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Thermally populated intrinsic localized modes in pure alkali halide crystals
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The possibility of thermal excitation of intrinsic localized modes (ILMs) arising from anharmonicity in ionic
perfect crystals is studied numerically for realistic model systems in one and three dimensions. Implications are
discussed for an interesting high-temperature feature seen in earlier inelastic neutron scattering experiments on
single crystal NaI. The general conclusion is that ILM formation energies are far too large for thermal excitation
of ILMs to account for the observed feature in a pure crystal.
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I. INTRODUCTION

The discovery that some localized excitations in nonlinear
perfect lattices can be stabilized by lattice discreteness has
led to extensive studies of their characteristic features.1–7

Experimental studies have focused on intrinsic localized
modes (ILMs) driven in the steady state to overcome energy
loss to the lattice. Since spin lattices are intrinsically nonlinear,
the CW driving of antiferromagnetic instabilities has made it
possible to create and destroy 1D intrinsic localized spin wave
modes in the layered antiferromagnet (C2H5NH3)2CuCl4.8,9

Additional details on the creation and destruction of ILMs
have been studied experimentally for macroscopic 1D E&M
transmission lines10,11 and micromechanical arrays.12,13 The
common thread between the microscopic and macroscopic
systems is that after a driven instability generates many ILMs,
a few become stabilized by locking to the driver frequency.
Hysteresis and switching of ILMs have been demonstrated for
both kinds of nonlinear lattices.

In a 2005 numerical study, Eleftheriou and Flach14 ad-
dressed the problem of whether or not ILMs might be
observable in thermal equilibrium. They used a highly sim-
plified monatomic 2D model square lattice having a single
scalar degree of freedom at each site. The interactions com-
prised nearest-neighbor quadratic and on-site quartic terms.
For a fixed temperature the system was thermalized, and
molecular dynamics (MD) calculations were used to generate
time-dependent ensemble-averaged amplitude autocorrelation
functions which were Fourier transformed to produce power
spectra. Clear signatures of ILMs proved elusive, but by
cooling the edge of their 2D lattice (via dissipation terms) so
as to remove running lattice modes, the authors were able to
see the remaining stationary ILMs. They noted that it would be
difficult to carry out a corresponding procedure in any realistic
laboratory experiment.

Thus it was somewhat surprising that in 2009, inelastic neu-
tron scattering measurements on NaI: 0.3 mole % T� I showed
that at a temperature of about 570 K a localized vibrational
excitation rapidly appears near the center of the large phonon
gap between the transverse optic and acoustic branches,
polarized along the [111] direction.15 This observation was
interpreted as the appearance of a thermally generated ILM.

Subsequent measurements at still higher crystal temperatures
showed even more complex dynamical behavior, interpreted
as a coherent rearrangement of ILMs in the atomic lattice.16

A recent series of numerical studies by Dmitriev and
coworkers have considered the theoretical question of high
temperature excitation of localized vibrations in alkali halide
crystals.17 Employing some of the nonzero temperature MD
methods of Ref. 14 but using realistic interaction potentials,
they argue via simulations on a 2D nonlinear lattice model that
the vibrational lifetime of the light atoms in a system with a
large harmonic phonon gap grows with increasing temperature,
and they interpret this as evidence of ILMs. Their calculations
did not use the edge-cooling technique of Ref. 14 to isolate the
thermally generated stationary ILMs.

Most recently, inelastic neutron scattering experiments on
the vibrational spectrum of NaI up to 700 K have been reported
with no evidence for a high temperature gap mode.18 Given the
variety of theoretical and experimental results, there is value
in reassessing the likelihood of an experimentally significant
fraction of thermally populated ILMs in alkali halide crystals.

