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Lifshitz and excited-state quantum phase transitions in microwave Dirac billiards
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We present experimental results for the density of states (DOS) of a superconducting microwave Dirac billiard
which serves as an idealized model for the electronic properties of graphene. The DOS exhibits two sharp
peaks which evolve into van Hove singularities with increasing system size. They divide the band structure into
regions governed by the relativistic Dirac equation and by the nonrelativistic Schrödinger equation, respectively.
We demonstrate that in the thermodynamic limit, a topological transition appears as a neck-disrupting Lifshitz
transition in the number susceptibility and as an excited-state transition in the electronic excitations. Furthermore,
we recover the finite-size scaling typical for excited-state quantum phase transitions involving logarithmic
divergences and identify a quasiorder parameter.
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I. INTRODUCTION

Graphene, a monolayer of carbon atoms forming a hexag-
onal lattice, has attracted a lot of attention in recent years due
to its extraordinary properties associated with the shapes of
the conduction and the valence band, shown in the left panel
of Fig. 1. These touch each other conically at the so-called K

or Dirac points, thus implying a linear dispersion relation. As
a consequence, in their vicinity, excitations are described by a
Dirac Hamiltonian.1 Indeed, even though the electrons move
with a velocity which is 300 times smaller than the speed
of light, graphene exhibits relativistic phenomena in the cone
region.2,3 Therefore, we refer to it as the relativistic region.

Figure 1 shows, in the left panel, the band structure
ω(�q) and, in the right panel, its isofrequency lines5 (black
lines) in the plane of the quasimomentum vector components
(qx,qy). The Dirac (K) points are located at the corners of
the Brillouin zone (BZ). In their vicinity, the isofrequency
lines form circles that deform into triangles further away.
This relativistic region is bordered by saddle points at the
M points. At the center of the Brillouin zone, i.e., the � point,
the conduction (valence) band has a maximum (minimum). In
its vicinity, the isofrequency lines form circles and the band
structure has a parabolic shape. There, the Dirac equation
is no longer applicable, i.e., the system is governed by the
nonrelativistic Schrödinger equation. Accordingly, the band
structure can be separated into two independent relativistic
regions and a nonrelativistic one. A topological transition takes
place at the M points, where the Dirac cones merge into the
parabolically shaped surface. There, due to a vanishing group
velocity | �∇ω(�q)| = 0, the density of states ρ (DOS) diverges
logarithmically in an infinitely extended sheet of graphene.3

These “van Hove singularities” (VHSs) have been predicted
in general two-dimensional crystals with a periodic structure.6

In bounded sheets, the DOS exhibits peaks of finite height at
the VHSs.

We demonstrate that the topological transition at the M

points can be identified with a neck-disrupting ground-state
Lifshitz transition.7 Such a transition has been observed
experimentally only recently in two realizations of artifi-
cial graphene8,9 and in a microwave tight-binding analog

of graphene.10 There, a Lifshitz phase transition from a
semimetallic to an insulating phase was induced with a con-
trollable anisotropy in the honeycomb lattice.11,12 In Refs. 13
and 14, Lifshitz transitions were investigated theoretically
in, respectively, sliding and strained bilayer graphene. We
report on a gapless topological transition from the relativistic
to the nonrelativistic region induced by applying a chemical
potential without changing the lattice structure.15 In Ref. 16, an
experiment using angle-resolved photoemission spectroscopy
was performed where the Fermi surface of graphene was
gradually lifted to the VHS by chemical doping. However,
the electron-electron and electron-phonon interactions have
hampered the observation of the topological transition. Our
microwave system, by construction, is free of such interaction
effects.

We will show that the topological transition can as well
be associated with an excited-state quantum phase transition
(ESQPT) in the single-particle excitations,17 as observed in the
equivalent bosonic system and numerous other systems.17–22

A particularly close analogy with the present case is provided
by the two-dimensional vibron model18 describing transverse
vibrations of molecules.

Lifshitz transitions and ESQPTs exhibit a characteristic
scaling behavior of the “van Hove” peak heights with the
system size. For its experimental validation, it is essential that
the sharp peaks are not distorted by fermionic interactions.
Thus, the scaling behavior cannot be determined through
measurements in natural graphene23,24 where excitonic effects
lead to a broadening and a shift of the peaks at the VHSs.
Actually, the phenomena associated with the band structure of
graphene that we focus on are solely due to the presence of two
interpenetrating triangular lattices with threefold rotational
symmetry in the hexagonal lattice.25 Therefore, experiments
with superconducting microwave Dirac billiards26,27 are ad-
vantageous for the investigation of these phenomena since they
correspond to idealized, noninteracting graphene. Another
advantage, also encountered in “artificial graphene,” where
many-body effects are controllable (see, e.g., Ref. 28 for
an overview), is that both systems can be tailored with a
high degree of flexibility according to the phenomenon under
investigation.
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FIG. 1. (Color online) The left panel shows the numerically deter-
mined conduction and valence band. They touch each other conically
at the corners of the first Brillouin zone (white hexagon). The right
panel shows the corresponding density plot in the quasimomentum
plane (qx,qy) with the isofrequency lines shown as dark lines. The �

point denotes the maximum (minimum) of the conduction (valence)
band, the M points denote the saddle points, and the K points are the
touching points.

