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Phonon polaritons in uniaxial crystals: A Raman scattering study of polaritons in α-GaN
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We present Raman scattering results on phonon polaritons in single crystals of α-GaN. A detailed theoretical
treatment of their dispersion and Raman scattering efficiency in wurtzite-type crystals is given. Pure symmetry
polaritons (ordinary and extraordinary) are accessible in near-forward scattering geometry according to the
theory. For this purpose, the experimental setup uses rectangular aperture windows in front of the entrance lens.
Thus measurements with well defined wave-vector transfer can be realized. The observed dispersion curves and
scattering efficiency results are compared with theoretical ones and are found to be in excellent agreement.
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I. INTRODUCTION

In polar crystals, infrared photons strongly interact with the
transverse modes of infrared active phonons if their energies
are nearly equal. The elementary excitations derived are called
phonon polaritons. They have mixed electromagnetic and
mechanical nature and their existence has been predicted by
Huang.1,2 The frequencies of phonon polaritons occur in the
terahertz (THz) spectral range. This range corresponds to the
gap between high-frequency electronics and low-frequency
optics. Phonon-polariton studies have recently gained interest
stimulated by the generation of THz pulses by femtosecond
lasers and ultrasound acoustic waves,3 THz spectroscopy, and
imaging.4,5 Development of devices based on integrated po-
laritonics operating in the THz range as a potential application
between integrated electronics in the microwave region and in-
tegrated optics in the near-infrared range has been discussed.6

Henry and Hopfield7 were the first who observed Raman
scattering of phonon polaritons in GaP in 1965. Later, phonon
polaritons of several other polar semiconductors8–12 and
numerous ferroelectric crystals13–25 have been investigated (for
reviews, see Refs. 26–30) and also surface polaritons in thin
films and confined structures.31–33

However, reports on Raman studies of phonon polaritons
in uniaxial semiconductors are scarce. There is especially
a lack of data on the relative intensities of the phonon
polaritons. In this paper, besides discussion of general aspects
of phonon polaritons for uniaxial crystals, we also derive
expressions of their Raman scattering efficiency. They reflect
the changing character of the phonon polaritons depending on
their frequency from more photonlike to more phononlike.
Contributions of the lattice displacements and the electric
field associated with them to the scattering efficiency interfere
constructively or destructively. Measurements of scattering
efficiencies on phonon polaritons depending on frequency can
be also used to determine the Faust-Henry coefficients unam-
biguously. These coefficients are ratios describing the relative
influence of lattice displacements and electric field onto the
electric susceptibility.34–36 They are essential in order to access
the charge carrier concentration as well as the mobility by
Raman scattering from measured frequencies, bandwidths, and
intensities of coupled phonon-plasmon modes.36–38 A detailed
discussion concerning the Faust-Henry coefficients is not the
scope of this work, rather we intend to focus on novel aspects of

phonon polaritons in uniaxial crystals including the discussion
of Raman scattering efficiencies.

For uniaxial crystals, the conventionally used experimental
setup applying annular apertures with varying diameters in
front of the entrance slit of the spectrometer is meaningful
only if the incident laser beam in near-forward scattering
geometry is directed parallel to the c axis of the crystal
and the isotropic plane coincides with the aperture plane.
However, also in this case, the polaritons observed will depend
on the angle and will be of mixed character. In order to
observe phonon polaritons with pure symmetry, we developed
a new method for near-forward scattering with a screen
positioned in a plane before the first image lens which enables
us to open small rectangular windows in this plane. Thus
measurements with well defined wave-vector transfer can be
realized. Measurements with angles down to 0.5◦ between the
wave vectors of the exciting laser beam and the scattered light
could be performed.

Besides the general interest in this material, our investi-
gation of GaN was also stimulated by the fact that nowadays
large and pure single crystals are available. GaN and its ternary
alloys with Al and In are a remarkable and the most important
materials system for several electronic and short-wavelength
optoelectronic applications. GaN-based microelectronic de-
vices, e.g., take advantage of the superior electronic properties
for high-power, high-frequency, and high-temperature applica-
tions. Furthermore, the group-III nitride semiconductors with
direct band gaps ranging from 0.7 eV (InN) through 3.4 eV
(GaN) to 6.0 eV (AlN) have inspired the field of solid-state
lighting. In particular, applications of these materials realizing
bright, white LEDs appear very promising.39–43

As far as we know, only one investigation on a 70-μm-
thick hexagonal GaN bulk crystal measured with near-forward
scattering parallel to the c axis and annular apertures is reported
by Torii et al.44 However, in that work, the dependence of the
Raman scattering efficiency of the polaritons on the frequency
was not studied and the polaritons observed were of mixed
character.

After a detailed derivation of the theoretical Raman scat-
tering efficiency, we report on systematic measurements of
ordinary and extraordinary polaritons with defined symmetry
as function of the wave-vector magnitude. Moreover, it is
demonstrated which range of wave vectors is attainable by
Raman measurements using the experimental near-forward
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scattering setup with rectangular apertures. This strongly
depends on the anisotropic properties of the hexagonal crystal
and can be selected by a proper polarization arrangement.
The conditions which have to be fulfilled in order to de-
tect the topmost dispersion branch (more photonlike) are
discussed.

II. THEORY

A. Basic equations

According to the mixed mechanical-electromagnetic char-
acter of the phonon polaritons, we need equations of both
motion and electromagnetic field. The uniaxial crystal is
characterized by dielectric functions, which are identical for
two principal directions:

ε11(ω) = ε22(ω) = ε⊥(ω). (1)

These directions describe the optically isotropic plane. The
third principal direction perpendicular to this plane is referred
to as the optical axis c with the dielectric function

ε33(ω) = ε‖(ω). (2)

The equations of motion for the polaritons will be written in
a form first claimed by Huang for the description of cubic
diatomic crystals with one polar mode.1,2 In the case of a
uniaxial crystal and arbitrary direction of the wave vector �k, the
vectors �Q (generalized coordinate displacement), �E (electric
field strength), and �P (polarization) of the Born-Huang
equations can be split into linearly independent “ordinary”
and “extraordinary” components lying either perpendicularly
to or in the plane spanned by the wave vector and the optical
axis, respectively (see Fig. 1). With time dependence of the
displacement vector in the form �Q = �Q0e

iωt and without
damping, we obtain for the ordinary polaritons:

−ω2Qo⊥ = B11
o⊥Qo⊥ + B12

o⊥E⊥,
(3)

Po⊥ = B21
o⊥Qo⊥ + B22

o⊥E⊥,

eQ ⊥

x

z

y

θ

k
eQ

TQ

LQ
eQ

⋅

FIG. 1. Displacement components of the extraordinary polari-
tons, which are decomposed into parts parallel and perpendicular to
the optical axis. The same procedure can be adopted for �E and �P .

and for the extraordinary polaritons:

−ω2Qe⊥ = B11
e⊥Qe⊥ + B12

e⊥E⊥,

Pe⊥ = B21
e⊥Qe⊥ + B22

e⊥E⊥,
(4)

−ω2Qe‖ = B11
e‖ Qe‖ + B12

e‖ E‖,

Pe‖ = B21
e‖ Qe‖ + B22

e‖ E‖.