Because of the simplicity of the ionic bond in alkali halides,
they were one of the first crystal types whose interatomic
potentials and vibrational dynamics were well studied.19 The
result is that the Born-Mayer-Coulomb shell model potentials
yield accurate fits to measured phonon dispersion curves.20

Since the resulting ionic potentials are quite harmonic,
ILM production in these systems requires large vibrational
amplitudes in order for the nonlinearity to produce dynamical
localization. In this paper we examine the formation energy
necessary to produce an ILM in the phonon gap of alkali
halide crystals, a topic essentially unexplored in the literature.
We find that the necessary formation energy is much too large
to produce a measurable concentration of ILMs below the pure
ionic crystal melting point.

II. FORMATION ENERGY ESTIMATES FOR ILMS
IN IONIC CRYSTALS

We have computed the formation energy for two ionic
crystal models, a 1D model for KI and a previously published
3D model21 for NaI. The large mass difference between the
positive and negative ions in each of these lattices produces a
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large frequency gap between the optic and acoustic harmonic
phonon bands.

A. KI

Early theoretical work on ILMs focused on 1D models and
is reviewed in Ref. 22. As discussed there, the use of realistic
interatomic full pair potentials V (r) for ionic crystals, as
opposed to harmonic and anharmonic spring models, rules out
the existence of ILMs with frequencies above the maximum
harmonic lattice frequency. This is because of the rapid
softening of the interatomic forces with separation r . ILMs
can readily form, however, in the phonon gaps of diatomic
lattices.

Here we report calculated formation energies for gap
ILMs in KI using interatomic Born-Mayer plus Coulomb
(BMC) potentials. Specifically, the model is a 1D lattice
of alternating masses m and M moving longitudinally, with
nearest neighbors interacting via

VmM (r) = VMm(r) = λe−r/ρ − q2

r
, (1)

while second neighbors interact via pure Coulomb potentials

Vmm(r) = VMM (r) = q2

r
. (2)

More distant neighbors are assumed to be noninteracting.
Periodic boundary conditions (PBCs) are used, for a lattice
of N = 40 particles.

Our parameter values were determined by fitting measured
harmonic phonon dispersion curves23 along the [111] direction
for KI. The fit is excellent. Our model parameters are m =
39.1 amu, M = 127 amu, λ = 2.57 × 104 eV, ρ = 0.289 Å, and
q = 0.90 e. Minimization of the total potential energy yields
the static lattice nearest-neighbor separation a = 3.50 Å. The
lowest frequency of the harmonic optic phonon band is at the
zone boundary, with ωzbm = 2.47 × 1013 rad/sec, equivalent
to 16.3 meV in energy units.

Using the rotating wave approximation (RWA) for the
particles’ time dependence,1,2,4,22,24 we obtained accurate
predictions for stationary ILM solutions of the classical
equations of motion. Briefly, one assumes that the position
of atom n is described by

rn(t) = bn + cn cos(ωt) + r0
n, (3)

where r0
n is the equilibrium position. Substitution into the

equations of motion, multiplication by either unity or cos(ωt),
followed by an integration over a single period yields a system
of 2N coupled nonlinear time-independent equations for the
static and dynamic displacements {bn} and {cn}. The equations
are solved numerically, and the predictions are checked by MD
simulations. It is straightforward to add higher harmonic terms
to Eq. (3), but their contributions are typically down by an order
of magnitude.

Figure 1 shows the predicted ILM frequency as a function
of the ILM’s central particle dynamic displacement A, along
with symbols marking the ILMs whose formation energy were
computed. The dynamic and static displacement patterns for
the most localized of these are shown in Fig. 2. This ILM is
represented by the rightmost circle on the curve of Fig. 1, and
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FIG. 1. Frequency vs amplitude for gap ILMs in the 1D model
for KI. The amplitudes A are the dynamic displacements of the ILM’s
central particle and are normalized to the nearest-neighbor distance
a. The frequencies are normalized to the harmonic phonon optic
band minimum ωzbm. In this normalization, the harmonic phonon gap
extends from 1.0 to 0.56. The circles denote the five ILMs for which
formation energies are computed.