II. EXPERIMENTAL SETUP

Superconducting microwave billiards have been used for
two decades as analog systems for the study of nonrelativistic
quantum phenomena in high-resolution measurements.29,30

Photonic crystals31,32 are the optical analog of a solid and
the frequencies of wave propagation as a function of the
two components of the quasimomentum exhibit a band
structure. Both concepts can be combined into “microwave
photonic crystals,” which offer the opportunity to perform
high-precision measurements of the excitation spectrum. The
realization of a two-dimensional hexagonal structure utilizes
metallic cylinders in a triangular lattice array26,33 squeezed
between two metal plates. The structure of the first two
frequency bands is similar to the band structure of graphene,
that is, it is Dirac like in the vicinity of their touching points.34

Various effects have already been studied, e.g., pseudodiffusive
transport near the Dirac point,27,35,36 the quantum Hall effect,37

Zitterbewegung,35 and edge states.27,36,38

Here we present results associated with the properties of
the DOS determined experimentally for two superconducting
Dirac billiards.27 They consist of a brass lid and a rectangular
brass basin with side lengths 420.0 × 249.4 mm2 containing
the metallic cylinders that are milled out of the plate. One Dirac
billiard contained 267 cylinders and had the lattice constant
aL = 20 mm, the other one contained 888 cylinders with aL =
12 mm. The radius of the cylinders was R = aL/4. Figure 2
displays the Dirac billiard with 888 cylinders, milled out of
the bottom plate.

The lids and the basins were lead coated to achieve
superconductivity at liquid-helium temperature. To ensure a
good electrical contact, the lids were screwed tightly to each
cylinder. The height of the Dirac billiards was h = 3 mm.
Hence, up to a maximum frequency of 50 GHz, only the lowest
transverse magnetic mode with the electric-field vector perpen-
dicular to the top and bottom plates was excited. Accordingly,
the vectorial Helmholtz equation reduces to a scalar one which
is mathematically identical to the Schrödinger equation of the
corresponding two-dimensional quantum multiple-scattering

FIG. 2. (Color online) Superconducting microwave Dirac billiard
containing 888 metal cylinders. It is constructed from brass and coated
with lead. The lid is shifted with respect to the billiard body.

problem with the waves scattered specularly at the walls of the
cylinders and the billiard.

For the measurement of the resonance spectra, the mi-
crowave power was coupled into and out of the resonator via
wire antennas that reached a few millimeters into the resonator
through holes in the lid. A vector network analyzer measured
the relative phase and amplitude of the output to the input
signal. Transmission spectra were measured with all possible
combinations of two out of a total of five antennas attached
to the lid at different positions. Since the resonances had high
quality factors, Q > 5 × 105, we could resolve all resonances
and determined 1651 eigenfrequencies.

III. EXPERIMENTAL RESONANCE SPECTRA AND DOS

In the upper panel of Fig. 3, a transmission spectrum of the
Dirac billiard with 888 cylinders measured in the frequency
region between 19.5 and 30.5 GHz is depicted. It is bordered
by two stop bands corresponding to the gaps in the band
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FIG. 3. (Color online) High-resolution transmission spectrum of
the microwave Dirac billiard depicted in Fig. 2 (upper panel). It is
terminated by two stop bands, where no wave propagation is possible.
The lower panel shows a zoom into the region of particularly low
resonance density around the Dirac frequency.

104101-2



LIFSHITZ AND EXCITED-STATE QUANTUM PHASE . . . PHYSICAL REVIEW B 88, 104101 (2013)

20 22 3024 26 28

500

0

1500

1000

Dirac
frequency

fVH
+

fVH

FIG. 4. (Color online) The integrated resonance states N (f )
obtained from the resonance spectrum shown in Fig. 3. It exhibits a
plateau around the Dirac frequency fD = 23.36 GHz, where it barely
varies, and a slight kink at the frequencies denoted by f −

VH = 21.98
GHz and f +

VH = 24.87 GHz. Its frequency dependence below f −
VH

and above f +
VH clearly differs from that in between.

structure where no wave propagation is possible. Furthermore,
we observe a region with an exceptionally low resonance
density around the Dirac frequency of the Dirac points. The
lower panel of Fig. 3 shows a zoom into it.

Figure 4 shows the integrated resonance density N (f )
inferred from the measured resonance spectra as a function
of the excitation frequency f . As a consequence of the band
structure of the photonic crystal inside the microwave billiard,
N (f ) obviously differs from that of an empty one.29,30 In
a region around the Dirac frequency fD = 23.36 GHz, it
exhibits a plateau reflecting the low density observed in that
frequency range in the resonance spectrum (see Fig. 3). Above
(below) fD, it has the shape of half a parabola opening
upwards (downwards). At the frequencies denoted by f −

VH =
21.98 GHz and f +

VH = 24.87 GHz, N (f ) has a slight kink.
Below f −

VH and above f +
VH, its frequency dependence is

different from that in between. This is visible more clearly
in the DOS shown in Fig. 5. For its determination, we counted
the states �N (f ) in frequency intervals, �f = 100 MHz,
around f and thus obtained ρ(f ) = �N (f )/�f . The red
curve has been computed from a tight-binding approach which
incorporates not only the nearest-neighbor coupling t , but also
the second- and third-nearest-neighbor couplings t2 and t3
as well as the corresponding overlaps s, s2, and s3. Details
on this model and on the definition of these quantities are
given in Ref. 4. A fit of the tight-binding model to the DOS
yielded (t = 4.57, s = 0.26), (t2 = −0.28, s2 = −0.00001),
and (t3 = 0.10, s3 = 0.004).

