, and the Zn–C/N bond length
as r = 1.9782 Å compared to a = 5.9227(1) Å and r =
1.9697(3) Å from an experiment at 14 K.24 The model is found
to be stable in lattice-dynamic calculations, and the calculated
phonons are in good agreement with the spectroscopy data,11

as shown in Table II. The dispersion curves shown in Fig. 2
generally agree well with previous DFT calculations.10,13

It is worth noting the close similarity between the dispersion
relations of wave vectors along �–X–R and R–M–�, as well as
the near-mirror symmetry of the dispersion curves along �–R
(the middle line of �–R is the mirror line). This makes sense
given the existence of the two interpenetrating cristobalite-like
networks in the material. For the lowest-frequency mode at
wave vector R, the two networks would translate like acoustic
modes but out of phase with each other, leading to a dispersion
relation that has the appearance of an acoustic mode and a
positive Grüneisen parameter but with a nonzero band gap.
The frequency of this mode is 0.16 THz, lower than the
values of 0.69 THz and 0.48 THz from the DFT calculations
in Ref. 10 and Ref. 13, respectively, suggesting a softer
long-range interaction between the two networks in our model.

V. THERMODYNAMIC PROPERTIES

A. Pressure and temperature dependence of the NTE

The calculated NTE curves of Zn(CN)2 under different
pressures from 0.0 to 0.7 GPa with increments of 0.1 GPa are
shown in Fig. 3. The pressure-enhanced α values (averaged
over 50–300 K) at 0.0, 0.2, and 0.4 GPa are −12.62,
−14.09, and −15.97 M K−1, respectively, compared to
the experimental values9 of −17.40(18), −18.39(27), and
−19.42(23) M K−1 at the corresponding pressures. The MD

TABLE I. The potential model. E is energy, r is interatomic distance, r0 is equilibrium interatomic distance, θ and ϕ are bond angles, and θ0

is equilibrium bond angle. Energies are in eV, distances are in Å, and bond angles are in degrees. The prefactor of the harmonic bond-bending
term is in eV/rad.

Potential Form of the Potential Type of Bond Values of parameters

Zn–C D = 0.2432, α = 2.917, r0 = 2.109
Morse potential EM = D{[1 − exp ( − α(r − r0))]2 − 1} Zn–N D = 0.1795, α = 2.701, r0 = 2.157

C–Zn–C K = 1.5157, θ0 = 109.47
Harmonic three-body potential EH = (1/2)K(θ − θ0)2 C–Zn–N K = 1.2695, θ0 = 109.47

N–Zn–N K = 1.0233, θ0 = 109.47
Zn–C–N K = 1.1968

Linear three-body potential EL = K(1 − cos ϕ) Zn–N–C K = 0.6359
C–C A = 2806.9, ρ = 0.2667, C = 17.67

Buckingham potential EB = A exp(−r/ρ) − (C/r6) C–N A = 2365.0, ρ = 0.2825, C = 20.88
N–N A = 1992.7, ρ = 0.2874, C = 24.67
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TABLE II. Calculated phonon frequencies at the � point for both
CN-ordered and CN-disordered (virtual crystal) models. Experimen-
tal infrared and Raman (Ref. 11) data and DFT-calculated results
(Ref. 13) are provided for comparison. Frequencies are in cm−1.

Mode T1u T2g Eg T2g T1u

Ordered Model 173 186 328 337 463
Disordered Model 210 220 314 349 490
Experiment 178 216 334 339 461
DFT13 178 204 330 336 476

successfully captured the gradual reduction of NTE on heating
which has been observed in x-ray scattering.8 According to the
MD, αV is −30.3 M K−1 at 300 K, much lower than the value
at 25 K, −47.3 M K−1.

Experiment24 has confirmed that Zn(CN)2 exists in a
disordered form with Pn3̄m symmetry; i.e., the carbon and
nitrogen atoms are randomly placed on their symmetric
sites in the structure, compared to the ordered model with
P 4̄3m symmetry. NTE of the disordered model from the MD
calculation is displayed as symbol plots in Fig. 4 compared to
that of the ordered model in solid lines. Clearly, there is no
significant difference between the NTE of these two systems.