As the (x,y) plane is isotropic, we will assume without loss
of generality that the wave vector lies in the (x,z) plane and
that the displacement of the ordinary polaritons is parallel to
the y direction. The extraordinary parts of �Q, �E, and �P are
decomposed in components parallel and perpendicular to the
z axis. This is shown in Fig. 1 for the displacement vector �Q
as an example.

The coefficients B can be interpreted macroscopically,
and in the following sections they will be replaced by the
coefficients a⊥, b⊥, a‖, and b‖ which can be expressed
using measurable parameters (see Appendix A). In order to
determine the nine variables in Eqs. (3) and (4) three equations
are additionally needed. The relationship between the electric
field �E and the polarization �P can be derived from Maxwell’s
equations. The electric displacement field �D is correlated with
the electric field �E and the polarization �P according to

�D = εoε̃ · �E = εo �E + �P . (5)

Here, ε̃(�k,ω) refers to the dielectric tensor of the medium
and εo denotes the permittivity. Using the ansatz of plane
waves for the electric field �E = �E0e

i(�k·�r−ωt) and the magnetic
induction �B = �B0e

i(�k·�r−ωt) and on the assumption that the
medium contains neither free electrical charges ρ nor electrical
currents �j , we obtain from Maxwell’s equations

�k × (�k × �E) = �k(�k · �E) − k2 �E = −ω2

c2
ε̃ �E. (6)

Inserting Eq. (6) into Eq. (5), the relationship between the
electric field �E and the polarization �P can be derived:

�P = ε0 �E
(

c2k2

ω2
− 1

)
− ε0c

2

ω2
�k(�k · �E). (7)

For purely transverse waves, �E⊥�k, we obtain

�PT = ε0 �ET

(
c2k2

ω2
− 1

)
, (8)

and for purely longitudinal waves, �E ‖ �k, we obtain

�PL = −ε0 �EL. (9)

ωT⊥ (ωT‖) indicates the frequency of the transverse phonon
propagating in the (x,y) plane (parallel to the z axis). ωL⊥ (ωL‖)
refers to the frequency of the longitudinal phonon propagating
in the (x,y) plane (parallel to the z axis). εs⊥ (ε∞⊥) denotes the
static (high-frequency) dielectric constant in the (x,y) plane
and εs‖ (ε∞‖) the static (high-frequency) dielectric constant
parallel to the z axis.

The numerical calculations in the next sections are based
on hexagonal α-GaN with parameters given in Sec. III B. The
primitive unit cell of α-GaN with space group C4

6v contains
four atoms. One Ga atom of the two GaN pairs is tetrahedrally
coordinated by four N atoms, and vice versa. Group theory
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predicts 3 × 4 = 12 phonon normal modes at the � point of
the Brillouin zone according to the irreducible representation
2A1 + 2B1 + 2E1 + 2E2. One set of A1 and E1 modes
are acoustic, while the remaining A1 + 2B1 + E1 + 2E2

modes are optical ones. The A1 and E1 modes are both
Raman and IR (infrared) active, the two E2 modes are only
Raman active, and the two B1 modes are silent modes (neither
Raman nor IR active). Only the polar A1 and E1 modes show
polariton dispersion. They split into TO and LO phonon modes
with different frequencies due to the macroscopic electric
field associated with the longitudinal modes. In the case of
GaN, the electrostatic forces predominate over the anisotropic
short-range forces. Therefore the TO-LO splitting is larger
than the A1-E1 splitting.45 For the lattice vibrations with A1

and E1 symmetry, the atomic displacement is parallel and
perpendicular to the c axis, respectively. Thus phonons with
wave-vector angles between 0◦ and 90◦ to the c axis have
mixed A1-E1 character.

B. Ordinary polaritons

In order to solve the three equations Eqs. (3) and (8),
we combine Qo⊥, Eo⊥, and Po⊥ to a vector �Xo. The set of
equations can then be written as

M̃o · �Xo = 0 (10)

with the matrix

M̃o =

⎛
⎜⎝

ω2 − ω2
T⊥ a⊥ 0

a⊥ b⊥ −1

0 ε0
(

c2k2

ω2 − 1
) −1

⎞
⎟⎠.

Nontrivial solutions of the equations are obtained with
det(M̃o) = 0. This leads to the equation

ε∞⊥ω4 − ω2c2k2 − ε∞⊥ω2ω2
L⊥ + c2k2ω2

T⊥ = 0. (11)

This equation can also be written as

c2k2

ω2
= ε⊥(ω) = ε∞⊥

(
1 + ω2

L⊥ − ω2
T⊥

ω2
T⊥ − ω2

)
, (12)

where ε⊥(ω) is the dielectric function for propagation in the
optically isotropic plane. Equation (11) is a quadratic equation
in ω2. Its solution gives two polariton branches that do not
depend on the angle θ . For k → 0, the lower branch converges
to zero and the upper to the frequency of the LO(E1) phonon
mode. For large k, the lower branch reaches the frequency of
the transverse phonon TO(E1) (see Fig. 2).

C. Extraordinary polaritons

It is convenient to change the coordinate system and
express the vectors �Q, �E, and �P in components parallel
(Longitudinal) and perpendicular (Transverse) to the wave
vector �k (see Fig. 1). Thus the polarization can be easily
expressed by components parallel to the corresponding electric
field components [see Eqs. (8) and (9)]. In order to solve
six equations (4), (8), and (9), we combine the transformed
components Qe⊥, Ee⊥, Pe⊥, Qe‖, Ee‖, and Pe‖ to a vector �Xe

and write the set of equations in the form

M̃e · �Xe = 0 (13)

with the matrix

M̃e =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(
ω2 − ω2

T⊥
)

cos θ −a⊥ cos θ 0
(
ω2 − ω2

T⊥
)

sin θ a⊥ sin θ 0

−a⊥ cos θ −b⊥ cos θ cos θ a⊥ sin θ b⊥ sin θ − sin θ

0 ε0
(
1 − c2k2

ω2

)
1 0 0 0(

ω2 − ω2
T‖

)
sin θ a‖ sin θ 0

(
ω2 − ω2

T‖
)

cos θ a‖ cos θ 0

a‖ sin θ b‖ sin θ − sin θ a‖ cos θ b‖ cos θ − cos θ

0 0 0 0 ε0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Nontrivial solutions of this homogeneous equation system
for the six variables QT, ET, PT, QL, EL, and PL are
obtained for vanishing determinant M̃e. This leads to the
equation(

c2k2

ω2

)
[ε⊥(ω) sin2 θ + ε‖(ω) cos2 θ ] − ε⊥(ω) ε‖(ω) = 0,

(14)

where ε⊥(ω) and ε‖(ω) are the dielectric functions for
propagation in the optically isotropic plane and parallel to
the c axis of the uniaxial crystal, respectively. ε⊥(ω) is given
by Eq. (12) and ε‖(ω) is defined by

