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Nodeless versus nodal scenarios of possible triplet superconductivity in the quasi-one-dimensional
layered conductor Li0.9Mo6O17
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We consider the problem of the orbital upper critical magnetic field, parallel to the most conducting axis of
a quasi-one-dimensional layered superconductor. It is shown that superconductivity can be destroyed through
orbital effects at fields much higher than the so-called Clogston-Chandrasekhar paramagnetic limiting field Hp ,
provided that superconducting pairing of electrons are of a triplet nature. We demonstrate that the superconducting
state of the quasi-one-dimensional layered conductor Li0.9Mo6O17 is well described by the suggested theory. To
this end, we consider two competing scenarios: (1) a superconducting order parameter without zeros on the Fermi
surface, and (2) one with zeros on the Fermi surface—both are shown to lead to destruction of superconductivity
at a magnetic field Hx

c2
, five times higher than Hp . With recent experimental measurements on the Li0.9Mo6O17

favoring the nodeless order parameter, we present a strong argument supporting triplet pairing in this compound.
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I. INTRODUCTION

Detailed studies of the upper critical magnetic fields
that lead to the destruction of superconductivity in type-II
superconductors can provide essential information as to the
nature of superconductivity in a given compound. Theoretical
analysis of the upper critical magnetic fields along different
directions in superconducting crystals is crucial in highly
anisotropic, quasi-one-, and quasi-two-dimensional (Q1D and
Q2D) materials, where such fields depend on the orientation,
and can reveal fundamental properties, such as the pairing
symmetry of the superconducting state. In a magnetic field,
destruction of superconductivity that results from the breaking
of the Cooper pairs can manifest itself through two distinct
mechanisms, as the field couples to both electron’s charge and
spin. In the first case, the magnetic field alters the orbital wave
functions of electrons, leading to the orbital pair-breaking
effect. Superconductors can experience this Meissner effect
irrespective of their pairing nature. The second mechanism that
leads to destruction of superconductivity in a magnetic field is
due to Pauli spin splitting, as pairing of electrons in spin-singlet
states (spins anti-aligned, total spin s = 0) becomes energeti-
cally unfavorable. In this case, the difference in Pauli energy
levels �E = 2μBHp is of the order of the superconducting
energy gap �, where μB is the Bohr magneton, and Hp is
the so-called Clogston-Chandrasekhar paramagnetic limiting
field.1 A detailed analysis shows that Hp = �

2
√

2μB

≈ 1.83Tc

(T/K), based on the BCS result2 of � = 3.53kBTc. In the
case of the recently examined3 Q1D compound Li0.9Mo6O17,
with Tc = 2.2 K, this result gives Hp ≈ 4 T. We also note
that a paramagnetic limiting field of Hp ≈ 3.1 T in this
compound has been extracted experimentally3 from the Pauli
susceptibility and the specific heat jump at Tc. This value
is five times smaller than the measured upper critical field
Hx

c2 ≈ 15 T, parallel to the most conducting axis.
Survival of superconductivity for the upper critical mag-

netic fields greatly exceeding Hp, suggests the possibility of
spin-triplet pairing (where the total spin of a Cooper pair,
s = 1)—a rather rare and intriguing phenomenon in unconven-
tional superconductivity. In contrast to singlet pairing, Cooper

pairs in triplet superconductors can be insensitive to Pauli
splitting, the orbital pair-breaking effect being the prevalent
mechanism that destroys superconductivity. In this regard,
highly anisotropic, Q1D layered conductors have attracted
considerable attention from theorists and experimentalists
alike. Important candidates for unconventional superconduc-
tivity include the organic superconductors4,5 that have been ex-
perimentally investigated since 1980. Initial experiments per-
formed on the Q1D superconductors (TMTSF)2X (X = PF6

and ClO4), called the Bechgaard salts, alluded to their
unconventional nature.6–9 Interest in these compounds was
further intensified due to the possible existence of such peculiar
phenomena as reentrant superconductivity,10–13 as well as
the Larkin-Ovchinnikov-Fulde-Ferrel (LOFF) phase,14–17 and
hidden reentrant superconductivity.18 Currently the leading
candidate for triplet superconductivity is the heavy-fermion
compound19 UPt3, while strong evidence in favor of triplet
pairing20,21 has been found in Sr2RuO4, as theoretical studies
of the latter have been motivated by similarities to triplet
pairing in superfluid 3He. As for the members from the family
(TMTSF)2X, NMR measurements of the Knight shift provide
evidence for d-wave-like pairing22,23 for X = ClO4, while the
pairing nature of X = PF6, although initially hypothesized to
be spin triplet, has not yet been unequivocally settled.13,24

Investigation of the superconducting state in Q1D conductors
poses considerable general interest as more new compounds
with unconventional pairing symmetry (the possibility of
triplet pairing, other exotic phases) are being experimentally
investigated.