Around the Dirac frequency fD, the DOS vanishes linearly
with |f − fD| → 0. This region corresponds to the relativistic
one in the band structure, where the propagation of electro-
magnetic waves is governed by the Dirac equation.34 It is
bracketed by two sharp peaks at f −

VH and f +
VH. These are

the VHSs.6 In the frequency range below f −
VH and above

f +
VH, the system is described by the Schrödinger equation

of the corresponding quantum multiple-scattering problem.
This defines the nonrelativistic region. A closer look at the
experimental DOS reveals that the amplitudes and the typical
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FIG. 5. (Color online) Density of states ρ(f ) obtained from the
resonance spectrum shown in Fig. 3 (black line). The red line results
from a tight-binding model4 (see text). The region of low density
around the Dirac frequency fD = 23.36 GHz is bracketed by two
sharp peaks at f −

VH = 21.98 GHz and f +
VH = 24.87 GHz, which

exhibit singular behavior at infinite system size.

frequencies of the oscillations of the experimental DOS
are smaller in the frequency range between the two VHSs
than below and above, thus indicating that both regions are
governed by different wave equations. It should be noted that,
to our knowledge, our measurement of the DOS including its
fluctuations is the most precise so far.

At the VHSs, the DOS diverges logarithmically only for
two-dimensional structures of infinite extent. In the Dirac
billiards used in the experiments, however, the sharp peaks
at f ±

VH have a finite height ρmax. We determined it for the
experimental DOS of the two microwave Dirac billiards,
and also performed numerical studies for photonic crystals
of various sizes with the shapes of rectangular and Africa
billiards.39 For a comparison of these results, we rescaled
the frequencies such that the distance f +

VH − f −
VH between the

VHSs, i.e., the group velocity, was the same for all systems.
We chose the rescaling f → f̃ such that f̃ +

VH − f̃ −
VH = 2. The

experimental and numerical studies revealed that the maxima
of the DOS, ρmax, or rather those of the renormalized DOS,

nmax = f +
VH−f −

VH
2 ρmax, behave like

nmax � aNc [ln(Nc) + b] , (1)

with Nc the number of unit cells, i.e., of hexagons formed by
the voids in the photonic crystal. The quantities a and b are
fit parameters. The latter depends on the size of the frequency
interval �f chosen for the computation of ρ(f ) = �N/�f ,
while the former takes a similar value, a ∼ 0.145 − 0.155,
for all cases, i.e., it seems to be universal. This finite-size
scaling, which is also typical for an ESQPT,17 and the fate
of the isofrequency lines at the saddle points (see right panel
of Fig. 1) suggest a description in terms of a neck-disrupting
Lifshitz transition.7 We should note that all properties of the
DOS that we observe coincide with those of the DOS for
vibrations perpendicular to the plane of a hexagonal lattice, as
shown by Hobson and Nierenberg.40
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IV. NECK-DISRUPTING LIFSHITZ TRANSITION

In order to illustrate the relation between the VHSs in
the DOS of the microwave photonic crystal and the neck-
disrupting Lifshitz transition in the corresponding fermionic
band structure, we have computed the number susceptibility
from the particle-hole polarization (Lindhard) function.41 For
this, we used the simplest tight-binding model, which takes
into account only nearest-neighbor hopping of strength t .3,4

Many aspects concerning the electronic excitations in
graphene at weak coupling3 have been studied analytically
with this model primarily in the Dirac cone approximation
to exemplify more general effects.42 Details concerning the
computation of the retarded particle-hole polarization function
�(ω, �p; μ), with ω the excitation frequency, �p the vector of
momentum transfer, and μ the chemical potential,43,44 are
given in the Appendix. It is a sum of particle-hole transitions
within the same band, �+, i.e., intraband transitions and those
arising from interband transitions between the two bands, �−.

Static Lindhard screening is described by the retarded
susceptibility

χR( �p) = �(ω = 0, �p; μ). (2)

The usual Thomas-Fermi susceptibility is, in turn, defined
as the subsequent long-wavelength limit χ = lim �p→0 χR( �p).
The imaginary part of �(ω = 0, �p; μ) vanishes in the static
limit as long as the spatial momentum is nonzero. In the
long-wavelength limit, on the other hand, only interband
transitions survive. These yield, for the (zero-temperature)
number susceptibility,43

χ = lim
�p→0

lim
ω→0

�(ω, �p; μ) = ρ(μ)

A
. (3)

Hence, it coincides with the DOS ρ(ω) per area A of the
graphene sheet at the Fermi surface ω = μ.

Adapting the definitions of the frequency scale from Ref. 3,
the zero of the DOS, identified with the Dirac point, is located
at μ = 0, the VHSs are at μ = ±t , and the band gaps start at
μ = ±3t . When the chemical potential is chosen near one of
the VHSs, we readily obtain, from the analytical expression
given by Eq. (14) in Ref. 3 for the fermionic system at finite-
charge density,

ρ(μ) = 3Nc

2π2At

{
− 1

2
ln

( |μ|
t

− 1

)2

+ 2 ln 2

+ O

( |μ|
t

− 1

)}
. (4)

The divergence of χ as |μ| → t is caused by the infinite
degeneracy of ground states of the two-dimensional system
when the Fermi surface passes through a VHS. In the
thermodynamic sense, this can be considered as a zero-
temperature quantum phase transition with control parameter
|μ|. To illustrate this, we introduce the reduced Fermi-energy
parameter z = (|μ| − t)/t to rewrite Eq. (4),