as one moves to the left along the curve, the ILM spatially
broadens, eventually becoming the zone boundary mode. We
did not run formal stability calculations (i.e., Floquet) for the
ILMs, but MD runs showed that our highest frequency ILM
(ω/ωzbm = 0.97) persists for more than 900 periods, while
that at (ω/ωzbm = 0.92) is numerically stable for more than
200 periods. Our most localized ILM (at ω/ωzbm = 0.76) is
numerically stable for ≈50 periods, after which the central
particle displacement slowly spreads into the lattice. The MD
frequencies for the five ILMs in KI are within two to five
percent of their RWA predicted values as the frequencies
descend into the gap.
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FIG. 2. Displacement patterns for the ILM at (ω/ωzbm,A/a) =
(0.76,0.16) in the 40 particle 1D model for KI. The dynamic and
static displacements are denoted by circles and squares, respectively.
The actual displacements are longitudinal, but are plotted vertically
for clarity. The static displacements vanish at the ends, due to the use
of periodic boundary conditions.
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FIG. 3. ILM energies E0 versus ILM amplitude, computed for
the 1D KI model and the 3D NaI model. For KI, the crosses are
for the full MD method described in Sec. II A, and the × and star
symbols are for the two approximation methods introduced there,
namely RWAKE and RWAKEcentral , respectively. The squares give
NaI results computed using the RWAKEcentral approximation, while
the single triangle is the result of the better RWAKE approximation,
with the sum in Eq. (4) going over the ILM central particle and
two nearest neighbor shells. The energies E0 are relative to the T =
0 K equilibrium configuration of the lattice. The vertical arrow is
explained in the text.

The ILM classical energy E0 at T = 0 K is conveniently
computed via two single time-step MD runs. First, we sum
the predicted dynamic and static displacements at each site
to obtain the ILM’s initial displacement pattern {rn(0) =
bn + cn + r0

n}, for which the kinetic energy is zero. Since
the potential energy (PE) and forces are computed at every
time step in MD before the particles move, the first time step
provides the full PE (including that from the static distortion)
for the t = 0 ILM configuration. Subtracting from this the
similarly obtained PE for the equilibrium configuration of
the lattice {bn = cn = 0} then yields the ILM’s full classical
energy.

Applying the above procedure for the five ILMs indicated
on the curve of Fig. 1, we obtained the results shown by the
crosses in Fig. 3. This figure also includes results for the 3D
model of NaI, which will be discussed later. Here we focus
on the energies for KI, shown in the lower left part of the
figure. The results given by the crosses were obtained using
the single-step MD calculations described above, and one sees
that the energies are large, ranging from 70 to 300 meV. The
temperature scale on the right-hand side of the figure shows
that the corresponding equivalent temperature T = E0/kB of
the lowest-energy ILM, for (ω/ωzbm,A/a) = (0.97,0.062), is
858 K, near the KI melting point of 954 K. The other four
energies are well above that temperature.

In addition to the full E0 results, Fig. 3 gives two sets of
KI results which follow from simple approximations, based
on the assumed RWA time dependence of Eq. (3). Within the
RWA the maximum kinetic energy of an ILM is given by the
familiar harmonic approximation result

ERWAKE
= ω2

2
�N

n=1mnc
2
n, (4)

where the sum is over the N particles of the lattice. This
approximation requires only the predicted frequencies and
dynamic displacements. Despite the facts that an ILM has
a static component {bn} which does not contribute to the
above formula and also that the RWA is itself not exact,
this approximation turns out to be quite good, as is seen by
the × symbols in Fig. 3. As one expects, the results of this
approximation become very close to the full E0 results for
our smallest-amplitude ILM at A/a = 0.062. An even more
approximate result is to include only the contribution from the
ILM’s central particle (A2 term) in the sum of Eq. (4). The
results for this “RWAKEcentral” approximation are given by
the stars in Fig. 3.