In our paper we study two scenarios of triplet
electron pairing in the Q1D layered superconductor
Li0.9Mo6O17. Using Gor’kov’s equations for unconventional
superconductivity,25–27 we obtain the so-called gap equations
for superconducting order parameters with and without zeros
on the Q1D Fermi surface. We show quite generally that in
the absence of paramagnetic limiting the orbital pair-breaking
effects lead to destruction of superconductivity in a Q1D
layered conductor at fields much higher than the Clogston-
Chandrasekhar limit Hx

c2 � Hp, with H aligned along the
most conducting (x̂) crystallographic axis, provided that the
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interplane distance is less than the corresponding coherence
length ξz. This is in contrast to the common belief3 stipulating
that the orbital destructive effects are minimized for fields
parallel to the most conducting axis, and thus are not able to
destroy the superconducting phase. We define the band and
superconducting parameters of Li0.9Mo6O17 and show that,
indeed, the coherence length of Cooper pairs perpendicular to
the planes ξz is greater than the interplane separation. Thus, the
conducting layers in Li0.9Mo6O17 are well coupled, leading to
a 3D anisotropic description of superconductivity. We compare
our results with the experimental data,3 and demonstrate that
the Q1D superconductor Li0.9Mo6O17 is better described by
the nodeless triplet order parameter, in contrast to the nodal
case. The temperature dependence of the upper critical field
Hx

c2(T ) obtained in this paper is in excellent quantitative and
qualitative agreement with the experiment. Note that the case
of nodeless triplet superconductivity was considered before in
brief in our Rapid Communication.28

This paper is organized as follows: In Sec. II the Hamil-
tonian of electrons with Q1D anisotropic energy spectrum
in a magnetic field is introduced and the wave functions
are calculated. In Sec. III the Green’s functions of the Q1D
electrons in a magnetic field are obtained and the rest of the
section is devoted to the general formalism of obtaining the
so-called gap equation for a triplet superconducting order
parameter in a magnetic field. Section IV is devoted to
the analysis and analytical simplification of the integral gap
equations and their numerical solutions for the nodeless and
nodal triplet superconducting order parameters. In Sec. V the
upper critical magnetic field as a function of temperature
Hc2 (T ) is extracted for both kinds of order parameters, and
compared to the recently measured experimental values for
the Q1D conductor Li0.9Mo6O17, concluding with subsequent
arguments in favor of triplet pairing described by the nodeless
case. In Sec. VI we summarize and discuss the obtained results.

II. WAVE FUNCTIONS OF ELECTRONS WITH Q1D
ANISOTROPIC ELECTRON SPECTRUM IN A

MAGNETIC FIELD

We begin by considering the tight binding model for a Q1D
electron spectrum of a layered conductor:

E(p) = −2tx cos(pxax) − 2ty cos(pyay) − 2tz cos(pzaz),

(1)

where we set h̄ ≡ 1. In the equation above, ai are the
lattice constants, and ti are the transfer integrals for electron
wave functions along the crystallographic axes. In the highly
anisotropic Q1D layered conductor under consideration, tx �
ty � tz, a fact that will allow us to linearize the dispersion re-
lation. Our initial step is to define the appropriate Hamiltonian,
and solve a Schrödinger-like equation to obtain the exact wave
functions. To this end, we consider a magnetic field parallel to
the conducting chains (along x̂) of a Q1D layered conductor
H = H x̂. The vector potential corresponding to this magnetic
field can be chosen to be A = Hy ẑ. Consider a Q1D Fermi
surface (FS)—two open, slightly corrugated sheets centered
at at px = ±pF , extending along p̂z depicted in Fig. 1. On
the surface of constraint (i.e., the FS) the following linearized
relation holds (the ± correspond to the left/right sides of the

FIG. 1. Fermi surface for a Q1D layered conductor. Throughout
the text, the ± in expressions refer to the right (+) and left (−) sheets
of the Fermi surface.