ε‖(ω) = ε∞‖

(
1 + ω2

L‖ − ω2
T‖

ω2
T‖ − ω2

)
. (15)

Equation (14) describes the directional dispersion as well as
the dispersion as a function of the wave vector. This equation
is cubic in ω2 and can be solved analytically using Cardano’ s
formula.46 The three real solutions describe the three branches
of the extraordinary polaritons. [Conventionally, the notation
polariton is restricted to the transverse polariton branches
with their strong frequency dependence. On the contrary,
the changes in the LO frequencies are minor. However, for
small wave vectors (k < 5 × 103 cm−1) interaction between
phonon and photon can be seen (see Fig. 3). Therefore, in this
work, we use the notation polariton for all branches which are
solutions of Eq. (14).] In the following, we discuss ω(�k) in
dependence on the angle θ between the wave vector and the z

axis.
a. θ = 0◦. The low branch converges for k → 0 to zero and

the high branch to ωE1LO. From the solution ε‖(ω) = 0, the
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FIG. 2. Solutions of Eq. (11): dispersion of the phononlike
POo,low and the photonlike POo,high branches of the ordinary polariton
in α-GaN (E1 type) as a function of the wave vector k.

LO(A1) phonon is obtained with ω = ωL‖. The other solutions
describe the extraordinary transverse polaritons associated
with polaritons of E1 type with displacements parallel to
the c axis. These branches coincide with the directionally
independent ordinary polariton of E1 type (see Fig. 2). The
frequency of the middle branch is independent on k. For large
k, the low branch reaches ωE1TO.

b. θ = 90◦. The low branch converges for k → 0 to zero
and the high branch to ωE1LO. The frequency of the middle
branch corresponds to ωE1LO and is independent on k. Since
the polariton is of A1 type for large k the low branch reaches
ωA1TO.

c. 0◦ < θ < 90◦. For k → 0 the low branch reaches
zero and the high branch ωE1LO. The middle branch shows
dispersion depending on the value k with frequencies ranging
between ωA1LO and ωE1LO. The low branch converges for
large k to a frequency value between ωA1TO and ωE1TO. The
frequency limits for k → ∞ can be calculated for the low and
the middle branches using Eq. (14). As an example, Fig. 3
shows the extraordinary polaritons for θ = 45◦ and in the
insets for other angles θ as well. For k → 0, the polaritons
are independent on the angle θ of the wave vector with the c

axis and approach the limiting frequencies 0, ωA1LO and ωE1LO.
From a physical point of view, if the wavelength approaches
infinity, then the lattice vibrations cease to sense the wave
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θ = 0° 30°

60°

LO(A1)

LO(E1)

FIG. 3. (Color online) Solutions of Eq. (14): dispersion of the
TO-phonon-like POeo,low, the LO-phonon-like POeo,middle, and the
photonlike POeo,high extraordinary polariton branches in α-GaN in
dependence on the wave vector k for a fixed angle θ = 45◦ between
the wave vector and the z axis. The insets show the dispersion
of the extraordinary polariton branches for small wave vectors in
dependence on the angle θ .

vector direction. The lattice displacements and associated
electric fields are parallel or perpendicular to the c axis.

D. Directional dispersion

For large wave vectors (104 cm−1 < k < 106 cm−1), the
polaritons are phononlike. Assuming k → ∞, we obtain from
Eq. (14):

ε⊥(ω) sin2 θ + ε‖(ω) cos2 θ = 0. (16)

The solution of this quadratic equation in ω2 yields two
extraordinary polariton (phonon) branches depending on the
angle θ including the wave vector and the c axis of the crystal.
The directional dispersion of the two extraordinary modes is
shown in Fig. 4. The ordinary phonon of E1 symmetry and TO
character exhibits no dispersion. For comparison, the nonpolar
mode E2,high is shown which also has no directional dispersion.

In order to describe the directional dependence, the Poulet-
Loudon approximation47,48 is a simple expression used in the
literature:

ω2
TO(θ ) = ω2

E1TO cos2 θ + ω2
A1TO sin2 θ,

(17)
ω2

LO(θ ) = ω2
A1LO cos2 θ + ω2

E1LO sin2 θ.
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FIG. 4. (Color online) Solutions of Eq. (14) in the case of large
wave vectors: directional dispersion of the extraordinary TO phonons
and LO phonons in α-GaN. The circles in the upper part of the figure
show measured frequencies of the LO phonon (see Sec. IV, Fig. 7).

In the case of α-GaN, these approximations work very well
and practically coincide with the exact solutions shown in
Fig. 4. The circles in the upper part of the figure present
measured frequencies of the LO phonon taken from near-
forward scattering in the (x,z) plane (see Sec. IV).

E. Raman scattering intensity

The Raman scattering efficiency per unit angle dS
d�

of the
polaritons traveling the distance L in the crystal through the
volume V can be written29 as

dS

d�
=

(
ωs

c

)4

V L

∣∣∣∣∣∣〈1 + nω|
3∑

μν=1

eS
μδχμνe

L
ν |nω〉

∣∣∣∣∣∣
2

, (18)

where �eL(�eS) are the unit vectors in direction of polarization
of the incident (scattered) photons, respectively. The value
inside the absolute value signs is the matrix element of an
operator between the state with nω polaritons of frequency ω

present and the state with nω + 1 polaritons describing a Stokes
scattering process. nω = 1/[exp(h̄ω/kT ) − 1] is the Bose-
Einstein factor. The Raman scattering intensity depends on
the changes δχ of the polarizability tensor with contributions
of the normal coordinates and the electric field components:

δχN = ∂χ

∂QN

QN + ∂χ

∂EN

EN

=
[

∂χ

∂QN

+
(
ω2

TN − ω2
)

ωTN

√
ε0(εsN − ε∞N )

∂χ

∂EN

]
QN

=
{

3∑
α=1

[
∂χ

∂Qα

∂Qα

∂QN

+
(
ω2

TN − ω2
)

ωTN

√
ε0(εsN − ε∞N )

× ∂χ

∂Eα

∂Eα

∂EN

]}
QN,

for N = 1,2, ωN = ωT⊥,

for N = 3, ωN = ωT‖. (19)

The letter N denotes the ordinary transverse, extraordinary
transverse, and the extraordinary longitudinal polaritons with
the normal coordinates QTo, QTe, QLe and the electric fields
ETo, ETe, ELe, respectively. The relation between EN and QN

follows from Eqs. (3) and (4).
We decompose the normal coordinates introducing the

angles ϕ and θ , which define the direction of the wave vector
�k = k (sin θ cos ϕ, sin θ sin ϕ, cos θ ). The direction of the
three normal coordinates �QTo⊥ �QTe⊥ �QLe is given by �QTo⊥(z
axis, �k), �QTe⊥(�k, �QTo), and �QLe ‖ �k. We obtain

∂χ

∂QTo
= ∂χ

∂Qx

∂Qx

∂QTo
+ ∂χ

∂Qy

∂Qy

∂QTo
+ ∂χ

∂Qz

∂Qz

∂QTo

= − ∂χ

∂Qx

sin ϕ + ∂χ

∂Qy

cos ϕ,

∂χ

∂QTe
= ∂χ

∂Qx

∂Qx

∂QTe
+ ∂χ

∂Qy

∂Qy

∂QTe
+ ∂χ

∂Qz

∂Qz

∂QTe

= − ∂χ

∂Qx

cos θ cos ϕ − ∂χ

∂Qy

cos θ sin ϕ + ∂χ

∂Qz

sin θ,

∂χ

∂QLe
= ∂χ

∂Qx

∂Qx

∂QLe
+ ∂χ

∂Qy

∂Qy

∂QLe
+ ∂χ

∂Qz

∂Qz

∂QLe

= ∂χ

∂Qx

sin θ cos ϕ + ∂χ

∂Qy

sin θ sin ϕ + ∂χ

∂Qz

cos θ.

