
RAPID COMMUNICATIONS

PHYSICAL REVIEW B 88, 100402(R) (2013)

Spontaneous spatial inversion symmetry breaking and spin Hall effect
in a spin-ice double-exchange model
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A formation of tetrahedral spin clusters is discovered by Monte Carlo simulation for a spin-ice type double-
exchange model on a pyrochlore lattice. The spin-cluster phase is magnetically disordered but breaks spatial
inversion symmetry spontaneously by developing noncoplanar four-spin molecules periodically on the pyrochlore
lattice. We find that the system exhibits a nonzero spin Hall conductivity in the spin-cluster phase. The result
suggests that an intersite-multipole order induces the unconventional spin Hall state without the spin-orbit
interaction.
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Missing spatial inversion symmetry (SIS) influences the
nature of condensed matter in a profound way. In particular,
spontaneous breaking of SIS leads to fascinating cooperative
phenomena. A typical example is the ferroelectricity. Spon-
taneous breaking of SIS by lattice distortions in insulating
materials gives rise to a macroscopic electric polarization.
When time-reversal symmetry (TRS) is broken in addition
to the SIS breaking, interesting interplay appears between
electric and magnetic degrees of freedom, called the multi-
ferroicity. For example, magnets with peculiar orders, such
as a spiral order, exhibit the magnetoelectoric effect.1–4 A
more complicated magnetic texture, called skyrmion,5–9 has
also recently attracted much attention. In these systems, the
relativistic spin-orbit interaction (SOI) plays an important role
in connecting the SIS breaking and magnetism. When the
system is conducting, such unusual spin textures significantly
affect the transport properties through the spin Berry phase
mechanism,10–12 which opens a possibility of applications to
spintronics. Thus the search for spontaneous breaking of SIS,
particularly in metallic systems, is a promising way to find
new electromagnetic and transport phenomena in condensed
matter physics.

In this Rapid Communication, we theoretically explore a
new type of spontaneous breaking of SIS in a conductive
system driven by the coupling between itinerant electrons
and localized spins. For this purpose, we investigate a
double-exchange (DE) model on a 3D pyrochlore lattice
with spin-ice type localized moments, which is regarded as
a fundamental model for metallic pyrochlore oxides. We
find that the model exhibits an interesting thermally induced
phase. In this phase, the spins are thermally fluctuating and
disordered, but form tetrahedral four-spin clusters arranged
periodically on the lattice; the spin-cluster formation violates
SIS without breaking TRS. Long-range effective magnetic
interactions driven by the spin-charge coupling play a role
in stabilizing the peculiar SIS-broken state. We also show that
the thermally induced spin-cluster phase exhibits the spin Hall
effect (SHE) via the fluctuating noncoplanar spin textures. This
SHE is unconventional because our model does not include
SOI, which is a requisite for the conventional SHE.13–19 The
result indicates that the spontaneous formation of noncoplanar
spin objects without magnetic ordering, which are interpreted
as intersite multipoles, can be a source of unconventional
transport phenomena.

We here consider a DE model20 in which itinerant electrons
interact with Ising moments with spin-ice type anisotropy
through the ferromagnetic Hund’s-rule coupling on a
pyrochlore lattice [see Fig. 1(a)]. We particularly consider
the limit of strong Hund’s-rule coupling.21 The Hamiltonian
is given as

H = −
∑

〈i,j〉
(tij c

†
i cj + H.c.) + JAFM

∑

〈i,j〉
Si · Sj . (1)

Here, ci (c†i ) is the annihilation (creation) operator of an
itinerant electron at the ith site, whose effective transfer
integral tij depends on the relative angle of neighboring Ising
spins, given by tij = t[cos θi

2 cos θj

2 + sin θi

2 sin θj

2 e−i(ϕi−ϕj )],
where Si = (sin θi cos ϕi, sin θi sin ϕi, cos θi). The anisotropy
axis of the Ising spin is site-dependent and along the local [111]
direction, as shown in Fig. 1(a). The second term in Eq. (1)
is the antiferromagnetic (AFM) interaction between the Ising
spins. The sum 〈i,j 〉 is taken over nearest-neighbor (NN) sites
on the pyrochlore lattice. This is a minimal model including
the [111] anisotropy, spin-charge coupling, and geometrical
frustration, which are all present in many pyrochlore oxides.22

Hereafter, we set the energy unit t = 1, the lattice constant of
cubic unit cell a = 1, the Boltzmann constant kB = 1, and the
unit of conductance e/2π = 1 (e is the elementary charge).