B. Pressure and temperature dependence of the
mechanical properties

The bulk modulus B is directly related to the coefficient of
thermal expansion αv according to the classical form

αV = γ̄ cv

B
, (1)

where cv = ∑
s

(h̄ωs/V )(∂ns/∂T ) is the specific heat and

the sum is over all modes with frequencies {ωs}. ns =
[exp(h̄ωs/kBT ) − 1]−1 is the Bose-Einstein relation with kB

the Boltzmann constant. The overall Grüneisen parameter γ̄
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FIG. 2. (Color online) Zn(CN)2 dispersion curves calculated
along high-symmetry directions in the Brillouin zone. Black curves
are the phonons of the zero-pressure cell; light-red curves are the
phonons of the cell at 1.0 GPa hydrostatic pressure. The acoustic
modes at M (0.5, 0.5, 0.0) and at the midpoint of �–R (0.25, 0.25,
0.25) are the first to become unstable at high pressure.
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FIG. 3. (Color online) Zn(CN)2 isotherms calculated for pres-
sures 0.0–0.7 GPa in 0.1 GPa increments. Red lines are calculated
values; black markers are from neutron diffraction data (Ref. 9). The
inset shows the enhancement of NTE under pressure, observed in
both calculations and in experiment.

is calculated by summing over all mode Grüneisen parameters
weighed with their contribution to the specific heat.

At 300 K, the values of the bulk modulus B0 and its
first derivative with respect to pressure B ′

0 at zero pressure
obtained by using the third-order Birch-Murnaghan equation
of states to fit to the isotherms calculated from our MD are
B0 = 34.47(31) GPa and B ′

0 = −4.2(5). Both are in good
agreement with the experimental values of 34.19(21) GPa
and −6.0(7), respectively.9 However, the values of the bulk
modulus obtained from the previous DFT calculations10,13 are
much higher than the experiment.

We obtained the bulk modulus of Zn(CN)2 at different
temperatures and pressures by numerically computing deriva-
tives of the p-V data from the MD simulations. As shown
in Fig. 5, on cooling from 300 K to 50 K, B increases by
26% compared to the experiment of 15%.29 Note that B

does not change much with pressure, but changes largely with
temperature. Referring to Fig. 3, we found that a 5% decrease
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FIG. 4. NTE in Zn(CN)2 calculated using MD. Symbols are data
from the CN-disordered system; solid lines are data from the CN-
ordered system. CN ordering thus has a negligible effect on the NTE
behavior.

104306-3



FANG, DOVE, RIMMER, AND MISQUITTA PHYSICAL REVIEW B 88, 104306 (2013)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

28

32

36

40

44

48
T=10 K

 Pressure (GPa)

B
ul

k 
M

od
ul

us
 (G

Pa
)

50 K

100 K
200 K

300K

400 K

500 K

600 K

FIG. 5. Pressure and temperature dependence of the bulk modulus
of Zn(CN)2. Results calculated using the p-V data from MD
simulations and standard thermodynamic relations. Pressure has far
less influence on the bulk modulus than temperature.

in volume caused by heating at zero pressure corresponds to
as much as 60% decrease in the bulk modulus, while the same
amount of volume decrease caused by compression would
only reduce the bulk modulus by less than 5%. This means
that the bulk modulus of the material not only depends on
the volume change per se, but also on the means of changing
the volume—by heating or compression. This breaks Birch’s
law of corresponding states.30–32 The same anomaly has been
observed experimentally in ZrW2O8, where the bulk modulus
increases by 40% on cooling from 300 K to 0 K.33

According to the thermodynamic expressions of αV =
∂(ln V )/∂T and B = ∂p/∂(ln V ) combined with Maxwell
relation ∂2V/(∂T ∂p)p,T = ∂2V/(∂p∂T )T ,p, the pressure-
enhanced NTE of the material follows naturally from the
relation

(
∂αV

∂p

)
T

= 1

B2

(
∂B

∂T

)
p

. (2)

Since the temperature dependence of B is negative as shown
in Fig. 5, αV would become more negative on compression.
This is consistent with what is seen in the positive expansion
materials where αV > 0 so that αV would decrease on
compression.

We found that the value of B ′
0 from a lattice-dynamic

calculation using GULP26 is 7.2 compared to its negative value
at 300 K. This suggests that all the mechanical contributions
at T = 0 are from the Zn–C/N bonds that become stiffened
on compression. With elevated temperature, one can imagine
that the Zn–C/N–N/C angle flexing starts to contribute to
the change of volume on pressure. This mechanism costs
much less energy than compressing the Zn–C/N bonds as
suggested by values of the parameters in the Morse potential
and the linear-three-body potential of the model (Table I). As
a result, the bulk modulus decreases on compression hence the
negative B ′

0, i.e., pressure-induced softening of the material.
At high temperature, B ′

0 is expected to become less negative on
heating due to the rising energy cost of further increasing the
Zn–C/N–N/C angle vibrational amplitude on compression.
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FIG. 6. (Color online) Pressure- and temperature-dependence of
Zn(CN)2 volume, calculated using MD. The inset shows the change
in volume with pressure up to 3.0 GPa at 300 K. A high-pressure
phase settles down after the clear discontinuity at 2.1 GPa.