FS):

px(py) = ±pF ± 2ty

vF

cos(pyay), (2)

where vF = 2txax sin(pF ax) is the Fermi velocity of electrons
along the most conducting x̂ axis. Equation (2) implicitly
defined py as a function of px on the Q1D Fermi surface.
Let p±

y stand for the two values (upper and lower) of py for
which px(p±

y ) = pF . We further define

vy(px) = ∂ε(p)/∂py = 2tyay sin[py(px)ay].

The energy dispersion relation can be linearized near the
left and right sheets of the FS. Measured with respect to the
Fermi energy ε = E − EF , the linearized dispersion relation
takes the form

ε±(p) = ±vy(py)[py − p±
y (px)] − 2tz cos(pzaz). (3)

To obtain the Hamiltonian in a magnetic field H = H x̂, the
Pierels substitution method is used:

py − p±
y (px) → −i

∂

∂y
and pz → pz − e

c
Az, (4)

where Az = Hy is the z component of the vector potential.
Using the substitution in Eq. (4) for the dispersion relation

in Eq. (3), as well as including the spin-dependent interaction,
the following Hamiltonian is obtained:

ε̂(±) = ∓ivy(p±
y )

∂

∂y
− 2tz cos

(
pzaz − ωz

vF

y

)
− 2μBsH,

(5)

where ωz = eHazvF /c, μB is the Bohr magneton, and s is
the projection of the spin along the direction of the magnetic
field x̂. The simultaneous orbital eigenfunctions of energy
and momentum component px , with eigenvalues ε can be
represented in the factored form

�±
ε,px

(x,y,pz) = e±ipxx e±ip±
y (px )y ψ±

ε (y,pz). (6)
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The wave functions ψ±
ε (y,pz) are obtained from a

Schrödinger-like equation ε̂(±) ψ±
ε (y,pz) = ε ψ±

ε (y,pz):

∓ivy(p±
y )

∂ψ±
ε (y,pz)

∂y

=
[
ε + 2tz cos

(
pzaz − ωz

vF

y

)
+ 2μBsH

]
ψ±

ε (y,pz).

(7)

The equation above admits exact solutions of the form

ψ±
ε (y,pz) = exp

[
± i

2tz

vy(p±
y )

∫ y

0
cos

(
pzaz − ωz

vF

y ′
)

dy ′
]

× exp

(
± i

ε y

vy(p±
y )

)
exp

[
± 2iμBsHy

vy(p±
y )

]
.

(8)

Thus, the complete, normalized solutions for the wave func-
tions are

�±
px

(ε; x,y,pz)

= e±ipxxe±ip±
y y√

2π |vy(p±
y )|

exp

[
±i

ε y

vy(p±
y )

]

× exp

[
±i

2tz

vy(p±
y )

∫ y

0
cos

(
pzaz − ωz

vF

y ′
)

dy ′
]

× exp

[
±2iμBsHy

vy(p±
y )

]
. (9)

III. GREEN’S FUNCTIONS IN A MAGNETIC FIELD AND
TRIPLET SUPERCONDUCTING PAIRING

Having obtained the wave functions, we can calculate the
Green’s functions. From the standard expression for the finite
temperature Green’s function, we have

G±
iωn

(r,r′) =
∑

ε

�∗
ε (r′)�ε(r)

iωn − ε
, (10)

where ωn = 2πT (n + 1/2) are the so-called Matsubara fre-
quencies. For convenience, we define the phase entering one
of the exponential factors in Eq. (9) as

φ±(y,pz) = 2tz

vy(p±
y )

∫ y

0
cos

(
pzaz − ωz

vF

y ′
)

dy ′. (11)

Substituting the wave functions from Eq. (9) into Eq. (10),
and converting the summation into integration over the energy
variable, we obtain the following expressions for the Green’s
functions:

G±
iωn

(x,x ′; y,y ′; pz)

= e±ipx (x−x ′)e±ip±
y (px )(y−y ′)

× exp

[
±2iμBsH (y − y ′)

vy(p±
y )