χ (z) = 3Nc

2π2At
[− ln |z| + 2 ln 2 + O(z)] . (5)

Unlike the cases of first- or second-order phase transitions,
the susceptibility does not diverge with a power law in
z, but diverges logarithmically. This is a manifestation of

the neck-disrupting Lifshitz transition in two dimensions.7,45

The singular part of the corresponding thermodynamic grand
potential is nonzero on both sides of the transition. Following
Ref. 45, it is given per area of the sample A by

	sing

A
= 3Nc

2π2At

[
(tz)2

2
+ π2

6
T 2

]
ln |z|. (6)

The susceptibility or DOS does not diverge in a two-
dimensional system of finite area A. To see how the heights of
its maxima scale with A, we used periodic boundary conditions
and integrated Eq. (5) over a small interval, �z = (2π )2/Nc,
around the singularity. After rescaling the energies such that
the distance between the maxima equals 2, we obtain, for the
height of the maxima of the renormalized DOS nmax = tρmax,

nmax � 3

2π2
Nc [ln Nc − 2 ln π + 1 + O(1/Nc)] . (7)

Note that 3
2π2 � 0.15, thus confirming the experimental and the

numerical findings; cf. Eq. (1). Thus the height of the maxima
of the susceptibility at the VHSs scales as tχmax = nmax/A ∼
ln Nc, in accordance with the finite-size scaling of a neck-
disrupting Lifshitz transition. The transition is due to a change
of topology of the Fermi surface with no order parameter in
the strict sense. We present a quasiorder parameter below.

V. EXCITED-STATE QUANTUM TRANSITION
IN THE ELECTRONIC EXCITATIONS

The singularity of the single-particle DOS as function of the
excitation frequency also shows up in the spectrum of particle-
hole excitations. This is reminiscent of the ESQPT observed
for the vibrational modes of molecules.17,18 Clear support for
an interpretation as an ESQPT is provided by the universal
finite-size scaling behavior [Eq. (1)] typical for it. To further
quantify the analogy, we analyze the polarization function
at zero-momentum transfer, �(ω, �p = 0; μ). The associated
spectral distribution ρph(ω) of particle-hole excitations is
given by

ρph(ω) = Z(μ)−1 lim
�p2→0

ω

2π �p2
Im�(ω, �p; μ). (8)

The normalization

Z(μ) = lim
�p2→0

∫ ∞

0
dω

ω

2π �p2
Im�(ω, �p; μ) (9)

can be separated into contributions Z+ from intraband and
Z− from interband transitions, respectively. For the latter,
analytic results only exist in the Dirac cone approximation.
We have extended this appropriately and include the results
in the Appendix; see Eqs. (A46) and (A53). Figure 6 depicts
the intraband Z+ and interband Z− contributions and their
sum, Z = Z+ + Z−. The intraband term Z+ is fixed due to
charge conservation via the f -sum rule44,46,47 in terms of
the two-dimensional charge-carrier density nc and mass m

as Z+ = nc

4m
. Near the center of the Brillouin zone, we have

nc = p2
F/(4π ) and m = √

3Nc/(tA) and the contribution from
interband transitions behaves as Z−(μ) � 1

108
1

8π
(3t − |μ|)3.

Hence, it is suppressed with respect to Z+ such that Z(μ) ≈
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FIG. 6. The f -sum rule evaluated separately for interband
(dashed line) and intraband (dash-dotted line) transitions and their
sum (full line). For μ/t = 1, i.e., when the Fermi surface passes
through a VHS, all three curves exhibit a rapid change. There, their
derivatives are logarithmically divergent.

Z+(μ), and the sum rule is readily verified,

Z(μ) � 1

8π
(3t − |μ|) = 1

8π

p2
F

2m
= nc

4m
. (10)

This approximation holds in the nonrelativistic Fermi-liquid
regime either below or above the two VHSs, i.e., for |μ| > t .
Near the Dirac cone, where |μ| 
 t , on the other hand, the
intraband transitions yield

Z+(μ) � |μ|
8π

=
√

n′
c

2π

vF

4
, (11)

with n′
c = μ2/(2πv2

F). Thus, there the intraband f -sum rule
scales with the square root of the carrier density n′

c relative
to half filling. However, the contribution of the interband
transitions to Z(μ),

Z−(μ) � πt

24
√

3
− |μ|

8π
, (12)

can no longer be neglected for |μ| 
 t . Note that the sum
Z(μ) of the contributions (11) and (12) is independent of μ

and hence of the carrier density.44,47

From these observations, we conclude that the f -sum rule
or Z(μ) can serve as a quasiorder parameter for the Lifshitz
transition, indicating relativistic behavior for |μ|/t < 1 with
Z(μ) ≈ const, as compared to the nonrelativistic Fermi-liquid
regime for |μ| > t , where Z(μ) decreases almost linearly
with μ. We verified analytically that the derivative of Z(μ)
with respect to μ given in Eqs. (A52) and (A54) diverges
logarithmically at the Lifshitz transition, μ = t . This reflects
a singular behavior of the carrier density similar to that of χ

in Eq. (5), since Z+ ∝ nc for |μ|/t � 1.
We obtained the full spectral distribution ρph(ω) of particle-

hole excitations (8) from explicit analytical expressions for
the polarization function. The results are given in Eqs. (A32)
and (A44). That for �+(ω, �p; μ) was first derived in Ref. 43.
For �p → 0 and ω > 0, only the imaginary part of �−(ω, �p; μ)
is nonvanishing. The result is illustrated in Fig. 7 where we
display ρph(ω). In the front panel, we have included the number
susceptibility χ (μ) = ρ(μ)/A to indicate the two ground-
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FIG. 7. (Color online) Spectral distribution ρph(ω) of vertical
particle-hole excitations computed from Eq. (8) as a function of
the rescaled chemical potential μ/t and excitation frequency ω/t .
It exhibits a logarithmic singularity at ω/t = 2 for |μ|/t < 1. Also
displayed in the front panel for ω = 0 is the number susceptibility
χ = ρ(μ)/A to indicate the ground-state Lifshitz transitions at
μ = ±t .