The temperature dependence of B ′
0 is especially discussed in

our other work.29

VI. PHASE TRANSITIONS

In Fig. 6, simulations were conducted for Zn(CN)2 at
different temperatures in a much broader range of pressure
from −2.0 to 3.0 GPa, and there is clearly a phase transition of
the material caused by compression at each temperature. With
elevated temperature, the phase-transition pressure indicated
by the discontinuity in the volume change increases, implying
that the phase transition may be triggered by some soft modes
that can be stabilized on heating due to the anharmonic term in
their frequencies. Indeed, as shown in Fig. 2, if we compare the
dispersion curves calculated at a pressure beyond 1.0 GPa (in
light red) to that at zero pressure (in black), we find softening of
the acoustic modes around the zone boundaries, especially the
modes at M and the midpoint of �–R (0.25,0.25,0.25), which
are the first ones to become unstable. The concurrent softening
of the optic modes (∼1.5 THz) directly above these acoustic
modes suggests a possible hybridization between the acoustic
modes and the optic modes, resulting in a k2 energy behavior34

at k �= 0. The same result was found for the disordered model.
The inset of Fig. 6 shows the change of volume with

pressure up to 3.0 GPa at 300 K. The volume discontinuities at
1.2 and 2.1 GPa may suggest hysteresis in the phase transition.
We found that the new high-pressure phase is orthorhombic
with the P 212121 space group (a = 10.72 Å, b = 10.78 Å,
c = 10.88 Å). This is compared to an orthorhombic phase
with the Pmc21 space group found beyond 1.3 GPa in the
x-ray diffraction experiment.35

VII. PHONONS

A. Density of states

The Fourier transformation of the atomic velocity auto-
correlation function (VACF) gives us the phonon density of
states (DoS)36 of the material. To obtain the DoS at different
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pressures and temperatures, we used the trajectory data of
atoms from MD to calculate the VACF of Zn(CN)2.

The correlation function C(t) at time t = n�t can be
expressed as

C (t) = 1

N (M − n)

N∑
j=1

M−n∑
m=1

vj (m�t)vj (m�t + t) , (3)

where vj is the velocity component of the j th atom. �t

is the time interval of 0.02 ps. M is the total number of
time steps. The system was simulated for a total of 50 ps
which corresponds to M = 2500. The correlation function
was calculated for each atom with a time length of 30 ps
(n = 1500). A Gaussian profile was used before Fourier
transformation to suppress the ripple effect caused by the
time cutoff. The VACF of angular velocities of the C–N rigid
rods rotating about their center of mass was also calculated.
The Fourier transformation then gave us the DoS of the
pure rotational modes of these rigid rods. To obtain the
phonon spectrum, the calculated DoS was first multiplied by
a weighting factor 4πbk/mk containing the scattering length
bk and the atomic mass mk of the kth atom. Then, in order to
mimic experimental resolution,13 the DoS is convolved with a
Gaussian with FWHM of 10% of the energy transfer. Figure 7
shows the good agreement between the calculated spectrum
and the experiment.13

In order to draw links between the atomic vibrations and
the phonon properties, we computed both the overall DoS and
the angular DoS of rigid rod C–N, as shown in Figs. 8 and 9.
Figures 8(a) and 8(b) show the DoS at ambient temperature
(300 K) under different pressures for the disordered and
ordered model, respectively. The acoustic peak around 0.5 THz
is softened on compression. The optic peaks around 2.0 THz
and 9.0 THz follow the same trend, which means that all
these modes have negative Grüneisen parameters (γk,λ) and
contribute to the NTE of the material. The highest energy peak
around 15 THz is stiffened under compression, suggesting
positive γk,λ for the Zn–C/N bond flexing modes. The only
difference between the disordered model and the ordered one
is that the former has broader peaks, especially the merged two
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FIG. 7. The Zn(CN)2 phonon density of states at 297 K. Solid
lines are data from our MD calculations; filled circles are neutron
scattering experimental results (Ref. 13). The two agree well with
one another.
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FIG. 8. (Color online) Vibrational DoS calculated using MD at
300 K and at 0.026 GPa, 0.20 GPa, 0.46 GPa, and 0.65 GPa. (a)
shows the full DoS for the CN-disordered model; (b) shows the full
DoS for the CN-ordered model; (c) shows the DoS for only C-N rigid
rod rotations in the ordered model. The peaks at around 14 THz,
corresponding to pure Zn–C(N) bond flexing, increase in frequency
on compression.

peaks around 9.0 THz (with a broadening of ∼0.8 THz), due to
the “fluffiness” caused by random positions of C and N atoms.