]
ĝ±

iωn
(y,y ′; pz), (12)

where the factor

ĝ±
iωn

(y,y ′; pz) = e±i[φ±(y,pz)−φ±(y ′,pz)]g±
iωn

(y,y ′), (13)

and the factor

g±
iωn

(y,y ′) = 1

2πvy(p±
y )

∫ ∞

−∞

exp
[ ± i

ε(y−y ′)
vy (p±

y )

]
iωn − ε

dε. (14)

In order to evaluate the integral in Eq. (14), a closed contour
in upper (lower) complex plane is used when ωn > 0(ωn < 0),
which results in the following expressions for g±

iωn
(y,y ′):

g+
iωn

(y,y ′) =
{ −i·sgn(ωn)

vy (p+
y )

exp
[−ωn(y−y ′)

vy (p+
y )

]
: ωn(y − y ′) > 0

0 : ωn(y − y ′) < 0

g−
iωn

(y,y ′) =
{ −i·sgn(ωn)

vy (p−
y )

exp
[

ωn(y−y ′)
vy (p−

y )

]
: ωn(y − y ′) < 0

0 : ωn(y − y ′) > 0.

Therefore, the expression for the Green’s functions be-
comes, explicitly:

G±
iωn

(x,x ′; y,y ′; pz)

= −i · sgn(ωn)

vy(p±
y )

e±ipx (x−x ′)e±ip±
y (px )(y−y ′)

× exp

[
± i

2tz

vy(p±
y )

∫ y

y ′
cos

(
pzaz − ωz

vF

y ′′
)

dy ′′
]

× exp

[∓ωn(y − y ′)
vy(p±

y )

]
exp

[
± 2iμBsH (y − y ′)

vy(p±
y )

]
.

(15)

In the above expression, the + (−) signs in the spin factor
e±2iμBsH (y−y ′)/vy (p+

y ) correspond to electron in the up (↑) or
down (↓) state, respectively.

The derivation of the general expression for the super-
conducting order parameter in the case of triplet pairing
for a Q1D layered conductor involves the use of Gor’kov’s
equation for unconventional superconductivity. To this end,
let us consider the general expression25 for a multicomponent
superconducting order parameter:

�αβ(k,q) = −T
∑

n

∑
k′k′′q ′

Vβα,λμ(k,k′)�λμ(k′′,q′)

×Gλ

(
k′ + q

2
,k′′ + q

2
; ωn

)
×Gμ

(
−k′ + q

2
, − k′′ + q

2
; −ωn

)
. (16)

In the above expression, G(k′,k′′) are the Fourier trans-
formed Green’s functions, the Greek subscripts represent spin
indexes (that can take on two values represented by ↑ or ↓),
and a summation with respect to the repeated index is implied.
The spin dependent interaction Vβα,λμ(k,k′) can be factorized
in the absence of spin-orbit coupling as Vβα,λμ(k,k′) =
V (k,k′)�αβ,λμ. In the case of triplet superconducting pairing,
the factors above have the following properties: V (k,k′) =
−V (−k,k′) = −V (k,−k′), i.e., it is antisymmetric, whereas
the factors �αβ,λμ are symmetric under cyclic interchange of
the spin indexes, with nonzero values in the case of triplet
pairing being �↑↑,↑↑ = �↓↓,↓↓ = 1.

We consider a triplet superconducting order parameter
�t (k,q) that is a linear combination

�t (k,q) = �↑↑(k,q) + �↓↓(k,q). (17)
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Using the form of the interaction above and performing the
summation over the spin indexes in Eq. (16), we obtain the
following expression for �↑↑ and �↓↓:

�↑↑(k,q) = −T
∑

n

∑
k′k′′q ′

V (k,k′)
2

[�↑↑(k′′,q′)�↑↑(k′,k′′,q)

+�↓↓(k′′,q′)�↓↓(k′,k′′,q)], (18)

where

�αβ(k′,k′′,q) = δαβ Gα

(
k′ + q

2
,k′′ + q

2
; ωn

)
×Gβ

(
−k′ + q

2
, − k′′ + q

2
; −ωn

)
. (19)

In the expression above, α,β =↑ or ↓. An expression
similar to Eq. (18) is obtained for �↓↓(k,q). Adding the two
quantities in Eq. (17), we obtain the general gap equation for
the triplet superconducting order parameter:

�t (k,q) = −T
∑

n

∑
k′k′′q ′

V (k,k′)�t (k′′,q′)

× [�↑↑(k′,k′′,q) + �↓↓(k′,k′′,q)]. (20)

IV. THE TRIPLET SUPERCONDUCTING ORDER
PARAMETER: NODELESS VERSUS NODAL CASES

We consider two scenarios of triplet pairing in which
superconductivity is insensitive to Pauli paramagnetic effects.
The simplest such triplet superconducting order parameter
takes the form

�̂(px,y) = Î sgn(px)�(y), (21)

where Î is a unit matrix in spin space, and the function
sgn(px) = ±1 changes the sign of the order parameter on
the two sheets of the Q1D FS. The gap equation for �(y)
that determines the upper critical field Hx

c2(T ) at which
superconductivity is destroyed is obtained by means of the
general Eq. (20). We will first consider the case when the
order parameter does not have zeros on the Q1D Fermi surface
[i.e., the order parameter (21)]. It is possible to show that
Eq. (20) for such a nodeless order parameter that includes
orbital destructive effects is reduced to the following integral
equation:

�(y) = g

〈 ∫
|y−y ′ |> |vy (py )|

�

2πT dy ′

vy(py) sinh
[ 2πT |y−y ′ |

vy (py )

]�(y ′)

× J0

{
8tzvF

ωzvy(py)
sin

[
ωz(y − y ′)

2vF

]

× sin

[
ωz(y + y ′)

2vF

] }〉
py

, (22)

where 〈· · ·〉py
indicates averaging over momentum py , intro-

duced when the magnetic field is parallel to the conducting
axis. Here g is a dimensionless electron coupling constant, �

is the cutoff energy, and ωz = eHazvF /c.
Equation (22) is very general. Its solution defines a triplet

superconducting order parameter that includes the possibility
of reentrant superconductivity10 (in layered Q1D and Q2D
compounds) at very high magnetic fields and/or very low

temperatures, where the quantum nature of electron motion in
a magnetic field becomes important. Below, in analyzing the
integral in Eq. (22), we will work in the regime of relatively
high temperatures and relatively low magnetic fields, defined
respectively by the following conditions:

T � T ∗(H ) ≈ ωz(H )v0
y

2π2vF

, (23)

ωz(H ) � 8tzvF

v0
y

, (24)

where v0
y = 2tyay . This is equivalent to neglecting quantum

effects resulting from Bragg reflection of electrons moving
along open FS, and amounts to replacing the first sine in the
above expression with its argument. It will be demonstrated
that the conditions in Eqs. (23) and (24) are well satisfied for
Li0.9Mo6O17. These conditions render following simplification
to the arguments of the Bessel functions appearing inside the
integrals:

�(y) = g

〈 ∫
|y−y ′ |> |vy (py )|

�

2πT dy ′

vy(py) sinh
[ 2πT |y−y ′ |

vy (py )

]�(y ′)

× J0

{
4tz(y − y ′)

vy(py)
sin

[
ωz(y + y ′)

2vF

]}〉
py

, (25)

where vy(py) = v0
y sin(pyay). This equation for �(y) incor-

porates the description provided by the so-called Lawrence-
Doniah (LD) model,29,30 where the coherence length perpen-
dicular to the conducting plane satisfies ξz < az/

√
2. However,

in the compound Li0.9Mo6O17, the coherence length ξz > az,
as will be shown below. Therefore, the LD model does not
apply, and the description of 3D anisotropic superconductivity
results. This fact further simplifies Eq. (25):

�(y) = g

〈 ∫
|y−y ′ |> |vy (py )|

�

2πT dy ′

vy(py) sinh
[ 2πT |y−y ′ |

vy (py )

]�(y ′)

× J0

[
2tzωz(y2 − y ′2)

vy(py)vF

]〉
py

. (26)

In order to recast Eq. (26) into a form appropriate for
numerical analysis, we employ the following change of
variables:

y ′ − y = vy(py)

v0
y

z, ω̃z = v0
y

vF

ωz,

with vy (py )
v0

y
= sin α, after which, Eq. (26) can be expressed as

�(y) = g

〈 ∫ ∞

d

2πT dz√
2tzω̃z sinh

[
2πT√
2tzω̃z

z
]�(y + z sin α)