The more exact full energies E0 and their two RWA
approximation counterparts in Fig. 3 are seen to be quite
close. More importantly, the results from all three methods
cover nearly the same equivalent temperature range, much
higher than the 570 K temperature at which the anomalous
gap mode feature appears in the inelastic neutron scattering
data of Ref. 15.

B. NaI

To estimate the T = 0 K classical energy for an ILM in
3D NaI, we draw on the results presented for the 1D KI
case treated above. Reference 21 summarizes the 3D model
used for NaI, and additional details are given in Ref. 25.
Briefly, a simulated annealing technique was combined with
a rigid-ion two-body potential model of NaI to predict the
properties of its ILMs for two different ionic lattice structures,
namely zincblende and fcc. The predictions were verified with
MD. The results are summarized in Fig. 4 of Ref. 21, which
shows the ILM frequency versus amplitude curves for the two
structures. As for the previous section, the amplitude is the
predicted dynamic displacement of the ILM’s central particle.
The general behavior is similar for both lattice structures in
that with increasing mode amplitude the ILM frequency drops
farther into the harmonic phonon gap between the TO and
TA branches. The difference between the curves for the two
lattices is that for the zincblende structure the ILM frequency
decreases much more rapidly with increasing ILM amplitude.
For 3D NaI an amplitude threshold is observed at about
A/a = 0.1 (a similar, but smaller, threshold is seen for 1D KI
in Fig. 1). For NaI it was found that at a relative amplitude of
0.244 the ILM normalized frequency is ω/ωzbm = 0.95, where
ωzbm is the frequency of the harmonic zone boundary TO mode
in the [111] direction. For this ILM the predicted static and
dynamic displacements are given for the central particle and
four shells of neighbors in Table I of Ref. 21. This ILM had the
longest lifetime, ≈200–250 periods, via MD runs. For an ILM
frequency of ω/ωzbm = 0.90, the lifetime decreased to ≈100
periods. These numerical lifetimes are qualitatively similar to
those given above for the 1D KI model over the same range
of ω/ωzbm. The NaI predicted and MD ILM frequencies were
plotted out to a relative amplitude A/a of 0.3 in Ref. 21, but
the ILM energies were not recorded.

The solid squares in Fig. 3 give energies for 3D NaI ILMs
computed using the “RWAKEcentral” approximation defined
below Eq. (4) and which we have seen works quite well for
1D KI. The ILM central particle amplitudes needed for this
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TABLE I. ILM formation energies for the 1D KI model and the
3D NaI model, as listed in the first column. The second column
gives the ILM frequency in units of ωzbm, the third column gives
the corresponding dynamic amplitude of the ILM central particle in
units of the nearest-neighbor distance a. The fourth column gives the
calculated ILM energies E0 plotted in Fig. 3, and column five gives
our estimates of the ILM formation energies for T = 570 K, using
EF = E0 − kBT for KI and EF = E0 − 4kBT for NaI, as discussed
in the text.

E0 EF (570 K)
Model ω/ωzbm A/a (meV) (meV)

KI 1D 0.971 0.0617 74.0 25.0
KI 1D 0.917 0.0889 126.0 77.0
KI 1D 0.863 0.112 180.0 131.0
KI 1D 0.810 0.135 236.0 187.0
KI 1D 0.756 0.160 295.0 246.0
NaI 3D 0.950 0.244 608.0 412.0