By comparing Fig. 9(b) with Fig. 9(a), we found that
about half of the acoustic peak around 0.5 THz is from
vibrations involving rotations of the C–N rod around its center
of mass [bearing in mind that the angular DoS in Fig. 9(b)
is renormalized, so that only the relative heights of the peaks
are indicative]. Optic peaks round 2.0 and 9.0 THz are hardly
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FIG. 9. (Color online) Vibrational DoS calculated using MD at
0.0 GPa and temperatures 162 K, 297 K, 473 K, and 603 K. (a) shows
the full DoS; (b) shows the DoS for only C–N rigid rod rotations.
The peaks in the full DoS at around 14 THz, corresponding to pure
Zn–C(N) bond flexing, broaden and decrease in frequency on heating.
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FIG. 10. (Color online) (a) Dispersion curves colored according to the corresponding value of the mode Grüneisen parameter γk,λ. Red is
a negative value of γk,λ (down to a minimum of −18); blue is a positive value of γk,λ (up to a maximum of 0); white is a γk,λ value of zero. (b)
Dispersion curves colored according to projection of the eigenvectors onto RUMs. Color strength corresponds to the degree to which a mode is a
RUM; white corresponds to zero RUM character in a given mode. The color itself corresponds to the nature of the RUM: Red is purely rotational
RUM motion; blue is purely translational RUM motion. The corresponding eigenvectors of (c) the translational RUMs (around 0.5 THz), (d)
the first rotational RUMs (around 2.0 THz), and (e) the second rotational RUMs (around 9.0 THz), viewed down the [1,1̄,0] direction with the
undistorted structure in gray shown behind. The translational RUMs correspond to lateral translations of the tetrahedra leading to rotations of
pairs of tetrahedra. The rotational RUMs correspond to neighboring tetrahedra rotating in the same or opposite direction.

changed, because much of their motions can be cast onto the
rotations of the C–N rod. The peak with the highest frequency
in the overall DoS is from pure Zn–C/N bond flexing—it
completely disappears in the angular DoS. Unlike the acoustic
peak, this peak is softened on heating due to the thermal
expansion of the Zn–C/N bond, and flattens with elevated
temperature due to the finite life time of the corresponding
phonon.

B. Rigid unit modes and negative thermal expansion

Previously, the peak around 0.5 THz was found to be
the major contributor to the NTE in both experiment8 and
calculations10,13 due to its large negative γk,λ. However, if one
can further identify the corresponding real-space picture of the
vibrations, the reason why the peak has the most negative γk,λ

compared to the other optic peaks can be revealed.
To understand the nature of various peaks in the DoS, we

decided to categorize the vibrational modes in the material
using the rigid unit mode model.37 First, we calculated
γk,λ from phonon frequencies of expanded and contracted
(±0.01%) unit-cell volumes. We then colored the dispersion
curves according to both magnitudes and signs of γk,λ,
as shown in Fig. 10(a). This representation highlights the
most important phonon branches responsible for NTE of the
material, namely the low-lying acoustic modes around 0.5 THz
and the lowest-energy optic branches around 2.0 THz, which
both have the most negative γk,λ and span the entire Brillouin
zone. This was also highlighted in the DoS in Fig. 11(a),
where we colored the DoS according to the mean values of
γk,λ for each frequency bin. Then, we calculated the rigid
unit modes (RUMs) of Zn(CN)2 using the CRUSH code37,38

as the set of eigenvectors of the dynamical matrix whose
eigenvalues are zero. We took the dot product between the
eigenvectors of the RUMs and the eigenvectors from the

lattice-dynamic calculation, and then colored the dispersion
curves in Fig. 10(b) by the extent to which each mode
eigenvector can be described in terms of correlated whole-body
translations (in blue) and rotations (in red) of [Zn(C/N)4]
tetrahedra. The DoS in Fig. 11(b) was also colored accordingly.
One can see that all the modes with negative γk,λ that contribute
to the NTE of the material are RUMs.

As shown by Fig. 10(c), the acoustic modes around 0.5 THz,
like those at M and X, are characterized by translational
motions of the rigid tetrahedral units, partly involving angular
rotations of the C–N rod. The optic modes around 2.0 and
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FIG. 11. (Color online) Full DoS calculated using lattice dy-
namics. (a) Each bin is colored according to its average Grüneisen
parameter: Red bins have an average γk,λ value of −10; white bins
have a positive average γk,λ. (b) Each bin is colored according to its
average RUM component. Red bins are pure RUMs; blue bins have
zero RUM character.
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FIG. 12. (Color online) Profiles of mode Grüneisen parameters of
Zn(CN)2 calculated at three different pressures from lattice dynamics:
Black curve is 0.0 GPa; blue curve is 0.2 GPa; red curve is 0.4 GPa.
The Grüneisen parameters of the modes around 0.5 THz, 2.0 THz,
and 9.0 THz become more negative at elevated pressures, resulting in
a more negative overall Grüneisen parameter as pressure is increased.