(20)

Similarly, the components of the electro-optic tensor are
obtained.

We use the abbreviations aα,ij = ∂χij

∂Qα
for the coefficients

of the atomic displacement tensor and bα,ij = ∂χij

∂Eα
for the

coefficients of the electro-optic tensor. The coefficients of the
electro-optic tensor are related to those of the second harmonic
generation tensor dα,ij :49

bα,ij = 4 dα,ij . (21)

Tables for the Raman tensors have been published by several
authors. We refer to the table in Claus et al.30 where some
errors appearing in older tables have been corrected. For the
polar modes in hexagonal crystals with point group C6v , the
tensors have the following form:

α = 1, E1(x) :
∂χ

∂Qx

=

⎛
⎜⎝

0 0 cQ

0 0 0

cQ 0 0

⎞
⎟⎠,

∂χ

∂Ex

=

⎛
⎜⎝

0 0 ce

0 0 0

ce 0 0

⎞
⎟⎠,

α = 2, E1(y) :
∂χ

∂Qy

=

⎛
⎜⎝

0 0 0

0 0 cQ

0 cQ 0

⎞
⎟⎠,

∂χ

∂Ey

=

⎛
⎜⎝

0 0 0

0 0 ce

0 ce 0

⎞
⎟⎠,
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α = 3, A1(z) :
∂χ

∂Qz

=

⎛
⎜⎝

a 0 0

0 a 0

0 0 b

⎞
⎟⎠,

∂χ

∂Ez

=

⎛
⎜⎝

ae 0 0

0 ae 0

0 0 be

⎞
⎟⎠. (22)

We have written cQ to avoid confusion with the velocity of
light c.

We express the relation between the electro-optic tensor
components and the atomic displacement tensor components
using the Faust-Henry34 coefficients:

bα,ij = aα,ij

√
ε0(εsα − ε∞α)

CFH
α,ij ωTα

. (23)

According to the symmetry of the tensors, three different
Faust-Henry coefficients will appear:

CFH
c = CFH

1,31 = CFH
1,13 = CFH

2,23 = CFH
2,32,

CFH
a = CFH

3,11 = CFH
3,22, (24)

CFH
b = CFH

3,33.

The Faust-Henry coefficients can be obtained by measurement
of the Raman scattering intensities ILO and ITO of the
corresponding LO and TO phonons:

ILO

ITO
= ωTO

ωLO

n(ωLO) + 1

n(ωTO) + 1

∣∣∣∣1 − ω2
LO − ω2

TO

CFHω2
TO

∣∣∣∣
2

. (25)

The Raman scattering intensity can now be written as

IN(ω) =
(

ωs

c

)4

V L|�eL · R̃N · �eS|2|〈1 + nω|QN|nω〉|2. (26)

The index N refers to ordinary transverse polaritons (N = To),
extraordinary transverse polaritons (N = Te), or extraordinary
longitudinal polaritons (N = Le), respectively. The three
matrices R̃N are

R̃To = C ·

⎛
⎜⎝

0 0 − sin ϕ

0 0 cos ϕ

− sin ϕ cos ϕ 0

⎞
⎟⎠ (27)

with C(ω) = cQ(1 + ω2
T⊥−ω2

CFH
c ω2

T⊥
),

R̃Te =

⎛
⎜⎝

A sin θ 0 −C cos θ cos ϕ

0 A sin θ −C cos θ sin ϕ

−C cos θ cos ϕ −C cos θ sin ϕ B sin θ

⎞
⎟⎠
(28)

and

R̃Le =

⎛
⎜⎝

A cos θ 0 C sin θ cos ϕ

0 A cos θ C sin θ sin ϕ

C sin θ cos ϕ C sin θ sin ϕ B cos θ

⎞
⎟⎠ (29)

with A(ω) = a(1 + ω2
T‖−ω2

CFH
a ω2

T‖
) and B(ω) = b(1 + ω2

T‖−ω2

CFH
b ω2

T‖
).

Matrix elements |〈1 + nω|QN|nω〉|2 have been calculated for
polar modes in cubic crystals by Mills and Burstein29 introduc-
ing a so-called phonon strength function with electromagnetic

and mechanical contributions to the polaritons energy. How-
ever, generalizing for uniaxial crystals, the calculation of the
matrix elements leads to the following:

|〈1 + nω|QTo|nω〉|2 =
[
h̄(1 + nω)

2V ωT⊥

]
Sp⊥,

|〈1 + nω|QTe|nω〉|2 =
[
h̄(1 + nω)

2V

]

×
(

Sp⊥ cos2 θ

ω2
T⊥

+ Sp‖ sin2 θ

ω2
T‖

)
,

|〈1 + nω|QLe|nω〉|2 =
[
h̄(1 + nω)

2V

]

×
(

Sp⊥ sin2 θ

ω2
T⊥

+ Sp‖ cos2 θ

ω2
T‖

)
, (30)

with

Sp⊥(ω) = ωωT⊥
(
ω2

L⊥ − ω2
T⊥

)
(
ω2

T⊥ − ω2
) + ω2

T⊥
(
ω2

L⊥ − ω2
To⊥

) ,

(31)

Sp‖(ω) = ωωT‖
(
ω2

L‖ − ω2
T‖

)
(
ω2

T‖ − ω2
) + ω2

T‖
(
ω2

L‖ − ω2
T‖

) .

The phonon strength functions Sp⊥(ω) and Sp‖(ω) provide a
measure of the phonon content of the polaritons depending on
their frequency. If the frequencies of the transverse polaritons
approach the phonon frequencies (ω → ωT ⊥ and ω → ωT‖)
in case of large wave vectors, the phonon strength functions
approach unity. For the longitudinal polaritons with ω →
ωL⊥ (ω → ωL‖), we obtain Sp⊥ = ωT⊥/ωL⊥ (Sp‖ = ωT‖/ωL‖).
Equation (26) describes the Raman scattering intensity of the
polaritons (near-forward scattering) as well as of the phonons
(180◦-backscattering or 90◦-scattering geometry).