× J0[z(2y + z sin α)]

〉
α

, (27)

where cutoff distance d = √
2tzω̃z/�, and the averaging is

now over the angular variable 0 < α < 2π .
In the case where the triplet superconducting order param-

eter has zeros on the FS, we take

�̂(α,y) = Î sgn(px)
√

2 sin(α) �(y).
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With analogous change of variables, the simplified integral
equation corresponding to the nodal case is

�(y) = g

〈∫ ∞

d

2πT dz√
2tzω̃z sinh

[
2πT√
2tzω̃z

z
] 2 sin2 α

×�(y + z sin α)J0 [z(2y + z sin α)]

〉
α

. (28)

V. CALCULATED UPPER CRITICAL MAGNETIC FIELDS
AND THEIR COMPARISON WITH THE EXPERIMENT

The band and superconducting parameters for the Q1D
electron spectrum of Li0.9Mo6O17 can be determined from the
GL slopes of the measured upper critical fields Hi

c2(T ) near
Tc. The ratios of linearly extrapolated zero-temperature upper
critical fields along different axes are related to the ratios of
the corresponding coherence lengths through the Ginzburg-
Landau relation

Hi
c2

H
j

c2

= ξi

ξj

.

Supplemented with the GL expression for the upper critical
field

Hi
c2 = �0

2πξj ξk

,

where �0 = hc/2e is the magnetic flux quantum, the co-
herence lengths ξi can be determined. In the vicinity of the
superconducting transition temperature |T − Tc|/Tc � 1, the
anisotropic 3D Ginzburg-Landau expressions for the upper
critical magnetic field along different axes can be derived for
both nodeless and nodal order parameters.

It is possible to show that for the nodeless order parameter,
Eq. (27) gives

Hx
c2(T ) = 4π2cT 2

c

7ζ (3)etytzayaz

(
Tc − T

Tc

)
, (29)

while the GL upper critical fields for directions perpendicular
to the most conducting axis are given by31

H
y

c2(T ) = 4
√

2π2cT 2
c

7ζ (3)evF tzaz

(
Tc − T

Tc

)
, (30)

Hz
c2(T ) = 4

√
2π2cT 2

c

7ζ (3)evF tyay

(
Tc − T

Tc

)
, (31)

where ζ (3) is the value of the Riemann ζ function. The GL
coherence lengths for the nodeless case are

ξx =
√

7ζ (3)vF

4πTc

, ξy =
√

7ζ (3)tyay

2
√

2πTc

, ξz =
√

7ζ (3)tzaz

2
√

2πTc

.

For the nodal order parameter Eq. (28), the expression
for H

y

c2 remains identical to the nodeless case, while the
expressions for Hx

c2 and Hz
c2 are changed according to

Hx
c2(T ) = 4

√
2π2cT 2

c

7ζ (3)
√

3etytzayaz

(
Tc − T

Tc

)
, (32)

Hz
c2(T ) = 8π2cT 2

c

7ζ (3)
√

3evF tyay

(
Tc − T

Tc

)
, (33)

TABLE I. Electron spectrum and superconducting parameters
calculated in the case of nodeless order parameter.

Li0.9Mo6O17 x̂ ŷ ẑ

ai (Å) 5.53 12.73 9.51
ξi (Å) 426 77 20
ti (K) 370 41 14
vi (cm/s) × 106 vF = 5.3 1.4 0.25

with the change only in the ξy coherence length:

ξy =
√

3 · 7ζ (3)tyay

4πTc

.

The band and superconducting parameters for the nodeless
case are summarized in Table I.

A numerical solution of Eqs. (27) and (28) is implemented
by iteration, using a method of successive approximations both
near T = 0, and for arbitrary (but small enough) values of
T . The solution for �(y) at T = 0.1 K for both nodeless
and nodal cases is shown in Fig. 2. Note the qualitative
difference compared with the isotropic 3D superconductor:
�(y) exhibits decaying oscillations as a function of y. The
period of these oscillations is of the order of the coherence
length ξx . Furthermore, the temperature dependence of � can
be shown to be quadratic for small T . The solid lines in Figs. 3
and 4 correspond to the numerical solution to Hx

c2(T ) for
nodeless and nodal cases, respectively. The experimental data
for Li0.9Mo6O17 taken from Ref. 3 is overplotted as squares,
while the Ginzburg-Landau linear dependence (valid near Tc)
is plotted as a dashed line.