9.0 THz can be seen as neighboring tetrahedra rotating against
each other, as respectively shown by Figs. 10(d) and 10(e). The
RUM nature of these modes guarantees their low frequencies
and large negative γk,λ. The relatively high frequencies of
the optic RUMs is due to the breaking of the Zn–C/N–N/C
alignment, and the magnitudes of their negative γk,λ suffer
accordingly. Study of the eigenvectors also directly revealed
that the non-RUM modes around 10 and 15 THz correspond
to the pure angular vibration of C/N–Zn–N/C within the
tetrahedra and the pure bond flexing of Zn–C/N, respectively.

We also found that, besides the negative γ̄ , Zn(CN)2

also has negative ∂γ̄ /∂P and ∂2γ̄ /∂P 2. Figure 12 shows
the profiles of γk,λ up to 0.4 GPa calculated in HLD. It is
clear that γ̄ becomes more negative on compression due the
contributions from the RUMs around 0.5 THz, 2.0 THz, and
9.0 THz, with the translational RUMs having the most negative
γk,λ [refer to Fig. 11(a)] contributing the most. The negativity
of the pressure derivatives of γ̄ would result in negative B ′

0 at
nonzero temperatures.39

C. Anharmonicity and quantum effects

We found that the acoustic peak in the DoS (see Fig. 11)
with frequencies less than 1 THz (∼50 K) accounts for half of
the NTE [α = −52.8 M K−1 is reduced to α = −26.8 M K−1

when excluding these modes, calculated by Eq. (1) at 300 K
in QHLD]. This suggests that even at low temperatures these
modes will not be “frozen” out and can still be excited and
contribute to NTE and its relevant properties such as pressure-
enhanced NTE and pressure-induced softening of the material.
Thus, the classical MD results at low temperatures would not
have too much difference from the real quantum picture and
can give a good qualitative agreement with experiments.

However, with the following method, we can include the
effect of both anharmonicity and quantum effects in the
temperature dependence of NTE of the material. First, at a
certain temperature, we calculate two DoS from MD for two
adjacent volumes (with 0.5% difference). Then we can obtain
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FIG. 13. (Color online) Calculated temperature dependence of
the NTE with both anharmonicity and quantum effects included
(“MD + QE”; solid curve), together with the results from MD (dashed
curve) and QHLD (dash-dotted curve). The former clearly has a better
agreement with the experiment (empty circle; Ref. 8).

phonon frequencies and mode Grüneisen parameters by using
the cumulative distributions of these two DoS. Finally, αV

can be calculated by Eq. (1). We then repeat this process at
different temperatures up to 600 K, and obtain the temperature
dependence of NTE of the material.

As such, anharmonicity is accounted for by the use of the
DoS from the MD, while quantum effects are included in the
formalism of Eq. (1) to calculate αV. Together with the direct
MD and QHLD results, the temperature dependence of the
NTE from this method (“MD + QE”) is shown in Fig. 13. At
low temperatures, the curve acts like the QHLD result due to
quantum quenching. At high temperatures, the curve becomes
less negative like MD due to anharmonicity, making the curve
in a better agreement with the experiment.

From the same analysis, we can also obtain the temperature
and pressure dependence of anharmonicity. The normalized
anharmonicity40 measuring the change of mode frequency
with temperature at constant pressure is defined as

1

ωs

∂ωs

∂T

∣∣∣∣
p

= 1

ωs

∂ωs

∂T

∣∣∣∣
V

− γsαV, (4)

where, on the right-hand side, the first term is the intrinsic
anharmonicity and the second term is the contribution from
the contraction of lattice (implicit). By using the DoS from the
MD at 180 and 240 K, the normalized anharmonicity of each
mode was calculated, as shown in Fig. 14(a). The results of the
important modes around 0.5, 2.0, and 9.0 THz, as indicated by
the vertical lines, agree quite well with the experiment (using
the DoS at 180 and 240 K).13 The implicit anharmonicity
was calculated using the mode Grüneisen parameters and the
“MD + QE” value of αV at 180 K. The intrinsic anharmonicity
was then obtained from Eq. (4).