III. EXPERIMENT

A. Near-forward scattering

The scattering configuration is shown in Fig. 5. The exciting
laser beam is directed along the x axis and enters the entrance
surface of the prismatic sample. The screen placed directly in
front of the entrance lens of the imaging system is open for
scattered light with a small window around the point (Y,Z).
The scattered light beam includes the angle ψ with the (x,y)
plane, and its orthogonal projection on the (x,y) plane the angle
δ with the x axis. Afterwards, the scattered light originating
from the focus plane of the entrance lens passes an analyzer and
a quartz wave plate, which rotates the polarization axis in the
position for which the spectrometer throughput is optimized.

For the scattering process inside the crystal [see Fig. 5(b)
and 5(c), index “i”] wave-vector conservation requires

�kiL = �kiS + �kP (32)

and energy conservation requires

h̄ωL = h̄ωS + h̄ωP or
1

λL
= 1

λS
+ ω. (33)

The laser wave-vector magnitude is |�kiL| = 2π nL
λL

and the

magnitude of the scattered light wave vector is |�kiS| = 2π nS
λS

.
λL and λS denote the wavelength of the incident and scattered
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FIG. 5. Setup for near-forward scattering: (a) scattered light with
wave vector �kS outside the crystal enters the window P’ at (Y,Z)
on the masking screen (1) positioned in front of the lens (2), passes
the analyzer (3), λ/2 quartz wave plate (4) and lens (5). Introducing
spherical coordinates, the scattered light beam includes the angle
ψ with the (x,y) plane and the azimuthal angle δ. Refraction at
the crystal boundary: (b) special case: scattering in the (x,z) plane.
The wave vector �kS of the scattered light (angle ψ with the x axis)
corresponds to the wave vector �kiS with the angle ψi inside the crystal.
(c) Special case: scattering in the (x,y) plane. The wave vector �kS of
the scattered light (angle δ with the x axis) corresponds to the wave
vector �kiS with the angle δi inside the crystal.

photons outside the crystal, respectively. �kP refers to the wave
vector of the polariton excited in a Stokes process and ω to its
energy expressed in cm−1. Since α-GaN is a uniaxial crystal,
we have to differentiate between ordinary and extraordinary
rays of the incident and scattered light. The refraction indices
nL and nS are used for ordinary (extraordinary) rays. For
ordinary rays, the electric field is polarized in the (x,y) plane.
The proper refractive index is no = √

ε∞⊥. For extraordinary
rays, the electric field is polarized parallel to the z axis and
the corresponding refractive index can be expressed by neo =√

ε∞‖. ε∞⊥ indicates the high-frequency dielectric constant in
the (x,y) plane and ε∞‖ for directions parallel to the z axis. We
consider near-forward scattering with the c axis of the crystal
oriented parallel to the z axis of the laboratory coordinate
system and the scattering geometries x(zz)x, x(zy)x, x(yz)x,
and x(yy)x. The letters in brackets describe the polarization
direction of the incident and scattered light beam, respectively.

Light scattered inside the crystal with wave vector �kiS

enters the small window on the screen located at (Y,Z) =
(L tan δ,L tan ψ) with wave vector �kS. The vectors �kiS, �kP, and
�eiS characterising the scattering process inside the crystal can
be expressed as functions of the window position (angles ψ

and δ). Details are shown in Appendix B. For the wave vector
�kiS of scattered light inside the crystal, we obtain

�kiS = 2πnS

λS

(√
1 − a,

−√
a√

1 + b
,

√
ab√

1 + b

)
, (34)

where a = (1 − cos2 ψ cos2 δ)/n2
S and b =

(tan2 ψ/ sin2 δ)/n2
S. Depending on the polarization, the

refractive index rates as nS = no (ordinary ray) or nS = neo

0 0.5 1 1.5

kx (104 cm-1)

-2.5

-2

-1.5

-1

-0.5

0

k y
 (

10
4  

cm
-1
)

0 0.5 1 1.5

kx (104 cm-1)

-2.5

-2

-1.5

-1

-0.5

0

-0.5 0 0.5 1

-2.5

-2

-1.5

-1

-0.5

0

k y
 (

10
4  

cm
-1
)

0 0.5 1 1.5

-2.5

-2

-1.5

-1

-0.5

0

1
2

5

10

Y = 15 mm
Y = 15 mm

115

1

Y = 1 mm

2

2

2

Y = 15 mm

55

5

10

10

10

zz

yyyz

zy

ϕ

FIG. 6. Polariton wave vectors for near-forward scattering in
direction x in the (x,y) plane. The wave vector of the scattered light
is directed to the window at Y (and for Z = 0) on the masking screen
(see Fig. 5). The two letters indicate the polarization direction of the
incident and scattered light, respectively.

(extraordinary ray). The polariton wave vector �kP is obtained
using Eq. (32). For the polarization configuration (yz) the
component kP,x can also be negative (see Fig. 6).

B. Experimental conditions

Raman spectra were obtained at room temperature using a
T 64000 Raman spectrometer (Horiba, Jobin Yvon) in a nearly
forward scattering geometry. For this purpose, the GaN sample
was positioned in the macrochamber with its c axis oriented
parallel to the z axis of the laboratory coordinate system. The
spectra were excited applying the 514.5-nm line of an Ar+ laser
at a power level of about 100 mW at the sample. After passing
the spectrometer equipped with gratings of 1800 grooves/mm
in subtractive mode, the scattered light was detected by a LN
cooled CCD detector. The laser beam was focused onto the
sample by a laser objective. By means of a polarization rotator,
the laser beam polarization could be changed from (i) parallel
to the y axis (H) with the ordinary ray inside the crystal to
(ii) parallel to the z axis (V) with extraordinary ray inside
the crystal (see Fig. 5). The scattered light was analyzed with
polarization parallel or perpendicular to the z axis using an
analyzer positioned in the parallel light path between sample
and entrance slit of the spectrometer. Both laser beam and
sample were carefully adjusted in order to avoid the capture
of laser light into the spectrometer. The laser beam leaving
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the sample was masked in the center of the entrance lens of
the imaging system. Furthermore, care is necessary to avoid
gathering of scattered light excited by the laser beam partly
backscattered at the inner crystal surface. The reflectivity at
514.5-nm wavelength is about 0.174 (0.157) for the ordinary
(extraordinary) beam.50

Since there is an excellent agreement with our experimental
data the following parameters were adopted in this work and
used for the calculations: εo = 5.20 cm−1, εeo = 5.31 cm−1;51

ωA1TO = 531.8 cm−1, ωE1TO = 558.8 cm−1, ωE2high =
567.6 cm−1, ωE2low = 144 cm−1, ωA1LO = 734 cm−1, and
ωE1LO = 741 cm−1.52