state Lifshitz transitions at μ = ±t . As in the Dirac cone
approximation, interband contributions to ρph(ω) vanish when
ω < 2μ because the vertical particle-hole excitations are then
Pauli blocked. At ω = 2t , the spectral distribution exhibits a
clearly visible divergence which is directly related to that of the
single-particle DOS at the VHS [Eq. (3)] as demonstrated in the
Appendix in Eq. (A44). There, transitions take place between
the saddle points of the valence and the conduction band, where
the DOS is singular. Below this, for ω < 2t and μ < t , we
have relativistic behavior of the low-frequency excitations. For
ω > 2t , the density of particle-hole excitations decreases fast
with increasing frequency, as it does in the normal Fermi-liquid
regime. We associate the logarithmic singularity at ω = 2t

with an ESQPT from the relativistic region for ω < 2t to the
nonrelativistic one for ω > 2t . Similarly, in molecules,17,18

the ESQPT becomes manifest in a logarithmic singularity of
the level density. However, in distinction to our case, it is
characterized by an order parameter.

In Ref. 24, the optical conductivity of graphene was
measured, which is related to the spectral distribution shown in
Fig. 7 at μ/t = 0. Due to excitonic effects resulting from the
electron-hole interactions, a broadened peak was observed at
the interband transition from the lower to the higher M point,
which was in addition shifted with respect to its predicted
position. This peak, in fact, is a remnant of the ESQPT, which is
hidden due to the many-body correlations in natural graphene.
The measurement of a pure ESQPT, i.e., an experimental
mapping of Fig. 7, should be possible with artificial graphene,
since there the Fermi surface can be shifted via doping
and at the same time the electron-hole interactions can be
turned off.8,9
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VI. CONCLUSIONS

We have determined the DOS in high-precision experiments
with two superconducting Dirac billiards. It is similar to that
of transverse vibrations of an hexagonal lattice and, most
importantly, to that of the electronic band structure of finite
sheets of graphene in the absence of fermionic interactions.
In a second part, we have shown that the properties of the
observed DOS can be quantitatively related to a ground-state
QPT and an ESQPT arising from the topological Lifshitz
neck-disrupting phase transition. Due to the unprecedented
accuracy in the determination of the DOS, we were able to
first recover the finite-size scaling governing such transitions.
Furthermore, we found a quasiorder parameter for the Lifshitz
transition. An experimental verification of our analytical result
for the spectral distribution shown in Fig. 7 should be possible
with artificial graphene.8,9
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APPENDIX: COMPUTATION OF
THE LINDHARD FUNCTION

We consider the nearest-neighbor tight-binding model
without overlap corrections. We will furthermore neglect the
physical spin of the electrons, which would simply amount to
a doubling of the degrees of freedom here. The tight-binding
Hamiltonian is then given by the nearest-neighbor 〈i,j 〉 sum
of hopping terms with strength t ,

Ĥ = −t
∑
〈i,j〉

(a†
i bj + b

†
j ai), (A1)

where a†,a and b†,b are the fermionic creation and annihilation
operators of the two distinct triagonal sublattices that make the
honeycomb lattice. It is readily diagonalized in momentum
space25 where it is expressed in terms of the matrix

H (�k) = −[μ + B1(�k)σ1 + B2(�k)σ2]. (A2)

Here we have included a chemical potential μ for a finite
charge-carrier density which for half filling equals μ = 0, σi

are Pauli matrices which act in the space of the two sublattices,
and Bi(�k), i = 1,2, are the real and imaginary parts of the
complex structure factor,

t�(�k) = t

3∑
n=1

ei�k·�δn ≡ B1(�k) + iB2(�k),

�δ1 = ac

2
(−1,

√
3), �δ2 = ac

2
(−1, −

√
3), �δ3 = ac(1,0),

(A3)

with the nearest-neighbor vectors �δn on the honeycomb lattice
and ac the carbon-carbon distance in graphene.

Using Dirac matrices γ 0 ≡ σ3 and γ i ≡ σ3σi , with i = 1,2,
for the Clifford algebra {γμ,γν} = 2gμν in the two-dimensional

sublattice space, we can introduce the free fermion propagator
on the honeycomb lattice as the resolvent

[γ 0(ω − H )]−1 = γ 0(ω + μ) − �B · �γ
(ω + μ)2 − E2(�k)

≡ −iGF(ω,�k), (A4)

where the roots of E2(�k) ≡ t2|�(�k)|2 are the two single-
particle energy bands Eλ(�k) = λt |�(�k)| of the model. They
are given by40

tEλ(�k) = tλ|��k| = tλ

√
1 + 4F (�k),

F (�k) = cos

(√
3

2
kyac

)
cos

(
3

2
kxac

)
+ cos2

(√
3

2
kyac

)
,

(A5)

where kx and ky are the two components of the quasimomen-
tum which is restricted to the first Brillouin zone (BZ), λ = +1
labels the conduction, and λ = −1 labels the valence band. The
corners of the BZ are at the K points. The associated energies
equal Eλ(�kD) = 0. At the saddle points, the so-called M points,
the energies are Eλ(�kM ) = λ. For λ = 1 (λ = −1), the band
structure has a maximum (minimum) at �k� = �0. These are the
so-called � points, which are located at the center of the BZ.
The associated energies equal Eλ(�k�) = 3λ.