The normalized anharmonicity at different pressures is
shown in Fig. 14(b). As mentioned in the former sections,
the modes around 0.5, 2.0, and 9.0 THz, corresponding to the
translational and rotational RUMs, respectively, are stiffened
on heating with positive normalized anharmonicity. Among
these, the translational RUMs (around 0.5 THz) show the
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FIG. 14. (Color online) (a) Calculated normalized (in red solid),
implicit (in red dashed), and intrinsic (in red dotted) anharmonicity
using cumulative distributions of DoS from the MD at 180 and 240
K, compared to the total anharmonicity from the experiment DoS
at the same two temperatures (Ref. 13). (b) Calculated normalized
anharmonicity (using cumulative distributions of DoS from MD
at 180 and 240 K) at different pressures. The important modes
around 0.5, 2.0, and 9.0 THz have positive anharmonicity with
the translational RUMs (around 0.5 THz) showing the largest value
compared to others. The modes around 15 THz corresponding to Zn–
C(N) bond flexing show negative anharmonicity. The anharmonicity
of all these modes is enhanced by compression.

largest normalized anharmonicity of more than 4 × 10−4 K−1

at 0.0 GPa. The modes around 15 THz corresponding to
pure bond flexing of Zn–C(N) are softened on heating with
negative anharmonicity. The normalized anharmonicity of all
these peaks is strengthened on compression.
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FIG. 15. (Color online) Temperature dependence of the normal-
ized anharmonicity at 0.0 GPa. At 25, 280, and 560 K, calculations
were conducted using the cumulative distributions of couples of
DoS at 25/45 K, 280/300 K, and 560/590 K, respectively. The
general trend is that the mode frequencies change less rapidly with
temperature on heating.

We further calculated the normalized anharmonicity at low
(25 K), medium (280 K), and high (560 K) temperatures
to see its temperature dependence, as shown in Fig. 15. At
each temperature, two DoS with temperature difference less
than 30 K are used. The low-temperature (25 K) value of
the anharmonicity of the modes around 0.5 THz is 1.0 ×
10−3 K−1, in good agreement with the experimental value
of 1.1 × 10−3 K−1 in Ref. 41. The figure also shows that the
mode frequency would change less rapidly on heating at high
temperatures. The same trend is seen for the 0.5 THz peak in
the experiment in Ref. 41.

VIII. STRUCTURAL STUDY

A. The local picture on compression and heating

In real space, variations of geometrical features of the
material, such as the Zn–C/N bond length, the N/C–Zn–C/N
angle within the tetrahedral unit, and the Zn–C/N–N/C angle,
are important for us to build a local picture of the system
subject to both compression and heating.

Distributions of these quantities, as shown in Fig. 16, were
obtained from the atomic trajectory data of the MD. The large
spread of the distributions suggests large vibrations of these
quantities at high temperature. The slightly expansion-biased
broadening of the bond-length distribution on heating indicates
an enhanced thermal expansion in the bond. We found that
the deviation of the average N/C–Zn–C/N angle in the
tetrahedral unit from its equilibrium of 109.47◦ is trivially
small (∼0.2◦) even at very high temperature (∼600 K) and
pressure (∼0.6 GPa).
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FIG. 16. (Color online) Distributions of (a) the Zn–C/N bond
length, (b) the cosine of Zn–C/N–N/C angle distortion, and (c) the
N/C–Zn–C/N angle within the tetrahedral unit at 0.0 GPa.
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FIG. 17. Averaged Zn–C/N bond length as a function of temper-
ature, calculated from MD at pressures 0.0 GPa, 0.2 GPa, 0.4 GPa,
and 0.6 GPa. The bond length increases with elevated temperature.
The inset shows superlinear behavior of the bond length on heating.

The average bond length and the average angle distortion
in Zn(CN)2 as functions of both temperature and pressure
are shown in Figs. 17 and 18, respectively. Compression
progressively increases the Zn–C/N–N/C angle with elevated
temperature. At very low and zero temperature, the trend is
that the angle will be hardly changed by pressure. This is
exactly what was expected in the previous section where we
suggested that, at zero temperature, the volume change of the
material due to the pressure arises solely from the compression
of the Zn–C/N bonds, resulting in positive B ′

0. It is when
the Zn–C/N–N/C angle starts to increase under compression
and contribute to the volume change that the material shows
negative B ′

0, i.e., the pressure-induced softening. The inset of
Fig. 17 shows the increase of bond length with temperature.
The superlinear behavior indicates the softening of the bond
at higher temperature due to the thermal expansion. In Fig. 18,
the inset shows the increase of the Zn–C/N–N/C angle with
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FIG. 18. Averaged Zn–C/N–N/C angle as a function of temper-
ature, calculated from MD at pressures 0.0 GPa, 0.2 GPa, 0.4 GPa,
and 0.6 GPa. The angle distortion increases with elevated temperature
and pressure. The inset shows the sublinear behavior of the angle
distortion on heating.

elevated temperature. The sublinear behavior suggests that the
angle will become more rigid, which should result in a less
negative B ′

0 at high temperatures.29 Both the superlinearity
and the sublinearity in the plots rely on the capture of the
anharmonicity of the material.