IV. EXPERIMENTAL RESULTS

Although the birefringence of α-GaN is only weak (no =√
ε∞⊥ = 2.280,ne = √

ε∞‖ = 2.304),51 its optical anisotropy
has a strong impact on the polariton spectra measured
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FIG. 7. (Color online) (a) Raman spectra of the extraordinary
polariton, θ = 90◦, x(zz)x. Near-forward scattering in direction x,
scattering in the (x,y) plane, polarization parallel z(z) of the incident
(scattered) light vectors. The parameter Y indicates the position of
the entrance window for the scattered light on the screen (1), Z =0.
The inset shows the LO(E1) phonon at fixed spectral position. (b)
Dispersion of the extraordinary polariton branches for θ = 90◦ as a
function of the polariton wave vector [solutions of Eq. (14)]. The
dashed curves [solutions of Eq. (B2)] show possible (ω,kP) values for
scattering angles δi inside the crystal (see Fig. 5).

with different polarizations of the incident and scattered
light. Figure 6 shows transferred polariton wave vectors for
scattering in the (x,y) plane for the near-forward scattering
configurations x(zz)x, x(yy)x, x(zy)x, and x(yz)x. The
parameter Y describes the position of the opened window
in horizontal direction (Z = 0) on the screen in front of
the entrance lens. Note the strong difference between the
polarizations (zy) and (yz) for hexagonal α-GaN. In the case
of cubic β-GaN, however, the polariton wave vectors and the
Raman spectra of the two polarizations should be the same.
The ordinary (�eL ‖ y) or extraordinary (�eL ‖ z) laser light
propagates inside the crystal along the x axis. The outgoing
scattered light is extraordinary (�eS ‖ z) or ordinary (�eS ‖ y).
The extraordinary polaritons are observable with (zz) or (yy)
polarizations, whereas the ordinary ones can be detected in
(zy) or (yz) polarization configuration.
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FIG. 8. (Color online) (a) Raman spectra of the extraordinary
polariton, θ = 90◦, x(yy)x. Near-forward scattering in direction x,
scattering in the (x,y) plane, polarization parallel y(y) of the incident
(scattered) light vectors. The parameter Y indicates the position of
the entrance window for the scattered light on the screen (1), Z = 0.
The inset shows the LO(E1) phonon at fixed spectral position. (b)
Dispersion of the extraordinary polariton branches for θ = 90◦ as a
function of the polariton wave vector [solutions of Eq. (14)]. The
dashed curves [solutions of Eq. (B2)] show possible (ω,�kP) values for
scattering angles δi inside the crystal (see Fig. 5).
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FIG. 9. (Color online) (a) Raman spectra of the ordinary po-
lariton, θ = 90◦, x(zy)x. Near-forward scattering in direction x,
scattering in the (x,y) plane, polarization parallel z(y) of the incident
(scattered) light vectors. The parameter Y indicates the position
of the entrance window for the scattered light on the screen (1),
Z = 0. The inset shows the LO(E1) phonon at fixed spectral position.
(b) Dispersion of the ordinary polariton branches for θ = 90◦ as a
function of the polariton wave vector [solutions of Eq. (11)]. The
dashed curves [solutions of Eq. (B2)] show possible (ω,�kP) values for
scattering angles δi inside the crystal (see Fig. 5).

Figures 7–10 show the near-forward Raman scattering
spectra and the dispersion of the polaritons depending on the
polariton wave vector for scattering in the (x,y) plane (θ =
90◦). The intensities of the Raman spectra were normalized
with respect to the intensity of the E2,high Raman mode at
567.6 cm−1, which is allowed in the configuration x(yy)x.
This nonpolar phonon is connected with lattice displacements
parallel to the (x,y) plane and is not influenced by the
electric field. Its intensity does not depend on the parameter Y

displayed in Figs. 7–10. The polariton Raman bands are shifted
towards lower frequencies with decreasing parameter Y . Small
values of Y ≈ 2 mm could be realized. This corresponds to an
angle δi ≈ 0.5◦ between the scattered light beam and the x

axis. The exciting laser beam passing the crystal was blocked
off in the center of the screen in order to avoid entrance of
laser light in the spectrometer. The overlay of the scattered
light with exciting laser light limits the parameter at small Y

values.
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FIG. 10. (Color online) (a) Raman spectra of the ordinary
polariton, θ = 90◦, x(yz)x. Near-forward scattering in direction x,
scattering in the (x,y) plane, polarization parallel y(z) of the incident
(scattered) light vectors. The parameter Y indicates the position
of the entrance window for the scattered light on the screen (1),
Z = 0. The inset shows the LO(E1) phonon at fixed spectral position.
(b) Dispersion of the ordinary polariton branches for θ = 90◦ as a
function of the polariton wave vector [solutions of Eq. (11)]. The
dashed curves [solutions of Eq. (B2)] show possible (ω,�kP) values for
scattering angles δi inside the crystal (see Fig. 5).

Besides the polariton Raman bands small Raman bands at
fixed frequencies can be observed, in the Raman spectra of the
extraordinary polaritons, the TO(A1) phonons at 531.1 cm−1

and in the Raman spectra of the ordinary polaritons, the TO(E1)
phonon at 558.9 cm−1 as well as weak bands of the (very
strong) E2,high phonon. Their origin is due to some scattered
light that stems from a 180◦-backscattering process of phonons
with wave vectors of about 6 × 105 cm−1 overlaying the near-
forward scattering. Part of the incident laser beam is reflected
inside the crystal and gives rise to these weak bands, which
could be minimized by careful adjustment. Figures 7(a)–10(a)
show insets with the measured LO phonons with symmetry E1

and location at about 741 cm−1 in accordance with scattering
in the (x,y) plane. The stable position of the measured LO
phonon indicates that the scattering occurs in the (x,y) plane
(θ = 90◦).

The dispersion of the polariton modes is shown in
Figs. 7(b)–10(b). The curves POeo,low, POeo,middle, and POeo,high
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in Figs. 7(b) and 8(b) for the extraordinary polariton modes
are solutions of Eq. (14) and the curves POo,low and POo,high

in Figs. 9(b) and 10(b) are solutions of Eq. (11). The dashed
curves show solutions of Eqs. (32) and (33) for scattering
angles δi inside the crystal, with combinations of values (ω)
and (kP), allowed due to energy and momentum conservation.
The intersections with the theoretical dispersion curves yield
the allowed polaritons.