The charge-density correlations are determined by the
diagonal time component of the corresponding polarization
tensor as in QED. In the random-phase approximation (RPA),
this particle-hole polarization function is given by the one-loop
expression

�(ω, �p; μ) =
∫

BZ

d2q

(2π )2

∫
dq0

2π
tr[γ 0GF(q0,�q)γ 0

× GF(q0 + ω,�q + �p)], (A6)

where the spatial loop momentum is integrated over the
first Brillouin zone (BZ). In the imaginary-time formalism,
the sum over the Matsubara frequencies q0 = i(2n + 1)πT

in this RPA polarization loop can be evaluated for discrete
ω = i2πmT (integer m,n) at finite temperature T with
standard techniques. After analytic continuation back to real
frequencies ω, with retarded boundary conditions, this yields
the Lindhard function41 of the honeycomb lattice in the form43

�(�q,ω; μ) = −1

t

1

2π2

∫
1·BZ

d2k
∑

λ,λ′=±1

fλ·λ′ (�k,�q)

× {nF[Eλ′(�k + �q) − μ] − nF[Eλ(�k) − μ]}
Eλ′(�k + �q) − Eλ(�k) − h̄ω

t
− iε

.

(A7)

Here, the function

fλ·λ′(�k,�q) = 1

2

(
1 + λ · λ′Re

[
��k�

�
�k+�q

|��k||��k+�q |

])
(A8)

takes account of the overlap between the wave functions
associated with the two bands. For �q = �0, we have fλ·λ′ (�k,�q) =
1
2

(
1 + λ · λ′). Furthermore, nF(E) = (eE/T + 1)−1 is the

Dirac-Fermi distribution. Since we are mainly interested in the
zero-temperature transition, we set T = 0, so nF(E) = �(−E)

104101-6
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equals the staircase function, and consider only excitations,
i.e., we assume that ω � 0. Then, either λ′ = λ = 1, which
corresponds to an intraband transition, or λ′ = −λ = 1 for
interband transitions. The Dirac energy equals ωq = tvF|�q|
with the Fermi velocity vF given in units of t as 3

2ac/h̄.
We computed the imaginary part of the Lindhard function,

which can be interpreted as the density of particle-hole
excitations,

Im�(�q,ω; μ) = −1

t

1

2π

∫
1·BZ

d2k
∑

λ,λ′=±1

fλ·λ′ (�k,�q)

× {�[μ − Eλ′(�k + �q)] − �[μ − Eλ(�k)]}
× δ

[
Eλ′(�k + �q) − Eλ(�k) − h̄ω

t

]
. (A9)

Our main focus was its evaluation in the limit of small
momentum transfers �q, i.e., |�q| → 0. Thus, without loss of
generality, we may choose �q in the �M direction, i.e., set
�q = (qx,0). The integration over kx can be performed. For this,

we replace 3ac

2 kx ,
√

3ac

2 ky , 3ac

2 qx , h̄ω
t

, and h̄ωq

t
by, respectively,

the dimensionless quantities kx , ky , qx , ω, and ωq = qx , and
define y = cos(ky). Furthermore, we set t and ac equal to 1
and we introduce j = ±1 and define qx = sq̃x with s = ±1
such that the integral over the BZ is transformed to an integral
over 0 � kx � π/2 and 0 � ky � π/2.43 With the notations

a = 2jy cos
(
kx + qx

2

)
,

(A10)
b = 2jy sin

(
kx + qx

2

)
,

we obtain

|��k| =
√

1 + 4y2 + 2
(
a cos

qx

2
+ b sin

qx

2

)
,

|��k+�q | =
√

1 + 4y2 + 2
(
a cos

qx

2
− b sin

qx

2

)
,

Re[��k�
�
�k+�q] = cos

2qx

3
+ 4y2 cos

qx

3
+ 2a cos

qx

6
.

(A11)

Introducing the notations

ωq = 2 sin
qx

2
, x =

(
w

wq

)2

, l = ±1, (A12)

the evaluation of the δ function yields

ω = |��k+�q | − λ · λ′|��k|, (A13)

a = al = −x cos
qx

2
+ l

√
(1 − x)(4y2 − x), (A14)

|b| = bl =
√

4y2 − a2
l , (A15)

Bl = ωq

ω
bl =

√
1 + 4y2 + 2 cos

qx

2
al − ω2

4
, (A16)

|��k||��k+�q | = λ · λ′
(

B2
l − ω2

4

)
, (A17)

with the requirements

|al| � 2y, (1 − x) (4y2 − x) � 0, λ · λ′ ω
2

� λ · λ′Bl.