To see the real-space picture of RUMs in Zn(CN)2,
we quantified the proportion of thermal-excited rigid-unit
rotations at different pressures. Using our GASP code,42–44 we
compared ten snapshots of an MD simulation, where each
snapshot is separated by 2 ps, with the ideal structure. This is
repeated for various pressures and temperatures. GASP, using
geometric algebra, can partition the atomic displacements
for every comparison made into the mean-squared rigid-
tetrahedron rotations, translational displacements, and unit
deformations. We then computed the average proportion of
rigid-unit rotations at each temperature. To exclude those
rigid-unit rotations due to pure topology reasons, i.e., rotations
that accidentally maintain the shape of the tetrahedral unit
under thermal excitation but are not because of the features
of motion, we set up a benchmark calculation using an
ideal cristobalite structure without any interactions other
than bonds to hold Zn–C/N and C–N. The reason to use
the single-framework lattice is to avoid the problem of two
interpenetrating frameworks crushing into each other in the
MD due to the lack of long-distance interactions. Figure 19
shows the results at different pressures and temperatures with
colored areas. The proportion of the rigid-unit rotation of a
real silica system is given in the plot as a comparison. The
figure suggests that compression will enhance the rigid-unit
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FIG. 19. (Color online) Plot showing the proportion of rotational
RUMs present in Zn(CN)2 as a function of temperature, calculated
using GASP and data from MD simulations. Data are presented for four
pressures plus two additional benchmark systems. The green region
is the rotational component present in the ideal cristobalite structure;
the yellow region is the additional rotational component present in
Zn(CN)2 at 0.0 GPa; the orange region is the additional component
present at 0.2 GPa; the pink region is the additional component at
0.4 GPa; the red region is the additional component at 0.6 GPa; and
the dark red region is the additional component present in amorphous
silica. The results clearly show the enhancement of the rotational
RUMs in Zn(CN)2 under pressure, as well as the reduction of the
rotational RUMs on heating.
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rotations. At ambient temperature ∼300 K, for example, the
average proportions are 63% at 0.0 GPa, 64% at 0.2 GPa, 65%
at 0.4 GPa, and 66% at 0.6 GPa, compared to 35% of the
benchmark and 90% of the silica system. Another important
point is that, at certain pressure, the proportion of rigid-unit
rotation will decrease with elevated temperature. This trend
corresponds to the peaks around 0.5, 2.0, and 9.0 THz in
DoS stiffened on heating, as shown in Fig. 9. The Grüneisen
parameters of these modes will consequently become less
negative, and so does the coefficient of thermal expansion.

B. The nearest-neighbor Zn. . .Zn distance

There is a puzzling observation from the x-ray pair distri-
bution function measurements of Zn(CN)2

8 that instantaneous
Zn. . .Zn distances contract less rapidly on heating than does
the cell length, while crystallographically the two should be
linked. The explanation relies on the nature of the acoustic
modes as translational RUMs.

The acoustic modes around 0.5 THz are translational RUMs
which count for half of the NTE of the material as mentioned
in Sec. VII. Unlike rotational RUMs around 2.0 and 9.0 THz
that will reduce the nearest Zn. . .Zn distance, the translational
RUMs correspond to collective translations of the neighboring
rigid units that move zinc atoms off site and retain the distance
of the nearest-neighbor zincs, as seen in Fig. 10(c). This kind
of vibration involves the rotation of C–N rod around its center
of mass, consistent with the previous finding in the DoS that
part of the acoustic modes are from the C–N rod rotations.

We calculated the average distance of the nearest Zn. . .Zn
using the the trajectory data from the MD simulations. Fig. 20
shows the temperature dependence of the average distance
under different pressures. At zero pressure, the ratio between
the linear coefficient of thermal expansion (CTE) of the
averaged Zn. . .Zn distance, αZnZn, and the overall linear
CTE of the material, α, is 0.67, with αZnZn = −8.5 M K−1

and α = −12.62 M K−1. This result agrees well with the

100 200 300 400 500
−0.3

−0.2

−0.1

0.0

0.0 0.2 0.4 0.6

−13
−12
−11
−10
−9

 0.0 GPa
 0.2 GPa
 0.4 GPa
 0.6 GPaC

ha
ng

e 
in

 Z
n-

-Z
n 

D
is

ta
nc

e 
(%

)

Temperature (K)

C
TE

 (M
K

-1
)

Pressure (GPa)

FIG. 20. (Color online) Variation of the averaged nearest-
neighbor Zn. . .Zn distance, calculated using MD. Distances have
been calculated for the temperature range of 0–500 K and at pressures
0.0 GPa, 0.2 GPa, 0.4 GPa, and 0.6 GPa. The inset shows the CTE of
the nearest-neighbor Zn. . .Zn distance as a function of pressure.

experimental ratio8 of 0.71, with αZnZn = −12.42(12) M K−1

and α = −17.40(18) M K−1.