In the following, we focus on the competition between
different electronic and magnetic phases in the model in
Eq. (1) at quarter filling of electrons, n = 1

N

∑
i〈c†i ci〉 = 1/4

(N is the number of sites). Similar problems were studied
for the case with the Heisenberg localized moments.23,24 In
the present Ising case, the FM DE interaction favors a two-in
two-out configuration of Ising spins in each tetrahedron, while
the AFM interaction JAFM prefers all-in or all-out. Itinerant
electrons mediate complicated interactions, which lead to a
much more interesting phase competition compared with the
spin-ice problem.25

Before going into the direct simulation of the model in
Eq. (1), which is highly CPU demanding, we first try to capture
the overall picture of the phase competition by analyzing
an effective spin model with kinetic-driven interactions. To
derive the effective spin model, we consider a perturbation
expansion for the hopping term in Eq. (1). Considering only
the amplitude of tij for simplicity, we rewrite it into |tij | =
t+ij + t−ij S̃i S̃j , where t±ij = 1

2
√

2
(
√

1 + ni · nj ± √
1 − ni · nj ).
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FIG. 1. (Color online) Schematic pictures of (a) a pyrochlore
lattice and (b) diamond lattice composed of the centers of tetrahedra
in (a). In (a), the interactions in the effective Ising model in Eq. (2)
are also shown. The dark tetrahedra show the four-spin clusters with
all-in or all-out configurations in the SIS-broken phase. In (b), the
tetrahedron shows emergent frustration between the pseudospins.

Here, S̃i = ±1 is the projected spin parameter to a local [111]
vector ni ; Si = S̃ini . We define ni so that the all-in/all-out
order in terms of Si (long-range order of alternating all-in
and all-out tetrahedra) corresponds to the FM order in terms
of S̃i . Then, we perform a perturbation calculation up to the
second order by treating the t−ij term as the perturbation to
the t+ij term. Replacing the electronic part by the unperturbed
Green’s functions, we end up with the effective Ising model
with long-range and multiple-spin interactions.

Among many contributions, for simplicity, we consider
only two-spin interactions up to third neighbors:26

Heff = −J1

∑

〈i,j〉
S̃i S̃j + J2

∑

{i,j}
S̃i S̃j + J3

∑

[i,j ]

S̃i S̃j . (2)

Here, the estimates of the perturbation for NN,
second-neighbor, and third-neighbor couplings gives J1 =
−4.19161 × 10−2 + JAFM/3, J2 = 9.65132 × 10−4, and J3 =
9.96332 × 10−4, respectively [see Fig. 1(a)]. Note that J1

consists of two contributions: the FM DE interaction and AFM
interaction JAFM (the signs are reversed due to the projection
from Si to S̃i).

We investigate the phase diagram of the model in Eq. (2)
by a classical Monte Carlo (MC) simulation while varying
J1.27 For efficient MC sampling, we adopt, in addition to the
single-spin update, a tetrahedron update, in which four spins in
a tetrahedron are flipped at once, by using the heat bath method.
The calculations were typically done with 1.2 × 106 (4.9 ×
106) MC steps for N = 4 × 63 and 4 × 83 (N = 4 × 103 and
4 × 123) after the thermalization of 2.2 × 105 (9.2 × 105) MC
steps.

Figure 2 shows the phase diagram obtained by the MC
simulation. We identify four dominant regions at low T : (i) the
ice state for J1 � −0.004, (ii) 32-sublattice ordered phase for
−0.003 � J1 � 0, (iii) spin-cluster phase with SIS breaking
for 0.002 � J1 � 0.006, and (iv) all-in/all-out ordered phase
for J1 � 0.006.

Figure 3 shows typical MC data for the T dependence of
physical quantities used for identifying these four regions.
In the region (i) where the FM DE interaction is dominant,
a crossover to the two-in two-out ice state is observed in a
hump of the specific heat C accompanied by an increase of

FIG. 2. (Color online) Finite T phase diagram for the effective
Ising model in Eq. (2). The symbols indicate the critical temperatures
(crossovers in the ice region) obtained by MC simulation, and the
lines are the guides for eyes.

the fraction of two-in two-out tetrahedra, ρ22, as shown in
Fig. 3(a). The situation is similar to that in the spin ice.28,29

On the other hand, in the region (iv), JAFM dominates the
FM DE interaction and stabilizes the all-in/all-out order.
The transition is characterized by a rapid increase of the
net magnetic moment for projected spins, M̃ = 1

N
| ∑i〈S̃i〉|,

divergence of its susceptibility χ̃ [see Fig. 3(e)], a sharp peak in
C, and growth of all-in and all-out fraction, ρ40 [see Fig. 3(f)].
The critical temperature is estimated at Tc = 0.01170(4) at
J1 = 0.008 from the Binder analysis of M̃ shown in the inset
of Fig. 3(e).30