(A18)

Furthermore, we obtain |��k| = −λ · λ′ ω
2 ± Bl and thus, for

interband transitions (λ · λ′ = −1),

ω = (|��k+�q | + |��k|), |��k| = ω

2
± Bl,

(A19)
|��k+�q | = ω

2
∓ Bl,

ω

2
� Bl,

and, for intraband transitions (λ · λ′ = 1),

ω = (|��k+�q | − |��k|), |��k| = −ω

2
+ Bl,

(A20)
|��k+�q | = ω

2
+ Bl,

ω

2
� Bl.

Using the property of the δ function,

δ[f (x)] =
∑

i

1

|df (x)/dx|x=xi

δ(x − xi), f (xi) = 0,

(A21)

we finally obtain, for the imaginary part of the Lindhard
function (A9),

Im�(�q,ω; μ)

=
√

3

π

1

(h̄vF)2

1

2ωq

∫ ymax

ymin

dy√
1 − y2

× �
(
λ · λ′ [Bl − ω

2

])
√

(1 − x) (4y2 − x)

[
T +

λ·λ′F
+
λ·λ′

B+
+ T −

λ·λ′F
−
λ·λ′

B−

]
,

(A22)

where vF = 3ac

2h̄ is the Fermi velocity in units of t and

T l
λ·λ′=1 = �

(
ω

2
+ Bl − μ

)
− �

(
− ω

2
+ Bl − μ

)
, (A23)

T l
λ·λ′=−1 = �

(
ω

2
+ Bl − μ

)
+ �

(
ω

2
− Bl − μ

)
, (A24)

and

λ · λ′F l
λ·λ′ = B2

l − ω2

4
+

[
cos

2qx

3
+ 4y2 cos

qx

3

+ 2al cos
qx

6

]
. (A25)

The integration limits ymin and ymax are determined with the
help of the requirements given by Eq. (A18).

1. Intraband transitions for small momentum transfer

In the limit ωq → 0, the intraband transitions give a nonvan-
ishing contribution to the integral (A9) only for x = ( ω

ωq
)2 < 1,

i.e., for small excitation energies ω � ωq . For ω → 0, the
difference of the � functions (A23) can be approximated as

�
(

ω
2 + Bl − μ

) − �
(−ω

2 + Bl − μ
)

ω
� δ (Bl − μ) , (A26)
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and the integration over y can be performed with the help of
the property (A21) of the δ function, where∣∣∣∣ d

dy
[Bl − μ]

∣∣∣∣ = 4y

μ

1√
(1 − x)(4y2 − x)

|1 + al|. (A27)

Using Eq. (A16), the evaluation of the δ function yields√
4y2 − x = −l

√
1 − x ± |μ|, (A28)

|1 + al| = |μ|√1 − x, (A29)

where, according to Eq. (A18),

μ � ω

2
, x � 1 (A30)

has to be fulfilled. This yields, for y,

y2
± = 1 + μ2

4
± μ

2

√
1 − x. (A31)

Furthermore, the band-overlap function (A8) approximately
equals fλ·λ′ (�k,�q) � 1. Thus, we finally obtain, for the density
function of particle-hole excitations,

Im�+(�q,x; μ) =
√

3

4π

μ

(h̄vF)2

√
x√

1 − x
�(ω+

μ − √
x)

×
⎡
⎣�(

√
x − ω−

μ )

y−
√

1 − y2−
+ 1

y+
√

1 − y2+

⎤
⎦ ,

(A32)
with

ω−
μ = θ (μ − 1)ω�, (A33)

ω+
μ = θ (

√
3 − μ) + ω�θ (μ −

√
3), (A34)

ω� = 1
2

√
10 − μ2 − 9/μ2. (A35)

This result coincides with that obtained in Ref. 43. In the
limit ωq → 0, the intraband transitions give a nonvanishing
contribution to the integral (A9) only for x = ( ω

ωq
)2 < 1, i.e.,

for small excitation energies ω � ωq .

2. Interband transitions for small momentum transfer

In order to explicitly perform the limit ωq → 0, we define
x̃ = 1

x
= (ωq

ω
)2 < 1 and accordingly rewrite the integral

(A9) as

Im�−(�q,ω; μ) = 1

ω

√
3

π

1

(h̄vF)2

∫ ymax

ymin

dy√
1 − y2

×
�

(
λ · λ′[B̃l − 1

2ωq

])
√

(1 − x̃)(1 − 4y2x̃)

×
[
T +

λ·λ′ F̃
+
λ·λ′

B̃+
+ T −

λ·λ′ F̃
−
λ·λ′

B̃−

]
, (A36)

with

ãl = − cos
qx

2
+ l

√
(1 − x̃) (1 − 4y2x̃), (A37)

B̃l = √
x̃Bl, (A38)

F̃ l
λ·λ′ = x̃F l

λ·λ′ . (A39)

For small values of x̃, the quantity ãl can be approximated as

ã0
+ = lim

ωq→0
ã+ = x̃

2

[(
ω

2

)2

− (1 + 4y2)

]
,

ã0
− = lim

ωq→0
ã− = −2 + x̃

2

[(
ω

2

)2

+ (1 + 4y2)

]
, (A40)

b0
+ = lim

ωq→0
b+ = 2

√
y2 −

{
1

4

[(
ω

2

)2

− 1

]
− y2

}2

.