IX. DISCUSSION AND CONCLUSIONS

This study shows that almost all the modes responsible for
the NTE of Zn(CN)2 are RUMs. We managed to categorize
these modes in terms of their vibrational motions. The TA
modes around 0.5 THz spanning the lowest energy correspond
to collective motions of Zn–CN–Zn as a rigid body, which can
keep the distance of the nearest-neighbor zincs. The low energy
hence the most negative Grüneisen parameters of these modes
are due to this kind of collective motion without involving
relatively high-energetic angle bending in the Zn–CN–Zn
linkage. These modes contribute half of the NTE of the
material. The optic modes around 2.0 THz and 9.0 THz
correspond to rotations of the neighboring tetrahedral units
against each other involving angle bending in the Zn–CN–Zn
linkage, resulting in higher mode energy and less negative
Grüneisen parameters.

Although the increase of pressure or temperature would
both result in volume contraction in Zn(CN)2, the pressure and
temperature dependence of the NTE in Zn(CN)2 are totally
different. Increasing temperature stiffens the low-frequency
peaks and softens the high-frequency peaks in the DoS (Fig. 9
and Fig. 14) accompanied by the reduction of NTE, while
compression would soften the low-frequency peaks and stiffen
the high-frequency peaks (Fig. 8) resulting in NTE enhance-
ment. Raising temperature slows the mode softening caused
by compression, and postpones the phase transition. The
enormous decrease of the bulk modulus on heating contrasts
with the small change of the bulk modulus on compression,
which disobeys Birch’s law of corresponding states.

The pressure and temperature dependence of the Zn–C/N
bond and the N/C–Zn–C/N angle are also intriguing. The large
vibrational amplitude of the N/C–Zn–C/N angle extends the
Zn–C/N bond, which can be seen (under constant pressure)
in Fig. 17. The superlinearity suggests an enhancement of
the thermal expansion in the bond with more distorted angle
at higher temperature. The sublinearity of the average angle
distortion corresponds to the stiffened RUMs involving the
rotational vibrations of the C–N rods.

The ability to carry out MD for Zn(CN)2 using the potential
model is vital in this study. It allows us to capture the anhar-
monicity to reproduce the exotic properties of the material,
and to study their pressure and temperature dependence. The
origins of various properties are revealed by linking features
in both energy and real space.

One example is the pressure-enhanced NTE, which has
been well reproduced in Fig. 3(a). This behavior is a natural
result followed by softening of the bulk modulus on heating
[Eq. (2)], and is linked to the feature in energy space that
the modes around 0.5, 2.0, and 9.0 THz are softened under
compression (as in Fig. 8), as well as the rising proportion
of the rigid-unit rotations in real space on compression (as in
Fig. 19).

Another example is the reduction of NTE with elevated
temperature. Stiffening of the modes around 0.5, 2.0, and
9.0 THz on heating (as shown in the DoS in Fig. 9) makes
their Grüneisen parameters less negative, hence the reduction
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of NTE in the material. In real space, Fig. 19 clearly shows the
trend of reduction in the proportion of rigid-unit rotations on
heating.

The third example is the temperature dependence of the
bulk modulus and its first derivative B ′

0. The large decrease
of the bulk modulus on heating is due to the involvement of
the Zn–C/N–N/C angular vibrations at nonzero temperature
and the softening of the Zn–C/N bond, which can be seen
both in the DoS [Fig. 9(a)] and in the real-space picture
of Figs. 16, 17, and 18. As shown in Fig. 18, the average
Zn–C/N–N/C angle starts to possess an almost linear pressure
dependence at medium temperature and contributes to the
pressure-induced volume change of the material. According
to a simple geometrical relation,45 the relative decrease in cell
is roughly proportional to the Zn–C/N–N/C angle squared,
hence to the pressure squared, resulting in negative B ′

0.
However, this contribution from the pressure-induced change
in the Zn–C/N–N/C angle to the volume contraction will be
hindered at high temperature due to the anharmonic stiffening
of the corresponding modes [Fig. 9(a) and Fig. 14]. On the

other hand, the contribution from Zn–C/N bond compression
will increase due to the thermal softening of the bond. The
combined effect of these two trends is expected to result in a
less negative B ′

0 at high temperatures.29
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