The smaller the angle δi, the broader the Raman bands
since the slope of the curve becomes steeper. The small
bands at 317, 410, and 420 cm−1 are acoustic overtones
of the second-order Raman spectra.53 The dashed curves in
Fig. 10 illustrate that only the configuration x(yz)x allows
one to observe photonlike polaritons on the branch POo,high

in principle. However, for this scattering configuration, the
scattering intensity is more than one order smaller than for
the other configurations. Further, the slope of this branch rises
steeply with increasing δi, which increases the half-width of
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FIG. 11. (Color online) Raman spectra of the extraordinary
polariton, near-forward scattering in the (x,z) plane. The parameter
Z indicates the position of the entrance window for the scattered light
on the screen (1), Y = 0. θ is the corresponding angle between the
polariton wave vector and the z axis. The two insets show that the
position of the LO phonon is shifted owing to the variation of θ (see
Fig. 4). The upper panel shows the spectra taken with polarization
z(z) of the electric field vector of the incident (scattered) light, the
spectra in the lower panel are measured with polarization y(y).
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FIG. 12. (Color online) Raman intensity of the polaritons ob-
served in near-forward scattering geometry in the (x,y) plane as
function of the Raman shift. (a) Extraordinary polariton, polarization
(zz). (b) Extraordinary polariton, polarization (yy). (c) Ordinary
polariton, polarization (zy). The circles show experimentally obtained
values. The intensity was normalized referring to the Raman intensity
of the E2,high phonon measured in polarization (yy). The dashed curves
were calculated by Eq. (26).

the expected band. Therefore, despite careful search, we were
not able to detect this branch. Figure 11 shows Raman spectra
of the extraordinary polariton with near-forward scattering in
the (x,z) plane. The parameter Z indicates the position on
the screen in vertical direction (Y = 0). Figure 11(a) displays
spectra with polarization (zz) and Fig. 11(b) with polarization
(yy) of the electric field vectors of the incident and scattered
light. The intensities of the Raman spectra were normalized
with respect to the intensity of the nonpolar E2,high phonon.
The intensity of the E2,high phonon is (nearly) independent on
the parameter Z in the considered Z range. Depending on
the parameter Z, the polariton wave vectors include different
angles θ with the z axis. Each Raman spectrum corresponds to
different dispersion curves (see Fig. 3). Therefore we omitted
the corresponding dispersion curves.

The circles in Fig. 12 give the Raman intensities of the
polariton spectra shown in Figs. 7(a)–9(a) for scattering in the
(x,y) plane (θ = 90◦). The polaritons in the (yz) polarization
exhibit only weak scattering intensities. Therefore they were
not included in the figure. The intensities shown are the areas
beneath the polariton bands normalized to the E2,high Raman
mode, which is allowed in the (yy) polarization. The dashed
curves were calculated according to Eq. (26) in Sec. II E. The
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experimentally obtained intensities show an overall excellent
agreement with the theoretical values.

V. CONCLUSION

In this study, Raman scattering of phonon polaritons
in uniaxial crystals of wurtzite-type was investigated. The
dispersion and the Raman scattering efficiency of the ordinary
and extraordinary polaritons were discussed in detail. Starting
with the Born-Huang and the Maxwell equations, expressions
for the Raman scattering intensity were derived for arbitrary
directions of the polaritons in the crystal. In the limit of
large wave-vector magnitudes, the equations describe the
behavior of the polar phonons. An experimental setup is
described that enables measurements of polaritons of defined
E1 and A1 symmetry depending on their wave vector. Near-
forward Raman scattering measurements with angles between
laser and scattered light beams down to about 0.5◦ were
possible.

Polariton spectra of α-GaN were measured for different
scattering geometries and polarizations. The experimental
results are in accordance with the theoretical derivations.
Although the birefringence for light in the optical range is only
small, strong differences between the polariton Raman spectra
in the near-forward configurations x(zy)x and x(yz)x occur.
The observation of the photonlike polariton branch should be
possible, in principle, in the x(yz)x configuration but escaped
detection due to weak Raman signals.
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APPENDIX A: BASIC EQUATIONS

The coefficients B in Eqs. (3) and (4) can be correlated
with measurable macroscopic parameters (see, for instance,
Ref. 30): for transverse phonons in the principal directions

with c2k2/ω2 � 1, it can be seen that

B11
o⊥ = B11

e⊥ = −ω2
T⊥,

(A1)
B11

e‖ = −ω2
T‖.

For large frequencies ω, the amplitudes of the normal
coordinates Qo⊥, Qe⊥, and Qe‖ vanish, and we receive
from Po⊥ = B22

o⊥Eo⊥ = ε0(ε∞⊥ − 1)Eo⊥, Pe⊥ = B22
e⊥Ee⊥ =

ε0(ε∞⊥ − 1)Ee⊥, and Pe‖ = B22
e‖ Ee‖ = ε0(ε∞‖ − 1)Ee‖ the

following:

B22
o⊥ = B22

e⊥ = b⊥ = ε0(ε∞⊥ − 1),
(A2)

B22
e‖ = b‖ = ε0(ε∞‖ − 1).

In the static case (ω = 0), we obtain for the ordi-
nary modes from Qo⊥ = −(B12

o⊥/B11
o⊥)Eo⊥ and Po⊥ =

[−(B12
o⊥B21

o⊥/B11
o⊥) + B22

o⊥]Eo⊥, analog equations for the ex-
traordinary modes, and with Eqs. (A1) and (A2),

B12
o⊥ = B21

o⊥ = B12
e⊥ = B21

e⊥ = a⊥

= ωT⊥
√

ε0(εs⊥ − ε∞⊥) =
√

ε0ε∞⊥
(
ω2

L⊥ − ω2
T⊥

)
,

B12
e‖ = B21

e‖ = a‖

= ωT‖
√

ε0(εs‖ − ε∞‖) =
√

ε0ε∞‖
(
ω2

L‖ − ω2
T‖

)
. (A3)

ωT⊥ (ωT‖) indicates the frequency of the transverse phonon
propagating in the (x,y) plane (parallel to the z axis). ωL⊥ (ωL‖)
refers to the frequency of the longitudinal phonon propagating
in the (x,y) plane (parallel to the z axis). εs⊥ (ε∞⊥) denotes the
static (high-frequency) dielectric constant in the (x,y) plane
and εs‖ (ε∞‖) is the static (high-frequency) dielectric constant
parallel to the z axis. In Eq. (A3), Lyddane-Sachs-Teller
relations were used:

ω2
L⊥

ω2
T⊥

= εs⊥
ε∞⊥

,

(A4)
ω2

L‖
ω2

T‖
= εs‖

ε∞‖
.

APPENDIX B:NEAR-FORWARD SCATTERING
EQUATIONS

For small scattering angles and |�kiL| ≈ |�kiS|, it can be
assumed that �kP⊥ �kiL. In the case of very small scattering
angles, we have to consider that the transferred polariton wave
vector has also components in the (x,y) plane. With Eqs. (32)
and (33), we obtain the polariton wave vector:

�kP = 2π nS(1 − ωλL)

λL

(
1

1 − ωλL

nL

nS
− cos ψi cos δi, − cos ψi sin δi, − sin ψi

)
. (B1)

The magnitude of the polariton wave vector is

kP = 2π

√
1

λ2
L

(
n2

L + n2
S

) − n2
Sω

(
2

λL
− ω

)
− 2nLnS

1

λL

(
1

λL
− ω

)
cos ψi cos δi. (B2)
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IRMER, RÖDER, HIMCINSCHI, AND KORTUS PHYSICAL REVIEW B 88, 104303 (2013)

In this equation, kP is obtained in cm−1 if we express λL in
cm and the Raman shift ω in cm−1. The angle θ between the
polariton wave vector �kP and the z axis is defined by

cos θ = kP,z

kP
= −2π nS(1 − ωλL) sin ψi

λLkP
. (B3)