There is no contribution for l = −1 and ωq → 0, i.e., x̃ → 0
since the requirement given by Eq. (A18) leads to the condition
x̃ � 2

( ω
2 )2+1+4y2 � 1

7 , which cannot be fulfilled in that limit.
Furthermore, the rule of l’Hôpital yields

F̃+
−

B̃+
−

� ω2
q

1
3 [1 + 2y2] − 1

9

[
ω
2

]2 − 2
[ b0

+
ω

]2

b0+
. (A41)

In this case, the band-overlap function (A8) and thus the
ratio (A41) is proportional to ω2

q . The DOS ρ(ω) of the
tight-binding model40 is given in terms of a complete elliptic
integral,3

ρ(ω) = 2ω

π2

∫ ymax

ymin

dy√
1 − y2

1√
y2 − {

1
4 [ω2 − 1] − y2

}2
,

(A42)

ymin = 1

2
|1 − ω| , ymax = min

{
1,

1

2
(1 + ω)

}
.

Using this relation, we obtain, for the case of electron-phonon
excitations where fλ·λ′ = 1 (see Ref. 3),

lim
x̃→0

Im�(�q,ω; μ) = π
√

3

(h̄vF)2
�

(
ω

2
− μ

)
ρ

(
ω

2

)
, (A43)

and for that of electron-electron polarizations considered in
this paper,

Im�−(�q,ω; μ)

� ω2
q

ω

√
3

π

1

(h̄vF)2 �
(ω

2
− μ

)

×
∫ ymax

ymin

dy√
1 − y2

1
3 [1 + 2y2] − 1

9

[
ω
2

]2 − 2
[ b0

+
ω

]2

b0+

= ω2
q

ω

√
3

π

1

(h̄vF)2 �

(
ω

2
− μ

)

×
[

π2

2ω

[
1

3
− 1

9

(ω

2

)2
]

ρ
(ω

2

)

+ 2

3

∫ ymax

ymin

dy√
1 − y2

y2

b0+
− 2

ω2

∫ ymax

ymin

dy√
1 − y2

b0
+

]
,

(A44)

with

ymin = 1

2

∣∣∣∣1 − ω

2

∣∣∣∣ ymax = min

{
1,

1

2

(
1 + ω

2

)}
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and b0
+ given in Eq. (A40). The limits of integration, ymin and

ymax, are obtained from the condition that the radicand of b is
positive. Thus, Im�−(�q,ω; μ) can be expressed in terms of the
DOS, i.e., an elliptic integral of the first kind,3 one of the third
kind, in which both comprise a logarithmic singularity, and a
nonsingular term. It can be readily shown that Im�−(�q,ω; μ)
drops down to zero when ω � ωq approaches zero. In fact,
ω
ω2

q
Im�−(�q,ω; μ) converges to 1

4(h̄vF)2 for ω → 0. For ω < ωq ,

its contribution is negligible.

3. Computation of the f -sum rule for ωq → 0

The f -sum rule is defined as43

Z(μ) = (h̄vF)2 1

4π

∫ 6

0
dω

ω

ω2
q

Im�(�q,ω; μ). (A45)

For intraband transitions, we obtain, from Eq. (A32) with the
variable transformations x = ( ω

ωq
)2 yielding dω ω

ω2
q

= 1
2dx and

	 = √
1 − x,

Z+(μ) =
√

3

8π2

∫ 1

0
d	

√
1 − 	2

[
� (	+ + 	)√

(	− − 	) (	+ + 	)

+ � (	+ − 	)√
(	− + 	) (	+ − 	)

]
, (A46)

with

	− = 1 + μ2

2μ
� 1, (A47)

	+ = 3 − μ2

2μ
. (A48)

For μ = 1, we have 	− = 	+ = 1 and

Z+(μ = 1) =
√

3

4π2
. (A49)

We also computed the derivative of Z+(μ) at μ = 1. With

d	+
dμ

∣∣∣∣
μ=1

= −3 + μ2

2μ2

∣∣∣∣
μ=1

= −2, (A50)

d	−
dμ

∣∣∣∣
μ=1

= 1 − μ2

2μ2

∣∣∣∣
μ=1

= 0, (A51)

we obtain

dZ+(μ = 1)

dμ

= −
√

3

4π2

∫ 1

0
d	

[
δ(1 − 	) − 1

2 (1 + 	)
+ 1

2 (1 − 	)

]
,

(A52)

which is logarithmically divergent at μ = 1.
The f -sum rule for interband transitions is given with the

notations (A40) by

Z−(μ) =
√

3

4π2

∫ 6

2μ

dω

∫ ymax

ymin

dy√
1 − y2

×
1
3 (1 + 2y2) − 1

9

(
ω
2

)2 − 2
(

2b
ω

)2

2b
. (A53)

Its derivative with respect to μ equals its integrand evaluated
at ω/2 = μ, dZ−(μ=1)

dμ
= Im�−(�q,ω = 2; μ). Using that b+

0 =
y
√

1 − y2 at ω = 2 yields

dZ−(μ = 1)

dμ
= 2ρ(1) + 6

π2

∫ 1

0
dy

y

1 − y2
− 18

π2

∫ 1

0
dyy.

(A54)

The first and the second term are logarithmically divergent at
μ = 1.

For small values of μ 
 1, Z+(μ) grows linearly with
μ, Z+(μ) � 1

8π
μ, while Z−(μ) decreases linearly, Z−(μ) �

π

24
√

3
− 1

8π
μ. Close to the � point, which corresponds to μ = 3,

Z−(μ) is vanishingly small, Z−(μ) � 1
108

1
8π

(3 − μ)3, while
Z+(μ) decreases linearly with μ approaching μ = 3, Z+(μ) �

1
8π

(3 − μ).
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