approximation were obtained from Fig. 4 of Ref. 21. Again
following the results for KI, an improved estimate can be
obtained from Eq. (4) by including more than just the ILM’s
central particle in the sum. The triangle in Fig. 3 gives the
result for the ILM having relative amplitude (A/a = 0.244).
The sum included the central particle and its two nearest shells
of neighbors, with the displacements taken from Table I of
Ref. 21. Similar to the 1D KI calculation, the complete full
energy for this amplitude should be somewhat larger, and the
energy curve should grow rapidly with increasing amplitude,
just as for the central-particle estimate. One major difference
between our energy results for 1D and 3D is highlighted by the
arrow in Fig. 3, which shows the position of the 1D KI relative
amplitude corresponding to the relative frequency ω/ωzbm =
0.78 of the experimentally measured NaI gap mode. Within the
3D ILM model for NaI, this relative frequency of 0.78 shifts the
arrow into a nonphysical region where the relative amplitude
would be larger than A/a = 0.4. This would correspond to
a huge ILM energy (note that simply extrapolating the solid
squares to A/a = 0.4 would give a lower bound of 9000 K for
the ILM’s energy equivalent temperature).26

We have seen that the classical energy E0 needed to create
a mid-gap ILM in our 40 particle 1D KI model is of order
300 meV. We emphasize that this energy is relative to that
for the T = 0 K classical lattice equilibrium configuration.
As pointed out earlier, with decreasing amplitude the ILM
spatially broadens, eventually becoming the harmonic zone
boundary mode. At a high temperature, viz. 570 K, and
with no ILM present, the harmonic zone boundary mode has
energy kBT = 49 meV. As a first approximation then, we
imagine the ILM’s “parent” zone boundary mode converting
to the ILM, and thereby take the ILM formation energy to
be EF = E0 − kBT = 295 − 49 = 246 meV. For the 3D NaI
model the situation is different since the ILM’s harmonic
“parent” mode is the zbm at the L point along the [111]
direction in the BZ. Since there are four symmetry-equivalent
L points which can convert to the ILM, we take the formation
energy in NaI to be E0 − 4KBT . The ILM formation energy
results are summarized in Table I.

In the configurational entropy model, the site-occupancy
probability for a localized lattice excitation, be it a vacancy or
ILM, is

p(T ) = 1

eTF /T + 1
, (5)

where TF is the formation temperature. Since our approxi-
mate ILM formation energy expressions above include small
temperature corrections to E0, we see that the corresponding
formation temperatures are of the form TF (T ) = E0/kB − cT ,
where the constant c = 1 or 4 for the 1D and 3D models,
respectively. For NaI at 570 K and using the value of E0 given
in Table I, we obtain TF = 4776 K and p = 2.3 × 10−4. At
the NaI melting point of 934 K, these results become TF =
3328 K and p = 2.8 × 10−2.

III. RELATIVE STRENGTH OF THE LOCAL MODE TO
THE ZONE BOUNDARY OPTIC MODE

The idea here is to start from a 1D harmonic toy model
with parameters chosen so that the dispersion curve roughly
represents that for NaI in the [111] direction. The ILM is
represented by a simple force constant harmonic defect mode
centered on a Na atom whose two nearest-neighbor springs
are weakened enough to produce a gap mode at 0.78 times the
harmonic zone boundary frequency ωzbm, with the remaining
springs unchanged. Denote the mode Na*. The properties of
the dispersion curves, especially near the zone boundaries are
then monitored numerically as the impurity concentration is
increased. Our aim is to tie the effects on the mode spectrum
directly to the number of gap modes without introducing the
intermediate step of temperature. The final step is to track
the strengths of the zone boundary mode and the gap mode
when a random concentration of Na* is present and compare
the results with the experimental relative strengths shown in
Fig. 2 of Ref. 15.