The angle ϕ between the polariton wave vector and the x axis
is determined by

sin ϕ = kP,y√
k2

P − k2
P,z

. (B4)

In the following, it is assumed that the distance L of the
imaging lens and the lens radius R are large in comparison
with the lateral size of the crystal and the exciting laser path
length within the crystal. Furthermore, R should be small
in comparison with L. In our case. L = 80 mm and R =
14 mm. It is appropriate to introduce spherical coordinates
x = r cos ψ cos δ, y = r cos ψ sin δ, and z = r sin ψ . Thus the
unit vector �qS(ψ,δ) = �kS(ψ,δ)/|�kS(ψ,δ)| of the scattered light
beam outside the crystal can be expressed as

�qS(ψ,δ) = (cos ψ cos δ, cos ψ sin δ, sin ψ), (B5)

where ψ denotes the angle between the scattered light vector
and the (x,y) plane and δ is the azimuthal angle between
the orthogonal projection of the scattered light vector on
the (x,y) plane and the x axis (see Fig. 13). The lens
center is located at ψ = δ = 0◦, a rectangular window in the
aperture in front of lens 1 can be described by �Y�Z =
�ψ�δL2/(cos2 ψ cos2 δ) ≈ �ψ�δL2.

Further, the direction of the x axis is oriented perpendicu-
larly to the boundary surface of the crystal. The x axis as well
as the scattered light vectors inside and outside the crystal are

Sk

x

z

y

iSk

ψ

δ

iψ

iδ

α

iα

plane of 
incidence

crystal 
boundary

FIG. 13. Refraction of the scattered light at the crystal boundary.
Suitably, the angles α and αi between the unit wave vector of the
scattered light (outside and inside the crystal) and the x axis are
introduced in order to derive the unit wave vector of the scattered
light inside the crystal in dependence on the angles ψ and δ using the
law of refraction.

located in the plane of incidence (see Fig. 13). It is convenient
to introduce the angles of the unit vectors of the scattered light
beams outside (�qS) and inside the crystal (�qiS) with the axes x,
y, and z:

�qS = (qS,x,qS,y ,qS,z) = (cos α, cos β, cos γ ), (B6)

�qiS = (qiS,x,qiS,y,qiS,z) = (cos αi, cos βi, cos γi). (B7)

Using the law of refraction sin αi = sin α/nS, we receive the
wave vector (unit vector) of the scattered light inside the crystal
in dependence on the angles ψ and δ:

�qiS =
(√

1 − a,
−√

a√
1 + b

,

√
ab√

1 + b

)
, (B8)

where a = (1 − cos2 ψ cos2 δ)/n2
S and b = tan2 ψ/ sin2 δ.

Depending on the polarization, the refractive index rates as
nS = no (ordinary ray) or nS = neo (extraordinary ray). It
should be noted that Eq. (B8) holds for the ordinary ray but
is not exactly valid for the extraordinary ray in all cases. If
the plane of incidence does not coincide with the principal
plane (defined as a plane containing the wave vector and the
z axis), the refracted extraordinary ray no longer lies in the
plane of incidence.54,55 Further, its refractive index depends
on the angle ψ . However, in our case, the angles between the
scattered light beam and the x axis inside the crystal are small
(the largest possible angles are about 4◦ for scattered light
entering the border of the imaging lens), and furthermore, the
difference between the two refraction indices no and neo is only
small in the case of wurtzitic GaN. Therefore it is justified to
also use Eq. (B8) for the extraordinary ray. Thus the transferred
polariton wave vector in dependence on the angles ψ and δ is
determined by

�kP(ψ,δ) = 2π

[
nL �qiL

λL
− nS �qiS(ψ,δ)

λS

]
. (B9)

The exciting laser beam is directed parallel to the x axis and
penetrates perpendicularly the crystal surface without refrac-
tion and change of the polarization. For the measurements
the following polarizations of the electric field were used:
the letters V(H) indicate vertical (horizontal) polarization. As
already previously mentioned, the index “i” refers to the inner
part of the crystal. The polarization vectors perpendicular
to the wave vector of the incident laser beam are �eH

L (�eH
iL)

with horizontal direction parallel to the y axis and �eV
L (�eV

iL)
with vertical direction parallel to the z axis of the laboratory
coordinate system:

�eH
L = �eH

iL = (0,1,0), (B10a)

�eV
L = �eV

iL = (0,0,1). (B10b)

A beam of scattered light reaches at (Y,Z) = (L tan δ,L tan ψ)
the window on the screen positioned in front of the entrance
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lens of the imaging system and then passes parallel to the x

axis the analyzer with vertical (V) or horizontal (H) position.
The light beam arises from the scattered light leaving the
crystal face with a wave vector given by Eq. (B8) and
characterized by the two angles ψ and δ. The direction
of the beam’s wave vector inside the crystal is determined
by the refraction law relating to the crystal surface. The
polarization vectors of the beam between the crystal and lens 1
are

�eH
S = (− sin δ, cos δ,0), (B11a)

�eV
S = (− sin ψ,0, cos ψ). (B11b)

The polarization vectors of the corresponding scattered beam
inside the crystal are

�eH
iS = �qiS × �ez

|�qiS × �ez| = 1√
q2

iS,x + q2
iS,y

(qiS,y, − qiS,x,0), (B12a)

�eV
iS = �eH

iS × �qiS =
(−qiS,xqiS,z, − qiS,yqiS,z,q

2
iS,x + q2

iS,y

)
√

q2
iS,x + q2

iS,y

.

(B12b)

The polarization vectors can be expressed as functions of ψ

and δ using Eq. (B8).
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IRMER, RÖDER, HIMCINSCHI, AND KORTUS PHYSICAL REVIEW B 88, 104303 (2013)

51G. Yu, H. Ishikawa, T. Egawa, T. Soga, J. Watanabe, T. Jimbo, and
M. Umeno, Jpn. J. Appl. Phys. 36, L1029 (1997).

52V. Y. Davydov, Y. E. Kitaev, I. N. Goncharuk, A. N. Smirnov,
J. Graul, O. Semchinova, D. Uffmann, M. B. Smirnov, A. P.
Mirgorodsky, and R. A. Evarestov, Phys. Rev. B 58, 12899
(1998).

53H. Siegle, G. Kaczmarczyk, L. Filippidis, A. P. Litvinchuk,
A. Hoffmann, and C. Thomsen, Phys. Rev. B 55, 7000 (1997).

54M. Born and E. Wolf, Principles of Optics (Cambridge University
Press, Cambridge, 1999).

55S. A. Akhmanov and S. Y. Nikitin, Physical Optics (Clarendon
Press, Oxford, 1997).

104303-14

http://dx.doi.org/10.1143/JJAP.36.L1029
http://dx.doi.org/10.1103/PhysRevB.58.12899
http://dx.doi.org/10.1103/PhysRevB.58.12899
http://dx.doi.org/10.1103/PhysRevB.55.7000