Between the two regimes, we found interesting phases
resulting from competition between the DE interaction and
JAFM. One is the 32-sublattice ordered phase in the region
(ii) next to the ice state, which is characterized by an abrupt
increase of the spin structure factor for the same sublattice,
S(k) at k = (π,π,π ) [see Fig. 3(b)]. The same ordering was
recently reported in a similar model with a relatively weak
Hund’s-rule coupling.31,32

A more interesting finding here is the spin-cluster phase
in the region (iii) on the verge of the all-in/all-out order. The
transition is characterized by P parameter and its susceptibility
χP [see Fig. 3(c)] as well as the specific heat [see Fig. 3(d)];
here, P is defined by the difference of fractions of all-in/all-
out tetrahedra between upward and downward tetrahedra (two
different tetrahedra in the four-site unit cell in the pyrochlore
lattice), P = |ρ↑

40 − ρ
↓
40|. The result indicates that the upward

and downward tetrahedra become inequivalent at low T ; one of
them has larger population of the all-in/all-out tetrahedra than
the other [see Fig. 1(a)]. In other words, four-spin clusters are
formed and arranged periodically (the translational symmetry
is not broken as the primitive unit cell includes a pair of upward
and downward tetrahedra). The transition is continuous and the
critical temperature is estimated at Tc = 0.00596(2) at J1 =
0.004 from the Binder analysis in the inset. Interestingly, the
phase below Tc does not show any magnetic ordering; no
singularity is found in S(k). Therefore, the spin-cluster phase

100402-2



RAPID COMMUNICATIONS

SPONTANEOUS SPATIAL INVERSION SYMMETRY . . . PHYSICAL REVIEW B 88, 100402(R) (2013)

FIG. 3. (Color online) MC results for the model in Eq. (2) at (a) J1 = −0.006, (b) J1 = −0.002, (c) and (d) J1 = 0.004, and (e) and
(f) J1 = 0.008. See the text for details.

can be viewed as a classical spin-liquid state where TRS is
preserved but SIS is broken due to the differentiation of upward
and downward tetrahedra.

The SIS-broken phase (iii) appears only at finite T , as
shown in Fig. 2; the system exhibits another transition at a
lower T [see also Fig. 3(d)]. This suggests that the phase
(iii) is a thermally induced intermediate phase, which is
often seen in geometrically frustrated systems. To see the
frustration effect more explicitly, let us rewrite the model in
Eq. (2) into a pseudospin model, Heff = J2

∑
〈p,q〉 QpQq −

J̃1
2

∑
p Q2

p + const., defined on a diamond lattice composed of
the centers of tetrahedra in the pyrochlore lattice [see Fig. 1(b)].
Here, J̃1 = J1/2 + J2 (we take J2 = J3 for simplicity) and
Qp = ∑

i∈p S̃i is a pseudospin at the pth site on the diamond
lattice, defined by the sum of four projected spins belonging
to pth tetrahedron in the pyrochlore lattice.33 This pseudospin
picture maps the SIS-broken spin-cluster state to the system
of the pseudomoments with Qp = ±4 bridged by Qp = 0 on
the diamond lattice, as shown in Fig. 1(b). This is effectively

an Ising model on a face-centered-cubic (FCC) lattice. The
system, therefore, hinders severe frustration in the superlattice
of tetrahedra, which presumably leads to the emergence of the
peculiar intermediate phase (iii).34

Now, we examine whether such a peculiar SIS-broken phase
appears in the original DE model in Eq. (1). For this purpose,
we here conducted the direct MC simulation of the model
by using the polynomial expansion method.35,36 We used 34
polynomials for sufficient convergence. The calculations were
done by single-spin flip and tetrahedron updates for typically
2900 MC steps after 700 MC steps of initial relaxation.

Figures 4(a) and 4(b) show the MC results at JAFM = 0.18.
The increase of P and peaks of χP and C at T ∼ 0.053, along
with the absence of anomaly in S(k), indicate the emergence of
the SIS-broken spin-cluster phase, similar to that in Figs. 3(c)
and 3(d). On the other hand, S(k) at k = (0,0,2π ) sharply
increases at a lower T associated with a sharp peak in C.
The extrapolation with respect to 1/N of these transition
temperatures (peaks of χP and C) is presented in Fig. 4(c). The
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FIG. 4. (Color online) (a) and (b) MC results for the DE model in Eq. (1) at n = 1/4 and JAFM = 0.18. (c) System-size extrapolation of
critical temperatures estimated by the peaks of χP and C. (d) Spin Hall conductivity calculated by taking simple average in the SIS-broken
spin-cluster manifold.

results show that the model in Eq. (1) exhibits two transitions
at different T : one is the peculiar transition which breaks only
SIS by the differentiation of upward and downward tetrahedra
at Tc = 0.053(2), and the other is the magnetic transition with
additional TRS breaking at TN = 0.033(1).37 We note that the
system remains metallic below Tc while it becomes insulating
below TN.