To compare the strength of the harmonic gap mode to that
of the zone boundary mode, we first obtained the normalized
harmonic mode eigenvectors for the 1D model NaI host
lattice, with 1000 particles. The eigenvectors were Fourier
transformed to obtain ω(k). Next the force constant impurity
was introduced, to reproduce the frequency of the assumed
localized gap mode, and this was followed by a series of
calculations of the normal modes for different random impurity
concentrations. The harmonic eigenvectors for the defect
lattice were Fourier transformed and their FT amplitudes were
used to generate a perturbed “dispersion curve” as follows: for
a mode of frequency ω, the complex square amplitude of its
FT at k was added to a frequency histogram bin (ω,ω + dω).
The square root of the sum of all such contributions was then
plotted vs k, with the results shown in Fig. 4. One sees that
the resulting curve is smeared out horizontally due to the fact
that many of the modes are localized, so that their frequencies
no longer correspond to a single k point. This feature is most
pronounced in the gap frequency region as expected, but it is
also evident in the optic branch as the impurity concentration
increases. Figure 4 is for 70 Na* particles (14% concentration).

Panel (a) of Fig. 5 shows our resulting energy spectrum near
the host lattice zone boundary as a function of the Na* impurity
concentration. The figure covers the entire concentration range
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FIG. 4. Numerical dispersion curves for the 1000 particle 1D
harmonic model NaI lattice with a 14% concentration of Na*
impurities.

from zero to 500 impurities in our 1000 particle diatomic
lattice, and two important features are evident: (i) the gap
region is well defined over the whole impurity range and
(ii) the optic branch loses strength as the strength of the gap
mode increases. We are particularly interested in the lower
concentration range. To examine the energy dependence of
our results more quantitatively, panel (b) of Fig. 5 plots the
integrated strength in each of three energy regions versus
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FIG. 5. (a) Energy dependencies of optic and acoustic zone
boundary modes and the gap mode for a force constant defect in the 1D
harmonic model diatomic lattice vs the number of Na* impurities. (b)
Integrated strengths at the zone boundary in each of the three energy
regions vs impurity number.
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FIG. 6. Slices of the zone boundary data of panel (a) of Fig. 5
examined with a Gaussian resolution function with 1.5 meV FWHM.
The impurity concentrations are given in the figure, and the area under
each trace is normalized to unity. The curves are shifted for clarity.

concentration. Two key features are evident: (i) The zone
boundary strength coming from the acoustic branch is fairly
constant over the entire concentration range and (ii) the
strengths of the gap band and zone boundary optic band are
interconnected. Note that these two strengths are equal at an
impurity number of 200, corresponding to about 40% Na*. The
gap mode strength is about half that of the optic mode when the
number of impurities is 126, corresponding to a concentration
of about 25%.

Because of the interconnection between the gap mode
strength and the optic band strength at the zone boundary,
these mode-counting results strongly suggest that the high
temperature concentration of gap modes observed in the
neutron scattering experiment is large, rather than small as
was previously assumed.15 To double check this conclusion
we took a Gaussian resolution function with 1.5 meV FWHM
and scanned it through the spectra shown in panel (a) of Fig. 5
for different concentrations. The results are given in Fig. 6.
Note that the gap mode strength is ≈1/2 of the optic zone
boundary mode strength, as represented by 25% in Fig. 6.
Clearly the impurity concentration producing the gap modes
must be comparable with the concentration of normal Na ions
producing the optic modes. In addition the low resolution
representation of the zone boundary mode spectrum in Fig. 6
shows that the gap modes could be “seen” in either the 10 or
15% concentration spectra.

So far in this section, we have not invoked the concept
of temperature. If we assume that the concentration of
Na* is due to a thermally activated process with activation
energy kBTF , the configurational entropy model for vacancy
production [Eq. (5)] would apply. What is the activation energy
needed to produce a 25% concentration of impurities at about
570 K? From our present 1D zone boundary mode counting
calculation, the gap mode strength at 25% impurities in the
lattice is 1/3 and that of the optic branch is 2/3. Hence 25%
corresponds to a probability of 0.33, and according to Eq. (5)
for T = 570 K we have TF = 404 K. Note that for this small
energy barrier, the room temperature impurity concentration
would be ≈20%, but no such evidence of gap mode scattering
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is found at either 300 or 473 K in the neutron scattering data.15

In the experiment, the gap modes “seem” to appear suddenly
in that temperature range, with a 25% concentration.