We can check the validity of approximations made in
arriving at the integral in Eq. (26) by using the values from
the table above, and the conditions in Eqs. (23) and (24). The
results are

T � T ∗ ≈ 0.06 K and H � 300 T.

These conditions are well satisfied in the experiments of
Ref. 3. Furthermore, as the coherence length ξz ≈ 20 Å >

az/
√

2 = 6.7 Å, i.e., is it much greater than the interlayer
spacing, the layered are well coupled, and the so called
Lawrence-Doniah model does not apply in this context. Thus,

FIG. 2. (Color online) Spatial dependencies of the nodal (solid
curve) and nodeless (dashed curve) triplet superconducting order
parameters calculated at T = 0.1 K.
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FIG. 3. Calculated temperature dependence of the upper critical
magnetic field Hx

c2(T ) for the case of the nodeless order parameter
is represented by a solid line; squares represent recently measured
experimental values as reported in Ref. 3; and the dashed line is the
Ginzburg-Landau linear dependence valid for |T − Tc| � Tc.

our problem is that of anisotropic 3D superconductivity. As
shown previously by us28 for a magnetic field parallel to the
most conducting axis of a Q1D layered conductor, orbital
effects are capable of destroying superconductivity in the
absence of paramagnetic effects. Although both nodeless and
nodal triplet order parameters (Fig. 2) reproduce qualitatively
similar results for the phase diagram of Hx

c2(T ), the nodeless
case is in a better quantitative agreement with the data from
Ref. 3.

As an additional concluding remark, we discuss another
possible explanation of a very high upper critical magnetic
field, parallel to conducting axis in a Q1D superconductor.
As shown in Ref. 32, in a pure 1D singlet superconductor
Pauli spin-splitting effects in a magnetic field do not destroy
superconductivity at T = 0 in arbitrarily high magnetic fields
due to formation of the LOFF phase14,15 in a form of the
soliton superstructure. Nevertheless, in Ref. 11 it was shown
that in a real singlet Q1D superconductor with electron
spectrum (1), there exists paramagnetically limiting magnetic
field for the LOFF phase even in the case where the orbital
effects against superconductivity are negligible. The field that
paramagnetically limits singlet superconductivity in a Q1D
superconductor is evaluated33 as

H LOFF
p = 0.6

√
tx/ty Hp . (34)

Substituting the corresponding parameters for the
Li0.9Mo6O17 superconductor (see Table I), we obtain H LOFF

p �
6 T. As shown in Ref. 16, the orbital effects against su-
perconductivity decrease this paramagnetically limiting field.
Therefore, we conclude that the possible appearance of the
LOFF phase in the framework of a singlet scenario of
superconductivity is very unlikely to be responsible for the

FIG. 4. Calculated temperature dependence of the upper critical
magnetic field Hx

c2(T ) corresponding to the nodal order parameter.
Notations are the same as in Fig. 3.

very large experimental upper critical field Hx
c2 ≈ 15 T in the

Li0.9Mo6O17 superconductor.

VI. SUMMARY

In this paper we have explored two competing scenarios
within the framework of triplet superconducting pairing in
a Q1D layered conductor. We have demonstrated how in a
parallel magnetic field superconductivity can be destroyed
through orbital effects, and have calculated Hxc2(T ) when
the triplet order parameters have and do not have nodes on the
FS. Our findings show that the nodeless order parameter leads
to the temperature dependence of upper critical field that is in
a better quantitative agreement with the experimental data in
Ref. 3. In particular, such a nodeless triplet order parameter is
consistent with the large value of the experimentally observed
specific heat jump at the superconducting transition in zero
field. Note that all our calculations have been done within a
validity of the so-called Fermi-liquid picture. In this context it
is important that the quadratic dependence of low temperature
magnetoresistance is reported in Ref. 3, which we consider as
a main argument in favor of the Fermi liquid description. In
more details, we state that the low temperature regime (T <

Tc ≈ 2.2 K) at which our calculation are performed avoids
the Luttinger liquid behavior that is expected to emerge in
Q1D conductors at higher temperatures,33–35 as was observed
in Li0.9Mo6O17.
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