It is also worthy noting that the magnetic susceptibility χ

shows a steep decrease in the SIS-broken phase, as shown in
Fig. 4(a). This is in sharp contrast to the diverging Curie-law
like behavior in the classical spin-liquid state in spin ice.39

The decrease of χ is likely to come from the formation
of all-in/all-out clusters in which four spins are coupled
antiferromagnetically.

Interestingly, the intermediate metallic phase shows a
nonzero spin Hall conductivity. Figure 4(d) shows the result
of spin Hall conductivity σ

(s)
H calculated by the Kubo formula

with scattering rate of τ−1/t = 0.0138 for Nk = 83 sites of
N = 4 × 43 site supercells. As MC simulation did not reach
enough convergence because of the small system sizes, we
here calculated σ

(s)
H by assuming an ideal situation, i.e., by

taking simple average over 128 different spin configurations
randomly generated so that the upward tetrahedra are either
all-in or all-out. In the calculation, an electronic field is applied
along the [110] direction, and the spin current and magnetic
moment are measured along [1̄12] and [11̄1], respectively. As
shown in Fig. 4(d), the real part of σ

(s)
H remains nonzero in

the static limit of ω → 0. This suggests that the intermediate
SIS-broken phase is indeed a spin Hall state. The present
SHE is a consequence of characteristic noncoplanar spin

textures,10–12 which is distinct from the conventional SHE
originating from the relativistic SOI.

The SIS breaking in our model in Eq. (1) takes place by
formation of four-spin clusters. Cluster formation is a manifes-
tation of competing interactions in frustrated itinerant electron
systems.40,41 Our SIS-broken phase, however, retains neither
charge ordering nor magnetic dipole ordering, suggesting
that it is characterized by higher-order electric and magnetic
multipoles. Hence, our results indicate that the scattering
of electrons by such multipoles can lead to unconventional
transport phenomena. Multipole orders, which are often called
“hidden orders,” have attracted interests not only in localized
spin systems but also in conducting systems.42 SHE may
provide a further insight into such hidden multipoles.

As mentioned above, our model is simple but includes
some essential features in metallic pyrochlore oxides, which
have recently attracted growing interest both experimentally
and theoretically.22 It is intriguing that some pyrochlore
compounds indeed exhibit similar SIS breaking accompanied
by a breathing-type lattice distortion.43,44 Our result suggests
a possibility to observe the unconventional SHE in such class
of materials.

Conventional SHE relies on the strong SOI and device
structure which are both hard to control once the system
is fabricated. Our proposal, on the other hand, does not
need SOI and is solely based on the competing magnetic
interactions which are controllable by external stimuli, such
as an applied magnetic field. Such controllability might
be useful not only for potential applications to electronic
devices but also for experimentally distinguishing the origin
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of SHE. Furthermore, our new SHE without SOI suggests a
new direction of searching SHE materials, which might be
beneficial for industrial applications.

The authors thank C. D. Batista, N. Furukawa, H. Kusunose,
K. Ohgushi, K. Penc, N. Shannon, and A. Shitade for fruitful
discussions. Part of the calculations were performed on

the Supercomputer Center, Insitute for Solid State Physics,
University of Tokyo. H.I. is supported by Grant-in-Aid for
JSPS Fellows. This research was supported by KAKENHI
(Nos. 19052008, 21340090, 22540372, and 24340076), Global
COE Program “the Physical Sciences Frontier,” the Strategic
Programs for Innovative Research (SPIRE), MEXT, and the
Computational Materials Science Initiative (CMSI), Japan.

1T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and
Y. Tokura, Nature (London) 426, 55 (2003).

2H. Katsura, N. Nagaosa, and A. V. Balatsky, Phys. Rev. Lett. 95,
057205 (2005).

3I. A. Sergienko and E. Dagotto, Phys. Rev. B 73, 094434 (2006).
4M. Mostovoy, Phys. Rev. Lett. 96, 067601 (2006).
5T. H. R. Skyrme, Nucl. Phys. 31, 556 (1962).
6A. N. Bogdanov and D. A. Yablonskii, Sov. Phys. JETP 68, 101
(1989).
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