IV. DISCUSSION AND CONCLUSIONS

How does the observed high temperature gap mode feature
in NaI compare with the work reported by others for NaCl type
crystals? In the third paper of Ref. 17, Kistanov and Dmitriev
conclude from MD calculations of the density of phonon states
at elevated temperatures that ILMs (discrete breathers) do exist
for crystals with the NaCl structure that have a gap between
their optic and acoustic phonon branches. Our inspection of
their Fig. 3(d), which they use to support their claim, indicates
that what they have found at high temperatures is not due
to ILMs but is instead the modulation of the optical density
of states by the low-lying acoustic density of states due to the
nonlinearity. We note that the widths of the sum and difference
frequency sidebands, as measured from the peak in the optical
density of states, each correspond to the width of the acoustic
density of states in the same figure, as would be expected
from this interpretation. There is no evidence of ILMs in this
spectrum.

On the experimental side, the inelastic neutron scattering
results for NaI between 300 K and 700 K at 100 K intervals,
presented in Ref. 18, failed to show any evidence of a gap
mode at 600 K at the zone boundary L point for energy spectra
taken at Q = (2.5,2.5,1.5). (Measurements were not made at
555 K.) The authors did observe the gap region between the
optic and acoustic branches to fill in at high temperatures as
would be expected from the modulation of the optical density
of states by the acoustic modes, as mentioned in the preceding
paragraph.

What we have described in this paper is consistent with
these negative findings. For the 1D Born-Mayer-Coulomb
model of KI, we computed the ILM energies E0 by three
methods. Two of them are simple approximations that re-
quire knowledge of only the ILM’s frequency and dynamic
displacements, which are straightforward to predict in the
RWA. The third and most exact method is a direct calculation
of the t = 0 classical potential energy at the first step of
an MD run that starts from the RWA-predicted full ILM
displacement pattern, static plus dynamic. For ILMs in KI, the
three methods were found to be in good agreement, with the
more exact method giving an energy E0 of about 300 meV

for an ILM whose frequency is well within the harmonic
phonon gap (ω = 0.76ωzbm). Of the two approximate methods,
the roughest requires the predicted frequency and dynamic
displacement of only the central particle, and for the same
ILM in KI it yields about 220 meV, about 25% below the more
exact value.

For NaI, we drew on the previously published 3D rigid ion
model ILM results of Ref. 21. Using that paper’s predicted
ILM frequencies and central particle dynamic displacement in
our roughest approximation method for an ILM near the top of
the gap at ω/ωzbm = 0.95, we estimate the energy E0 to be near
400 meV. Using the better of the two approximation methods
raises this figure to just above 600 meV. But this ILM is near
the top of the gap, and we argued in Sec. II B that for an ILM
deeper in the NaI phonon gap, the energy would be of the order
of 1000 meV. This value is comparable to that measured for
the formation of vacancies in NaI (1840 meV).27 Such large
energies predict that both ILM and vacancy concentrations
would necessarily be very small, even near the NaI melting
temperature of 934 K. At the same time, our calculation in
Sec. III of the relative strength of a hypothetical harmonic
defect mode to that of the harmonic zone boundary mode
in a 1D harmonic diatomic crystal would require a defect
concentration of about 25% to match the experimental inelastic
neutron scattering results at 570 K. We conclude that thermally
excited ILMs cannot be the source of the high temperature local
mode observed in the phonon gap of NaI.

More generally, the MD simulations of Ref. 17, as described
earlier, show that the modulation spectrum of the optic modes
produced by the acoustic modes can be expected to have
an undesirable experimental consequence. In a vibrational
lattice with wide harmonic frequency gaps, this process
will necessarily mask the experimental observation of the
low concentration of ILMs lurking there. To expose ILMs
experimentally in atomic lattices it appears necessary to lower
the temperature and externally drive the lattice.24,28
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